1
linux/drivers/xen/events.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

952 lines
21 KiB
C

/*
* Xen event channels
*
* Xen models interrupts with abstract event channels. Because each
* domain gets 1024 event channels, but NR_IRQ is not that large, we
* must dynamically map irqs<->event channels. The event channels
* interface with the rest of the kernel by defining a xen interrupt
* chip. When an event is recieved, it is mapped to an irq and sent
* through the normal interrupt processing path.
*
* There are four kinds of events which can be mapped to an event
* channel:
*
* 1. Inter-domain notifications. This includes all the virtual
* device events, since they're driven by front-ends in another domain
* (typically dom0).
* 2. VIRQs, typically used for timers. These are per-cpu events.
* 3. IPIs.
* 4. Hardware interrupts. Not supported at present.
*
* Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
*/
#include <linux/linkage.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/bootmem.h>
#include <linux/slab.h>
#include <asm/ptrace.h>
#include <asm/irq.h>
#include <asm/idle.h>
#include <asm/sync_bitops.h>
#include <asm/xen/hypercall.h>
#include <asm/xen/hypervisor.h>
#include <xen/xen-ops.h>
#include <xen/events.h>
#include <xen/interface/xen.h>
#include <xen/interface/event_channel.h>
/*
* This lock protects updates to the following mapping and reference-count
* arrays. The lock does not need to be acquired to read the mapping tables.
*/
static DEFINE_SPINLOCK(irq_mapping_update_lock);
/* IRQ <-> VIRQ mapping. */
static DEFINE_PER_CPU(int [NR_VIRQS], virq_to_irq) = {[0 ... NR_VIRQS-1] = -1};
/* IRQ <-> IPI mapping */
static DEFINE_PER_CPU(int [XEN_NR_IPIS], ipi_to_irq) = {[0 ... XEN_NR_IPIS-1] = -1};
/* Interrupt types. */
enum xen_irq_type {
IRQT_UNBOUND = 0,
IRQT_PIRQ,
IRQT_VIRQ,
IRQT_IPI,
IRQT_EVTCHN
};
/*
* Packed IRQ information:
* type - enum xen_irq_type
* event channel - irq->event channel mapping
* cpu - cpu this event channel is bound to
* index - type-specific information:
* PIRQ - vector, with MSB being "needs EIO"
* VIRQ - virq number
* IPI - IPI vector
* EVTCHN -
*/
struct irq_info
{
enum xen_irq_type type; /* type */
unsigned short evtchn; /* event channel */
unsigned short cpu; /* cpu bound */
union {
unsigned short virq;
enum ipi_vector ipi;
struct {
unsigned short gsi;
unsigned short vector;
} pirq;
} u;
};
static struct irq_info irq_info[NR_IRQS];
static int evtchn_to_irq[NR_EVENT_CHANNELS] = {
[0 ... NR_EVENT_CHANNELS-1] = -1
};
struct cpu_evtchn_s {
unsigned long bits[NR_EVENT_CHANNELS/BITS_PER_LONG];
};
static struct cpu_evtchn_s *cpu_evtchn_mask_p;
static inline unsigned long *cpu_evtchn_mask(int cpu)
{
return cpu_evtchn_mask_p[cpu].bits;
}
/* Xen will never allocate port zero for any purpose. */
#define VALID_EVTCHN(chn) ((chn) != 0)
static struct irq_chip xen_dynamic_chip;
/* Constructor for packed IRQ information. */
static struct irq_info mk_unbound_info(void)
{
return (struct irq_info) { .type = IRQT_UNBOUND };
}
static struct irq_info mk_evtchn_info(unsigned short evtchn)
{
return (struct irq_info) { .type = IRQT_EVTCHN, .evtchn = evtchn,
.cpu = 0 };
}
static struct irq_info mk_ipi_info(unsigned short evtchn, enum ipi_vector ipi)
{
return (struct irq_info) { .type = IRQT_IPI, .evtchn = evtchn,
.cpu = 0, .u.ipi = ipi };
}
static struct irq_info mk_virq_info(unsigned short evtchn, unsigned short virq)
{
return (struct irq_info) { .type = IRQT_VIRQ, .evtchn = evtchn,
.cpu = 0, .u.virq = virq };
}
static struct irq_info mk_pirq_info(unsigned short evtchn,
unsigned short gsi, unsigned short vector)
{
return (struct irq_info) { .type = IRQT_PIRQ, .evtchn = evtchn,
.cpu = 0, .u.pirq = { .gsi = gsi, .vector = vector } };
}
/*
* Accessors for packed IRQ information.
