1
linux/fs/xfs/scrub/ialloc_repair.c
Yan Zhen 6148b77960 xfs: scrub: convert comma to semicolon
Replace a comma between expression statements by a semicolon.

Signed-off-by: Yan Zhen <yanzhen@vivo.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
2024-10-07 08:00:11 +02:00

885 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2018-2023 Oracle. All Rights