*/
static struct irq_info *info_for_irq(unsigned irq)
{
return &irq_info[irq];
}
static unsigned int evtchn_from_irq(unsigned irq)
{
return info_for_irq(irq)->evtchn;
}
unsigned irq_from_evtchn(unsigned int evtchn)
{
return evtchn_to_irq[evtchn];
}
EXPORT_SYMBOL_GPL(irq_from_evtchn);
static enum ipi_vector ipi_from_irq(unsigned irq)
{
struct irq_info *info = info_for_irq(irq);
BUG_ON(info == NULL);
BUG_ON(info->type != IRQT_IPI);
return info->u.ipi;
}
static unsigned virq_from_irq(unsigned irq)
{
struct irq_info *info = info_for_irq(irq);
BUG_ON(info == NULL);
BUG_ON(info->type != IRQT_VIRQ);
return info->u.virq;
}
static unsigned gsi_from_irq(unsigned irq)
{
struct irq_info *info = info_for_irq(irq);
BUG_ON(info == NULL);
BUG_ON(info->type != IRQT_PIRQ);
return info->u.pirq.gsi;
}
static unsigned vector_from_irq(unsigned irq)
{
struct irq_info *info = info_for_irq(irq);
BUG_ON(info == NULL);
BUG_ON(info->type != IRQT_PIRQ);
return info->u.pirq.vector;
}
static enum xen_irq_type type_from_irq(unsigned irq)
{
return info_for_irq(irq)->type;
}
static unsigned cpu_from_irq(unsigned irq)
{
return info_for_irq(irq)->cpu;
}
static unsigned int cpu_from_evtchn(unsigned int evtchn)
{
int irq = evtchn_to_irq[evtchn];
unsigned ret = 0;
if (irq != -1)
ret = cpu_from_irq(irq);
return ret;
}
static inline unsigned long active_evtchns(unsigned int cpu,
struct shared_info *sh,
unsigned int idx)
{
return (sh->evtchn_pending[idx] &
cpu_evtchn_mask(cpu)[idx] &
~sh->evtchn_mask[idx]);
}
static void bind_evtchn_to_cpu(unsigned int chn, unsigned int cpu)
{
int irq = evtchn_to_irq[chn];
BUG_ON(irq == -1);
#ifdef CONFIG_SMP
cpumask_copy(irq_to_desc(irq)->affinity, cpumask_of(cpu));
#endif
__clear_bit(chn, cpu_evtchn_mask(cpu_from_irq(irq)));
__set_bit(chn, cpu_evtchn_mask(cpu));
irq_info[irq].cpu = cpu;
}
static void init_evtchn_cpu_bindings(void)
{
#ifdef CONFIG_SMP
struct irq_desc *desc;
int i;
/* By default all event channels notify CPU#0. */
for_each_irq_desc(i, desc) {
cpumask_copy(desc->affinity, cpumask_of(0));
}
#endif
memset(cpu_evtchn_mask(0), ~0, sizeof(cpu_evtchn_mask(0)));
}
static inline void clear_evtchn(int port)
{
struct shared_info *s = HYPERVISOR_shared_info;
sync_clear_bit(port, &s->evtchn_pending[0]);
}
static inline void set_evtchn(int port)
{
struct shared_info *s = HYPERVISOR_shared_info;
sync_set_bit(port, &s->evtchn_pending[0]);
}
static inline int test_evtchn(int port)
{
struct shared_info *s = HYPERVISOR_shared_info;
return sync_test_bit(port, &s->evtchn_pending[0]);
}
/**
* notify_remote_via_irq - send event to remote end of event channel via irq
* @irq: irq of event channel to send event to
*
* Unlike notify_remote_via_evtchn(), this is safe to use across
* save/restore. Notifications on a broken connection are silently
* dropped.
*/
void notify_remote_via_irq(int irq)
{
int evtchn = evtchn_from_irq(irq);
if (VALID_EVTCHN(evtchn))
notify_remote_via_evtchn(evtchn);
}
EXPORT_SYMBOL_GPL(notify_remote_via_irq);
static void mask_evtchn(int port)
{
struct shared_info *s = HYPERVISOR_shared_info;
sync_set_bit(port, &s->evtchn_mask[0]);
}
static void unmask_evtchn(int port)
{
struct shared_info *s = HYPERVISOR_shared_info;
unsigned int cpu = get_cpu();
BUG_ON(!irqs_disabled());
/* Slow path (hypercall) if this is a non-local port. */
if (unlikely(cpu != cpu_from_evtchn(port))) {
struct evtchn_unmask unmask = { .port = port };
(void)HYPERVISOR_event_channel_op(EVTCHNOP_unmask, &unmask);
} else {
struct vcpu_info *vcpu_info = __get_cpu_var(xen_vcpu);
sync_clear_bit(port, &s->evtchn_mask[0]);
/*
* The following is basically the equivalent of
* 'hw_resend_irq'. Just like a real IO-APIC we 'lose
* the interrupt edge' if the channel is masked.
*/
if (sync_test_bit(port, &s->evtchn_pending[0]) &&
!sync_test_and_set_bit(port / BITS_PER_LONG,
&vcpu_info->evtchn_pending_sel))
vcpu_info->evtchn_upcall_pending = 1;
}
put_cpu();
}
static int find_unbound_irq(void)
{
int irq;
struct irq_desc *desc;
for (irq = 0; irq < nr_irqs; irq++)
if (irq_info[irq].type == IRQT_UNBOUND)
break;
if (irq == nr_irqs)
panic("No available IRQ to bind to: increase nr_irqs!\n");
desc = irq_to_desc_alloc_node(irq, 0);
if (WARN_ON(desc == NULL))
return -1;
dynamic_irq_init(irq);
return irq;
}
int bind_evtchn_to_irq(unsigned int evtchn)
{
int irq;
spin_lock(&irq_mapping_update_lock);
irq = evtchn_to_irq[evtchn];
if (irq == -1) {
irq = find_unbound_irq();
set_irq_chip_and_handler_name(irq, &xen_dynamic_chip,
handle_level_irq, "event");
evtchn_to_irq[evtchn] = irq;
irq_info[irq] = mk_evtchn_info(evtchn);
}
spin_unlock(&irq_mapping_update_lock);
return irq;
}
EXPORT_SYMBOL_GPL(bind_evtchn_to_irq);
static int bind_ipi_to_irq(unsigned int ipi, unsigned int cpu)
{
struct evtchn_bind_ipi bind_ipi;
int evtchn, irq;
spin_lock(&irq_mapping_update_lock);
irq = per_cpu(ipi_to_irq, cpu)[ipi];
if (irq == -1) {
irq = find_unbound_irq();
if (irq < 0)
goto out;
set_irq_chip_and_handler_name(irq, &xen_dynamic_chip,
handle_level_irq, "ipi");
bind_ipi.vcpu = cpu;
if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_ipi,
&bind_ipi) != 0)
BUG();
evtchn = bind_ipi.port;
evtchn_to_irq[evtchn] = irq;
irq_info[irq] = mk_ipi_info(evtchn, ipi);
per_cpu(ipi_to_irq, cpu)[ipi] = irq;
bind_evtchn_to_cpu(evtchn, cpu);
}
out:
spin_unlock(&irq_mapping_update_lock);
return irq;
}
static int bind_virq_to_irq(unsigned int virq, unsigned int cpu)
{
struct evtchn_bind_virq bind_virq;
int evtchn, irq;
spin_lock(&irq_mapping_update_lock);
irq = per_cpu(virq_to_irq, cpu)[virq];
if (irq == -1) {
bind_virq.virq = virq;
bind_virq.vcpu = cpu;
if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_virq,
&bind_virq) != 0)
BUG();
evtchn = bind_virq.port;
irq = find_unbound_irq();
set_irq_chip_and_handler_name(irq, &xen_dynamic_chip,
handle_level_irq, "virq");
evtchn_to_irq[evtchn] = irq;
irq_info[irq] = mk_virq_info(evtchn, virq);
per_cpu(virq_to_irq, cpu)[virq] = irq;
bind_evtchn_to_cpu(evtchn, cpu);
}
spin_unlock(&irq_mapping_update_lock);
return irq;
}
static void unbind_from_irq(unsigned int irq)
{
struct evtchn_close close;
int evtchn = evtchn_from_irq(irq);
spin_lock(&irq_mapping_update_lock);
if (VALID_EVTCHN(evtchn)) {
close.port = evtchn;
if (HYPERVISOR_event_channel_op(EVTCHNOP_close, &close) != 0)
BUG();
switch (type_from_irq(irq)) {
case IRQT_VIRQ:
per_cpu(virq_to_irq, cpu_from_evtchn(evtchn))
[virq_from_irq(irq)] = -1;
break;
case IRQT_IPI:
per_cpu(ipi_to_irq, cpu_from_evtchn(evtchn))
[ipi_from_irq(irq)] = -1;
break;
default:
break;
}
/* Closed ports are implicitly re-bound to VCPU0. */
bind_evtchn_to_cpu(evtchn, 0);
evtchn_to_irq[evtchn] = -1;
}
if (irq_info[irq].type != IRQT_UNBOUND) {
irq_info[irq] = mk_unbound_info();
dynamic_irq_cleanup(irq);
}
spin_unlock(&irq_mapping_update_lock);
}
int bind_evtchn_to_irqhandler(unsigned int evtchn,
irq_handler_t handler,
unsigned long irqflags,
const char *devname, void *dev_id)
{
unsigned int irq;
int retval;
irq = bind_evtchn_to_irq(evtchn);
retval = request_irq(irq, handler, irqflags, devname, dev_id);
if (retval != 0) {
unbind_from_irq(irq);
return retval;
}
return irq;
}
EXPORT_SYMBOL_GPL(bind_evtchn_to_irqhandler);
int bind_virq_to_irqhandler(unsigned int virq, unsigned int cpu,
irq_handler_t handler,
unsigned long irqflags, const char *devname, void *dev_id)
{
unsigned int irq;
int retval;
irq = bind_virq_to_irq(virq, cpu);
retval = request_irq(irq, handler, irqflags, devname, dev_id);
if (retval != 0) {
unbind_from_irq(irq);
return retval;
}
return irq;
}
EXPORT_SYMBOL_GPL(bind_virq_to_irqhandler);
int bind_ipi_to_irqhandler(enum ipi_vector ipi,
unsigned int cpu,
irq_handler_t handler,
unsigned long irqflags,
const char *devname,
void *dev_id)
{
int irq, retval;
irq = bind_ipi_to_irq(ipi, cpu);
if (irq < 0)
return irq;
retval = request_irq(irq, handler, irqflags, devname, dev_id);
if (retval != 0) {
unbind_from_irq(irq);
return retval;
}
return irq;
}
void unbind_from_irqhandler(unsigned int irq, void *dev_id)
{
free_irq(irq, dev_id);
unbind_from_irq(irq);
}
EXPORT_SYMBOL_GPL(unbind_from_irqhandler);
void xen_send_IPI_one(unsigned int cpu, enum ipi_vector vector)
{
int irq = per_cpu(ipi_to_irq, cpu)[vector];
BUG_ON(irq < 0);
notify_remote_via_irq(irq);
}
irqreturn_t xen_debug_interrupt(int irq, void *dev_id)
{
struct shared_info *sh = HYPERVISOR_shared_info;
int cpu = smp_processor_id();
int i;
unsigned long flags;
static DEFINE_SPINLOCK(debug_lock);
spin_lock_irqsave(&debug_lock, flags);
printk("vcpu %d\n ", cpu);
for_each_online_cpu(i) {
struct vcpu_info *v = per_cpu(xen_vcpu, i);
printk("%d: masked=%d pending=%d event_sel %08lx\n ", i,
(get_irq_regs() && i == cpu) ? xen_irqs_disabled(get_irq_regs()) : v->evtchn_upcall_mask,
v->evtchn_upcall_pending,
v->evtchn_pending_sel);
}
printk("pending:\n ");
for(i = ARRAY_SIZE(sh->evtchn_pending)-1; i >= 0; i--)
printk("%08lx%s", sh->evtchn_pending[i],
i % 8 == 0 ? "\n " : " ");
printk("\nmasks:\n ");
for(i = ARRAY_SIZE(sh->evtchn_mask)-1; i >= 0; i--)
printk("%08lx%s", sh->evtchn_mask[i],
i % 8 == 0 ? "\n " : " ");
printk("\nunmasked:\n ");
for(i = ARRAY_SIZE(sh->evtchn_mask)-1; i >= 0; i--)
printk("%08lx%s", sh->evtchn_pending[i] & ~sh->evtchn_mask[i],
i % 8 == 0 ? "\n " : " ");
printk("\npending list:\n");
for(i = 0; i < NR_EVENT_CHANNELS; i++) {
if (sync_test_bit(i, sh->evtchn_pending)) {
printk(" %d: event %d -> irq %d\n",
cpu_from_evtchn(i), i,
evtchn_to_irq[i]);
}
}
spin_unlock_irqrestore(&debug_lock, flags);
return IRQ_HANDLED;
}
static DEFINE_PER_CPU(unsigned, xed_nesting_count);
/*
* Search the CPUs pending events bitmasks. For each one found, map
* the event number to an irq, and feed it into do_IRQ() for
* handling.
*
* Xen uses a two-level bitmap to speed searching. The first level is
* a bitset of words which contain pending event bits. The second
* level is a bitset of pending events themselves.
*/
void xen_evtchn_do_upcall(struct pt_regs *regs)
{
int cpu = get_cpu();
struct pt_regs *old_regs = set_irq_regs(regs);
struct shared_info *s = HYPERVISOR_shared_info;
struct vcpu_info *vcpu_info = __get_cpu_var(xen_vcpu);
unsigned count;
exit_idle();
irq_enter();
do {
unsigned long pending_words;
vcpu_info->evtchn_upcall_pending = 0;
if (__get_cpu_var(xed_nesting_count)++)
goto out;
#ifndef CONFIG_X86 /* No need for a barrier -- XCHG is a barrier on x86. */
/* Clear master flag /before/ clearing selector flag. */
wmb();
#endif
pending_words = xchg(&vcpu_info->evtchn_pending_sel, 0);
while (pending_words != 0) {
unsigned long pending_bits;
int word_idx = __ffs(pending_words);
pending_words &= ~(1UL << word_idx);
while ((pending_bits = active_evtchns(cpu, s, word_idx)) != 0) {
int bit_idx = __ffs(pending_bits);
int port = (word_idx * BITS_PER_LONG) + bit_idx;
int irq = evtchn_to_irq[port];
struct irq_desc *desc;
if (irq != -1) {
desc = irq_to_desc(irq);
if (desc)
generic_handle_irq_desc(irq, desc);
}
}
}
BUG_ON(!irqs_disabled());
count = __get_cpu_var(xed_nesting_count);
__get_cpu_var(xed_nesting_count) = 0;
} while(count != 1);
out:
irq_exit();
set_irq_regs(old_regs);
put_cpu();
}
/* Rebind a new event channel to an existing irq. */
void rebind_evtchn_irq(int evtchn, int irq)
{
struct irq_info *info = info_for_irq(irq);
/* Make sure the irq is masked, since the new event channel
will also be masked. */
disable_irq(irq);
spin_lock(&irq_mapping_update_lock);
/* After resume the irq<->evtchn mappings are all cleared out */
BUG_ON(evtchn_to_irq[evtchn] != -1);
/* Expect irq to have been bound before,
so there should be a proper type */
BUG_ON(info->type == IRQT_UNBOUND);
evtchn_to_irq[evtchn] = irq;
irq_info[irq] = mk_evtchn_info(evtchn);
spin_unlock(&irq_mapping_update_lock);
/* new event channels are always bound to cpu 0 */
irq_set_affinity(irq, cpumask_of(0));
/* Unmask the event channel. */
enable_irq(irq);
}
/* Rebind an evtchn so that it gets delivered to a specific cpu */
static int rebind_irq_to_cpu(unsigned irq, unsigned tcpu)
{
struct evtchn_bind_vcpu bind_vcpu;
int evtchn = evtchn_from_irq(irq);
if (!VALID_EVTCHN(evtchn))
return -1;
/* Send future instances of this interrupt to other vcpu. */
bind_vcpu.port = evtchn;
bind_vcpu.vcpu = tcpu;
/*
* If this fails, it usually just indicates that we're dealing with a
* virq or IPI channel, which don't actually need to be rebound. Ignore
* it, but don't do the xenlinux-level rebind in that case.
*/
if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_vcpu, &bind_vcpu) >= 0)
bind_evtchn_to_cpu(evtchn, tcpu);
return 0;
}
static int set_affinity_irq(unsigned irq, const struct cpumask *dest)
{
unsigned tcpu = cpumask_first(dest);
return rebind_irq_to_cpu(irq, tcpu);
}
int resend_irq_on_evtchn(unsigned int irq)
{
int masked, evtchn = evtchn_from_irq(irq);
struct shared_info *s = HYPERVISOR_shared_info;
if (!VALID_EVTCHN(evtchn))
return 1;
masked = sync_test_and_set_bit(evtchn, s->evtchn_mask);
sync_set_bit(evtchn, s->evtchn_pending);
if (!masked)
unmask_evtchn(evtchn);
return 1;
}
static void enable_dynirq(unsigned int irq)
{
int evtchn = evtchn_from_irq(irq);
if (VALID_EVTCHN(evtchn))
unmask_evtchn(evtchn);
}
static void disable_dynirq(unsigned int irq)
{
int evtchn = evtchn_from_irq(irq);
if (VALID_EVTCHN(evtchn))
mask_evtchn(evtchn);
}
static void ack_dynirq(unsigned int irq)
{
int evtchn = evtchn_from_irq(irq);
move_native_irq(irq);
if (VALID_EVTCHN(evtchn))
clear_evtchn(evtchn);
}
static int retrigger_dynirq(unsigned int irq)
{
int evtchn = evtchn_from_irq(irq);
struct shared_info *sh = HYPERVISOR_shared_info;
int ret = 0;
if (VALID_EVTCHN(evtchn)) {
int masked;
masked = sync_test_and_set_bit(evtchn, sh->evtchn_mask);
sync_set_bit(evtchn, sh->evtchn_pending);
if (!masked)
unmask_evtchn(evtchn);
ret = 1;
}
return ret;
}
static void restore_cpu_virqs(unsigned int cpu)
{
struct evtchn_bind_virq bind_virq;
int virq, irq, evtchn;
for (virq = 0; virq < NR_VIRQS; virq++) {
if ((irq = per_cpu(virq_to_irq, cpu)[virq]) == -1)
continue;
BUG_ON(virq_from_irq(irq) != virq);
/* Get a new binding from Xen. */
bind_virq.virq = virq;
bind_virq.vcpu = cpu;
if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_virq,
&bind_virq) != 0)
BUG();
evtchn = bind_virq.port;
/* Record the new mapping. */
evtchn_to_irq[evtchn] = irq;
irq_info[irq] = mk_virq_info(evtchn, virq);
bind_evtchn_to_cpu(evtchn, cpu);
/* Ready for use. */
unmask_evtchn(evtchn);
}
}
static void restore_cpu_ipis(unsigned int cpu)
{
struct evtchn_bind_ipi bind_ipi;
int ipi, irq, evtchn;
for (ipi = 0; ipi < XEN_NR_IPIS; ipi++) {
if ((irq = per_cpu(ipi_to_irq, cpu)[ipi]) == -1)
continue;
BUG_ON(ipi_from_irq(irq) != ipi);
/* Get a new binding from Xen. */
bind_ipi.vcpu = cpu;
if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_ipi,
&bind_ipi) != 0)
BUG();
evtchn = bind_ipi.port;
/* Record the new mapping. */
evtchn_to_irq[evtchn] = irq;
irq_info[irq] = mk_ipi_info(evtchn, ipi);
bind_evtchn_to_cpu(evtchn, cpu);
/* Ready for use. */
unmask_evtchn(evtchn);
}
}
/* Clear an irq's pending state, in preparation for polling on it */
void xen_clear_irq_pending(int irq)
{
int evtchn = evtchn_from_irq(irq);
if (VALID_EVTCHN(evtchn))
clear_evtchn(evtchn);
}
void xen_set_irq_pending(int irq)
{
int evtchn = evtchn_from_irq(irq);
if (VALID_EVTCHN(evtchn))
set_evtchn(evtchn);
}
bool xen_test_irq_pending(int irq)
{
int evtchn = evtchn_from_irq(irq);
bool ret = false;
if (VALID_EVTCHN(evtchn))
ret = test_evtchn(evtchn);
return ret;
}
/* Poll waiting for an irq to become pending. In the usual case, the
irq will be disabled so it won't deliver an interrupt. */
void xen_poll_irq(int irq)
{
evtchn_port_t evtchn = evtchn_from_irq(irq);
if (VALID_EVTCHN(evtchn)) {
struct sched_poll poll;
poll.nr_ports = 1;
poll.timeout = 0;
set_xen_guest_handle(poll.ports, &evtchn);
if (HYPERVISOR_sched_op(SCHEDOP_poll, &poll) != 0)
BUG();
}
}
void xen_irq_resume(void)
{
unsigned int cpu, irq, evtchn;
init_evtchn_cpu_bindings();
/* New event-channel space is not 'live' yet. */
for (evtchn = 0; evtchn < NR_EVENT_CHANNELS; evtchn++)
mask_evtchn(evtchn);
/* No IRQ <-> event-channel mappings. */
for (irq = 0; irq < nr_irqs; irq++)
irq_info[irq].evtchn = 0; /* zap event-channel binding */
for (evtchn = 0; evtchn < NR_EVENT_CHANNELS; evtchn++)
evtchn_to_irq[evtchn] = -1;
for_each_possible_cpu(cpu) {
restore_cpu_virqs(cpu);
restore_cpu_ipis(cpu);
}
}
static struct irq_chip xen_dynamic_chip __read_mostly = {
.name = "xen-dyn",
.disable = disable_dynirq,
.mask = disable_dynirq,
.unmask = enable_dynirq,
.ack = ack_dynirq,
.set_affinity = set_affinity_irq,
.retrigger = retrigger_dynirq,
};
void __init xen_init_IRQ(void)
{
int i;
cpu_evtchn_mask_p = kcalloc(nr_cpu_ids, sizeof(struct cpu_evtchn_s),
GFP_KERNEL);
BUG_ON(cpu_evtchn_mask_p == NULL);
init_evtchn_cpu_bindings();
/* No event channels are 'live' right now. */
for (i = 0; i < NR_EVENT_CHANNELS; i++)
mask_evtchn(i);
irq_ctx_init(smp_processor_id());
}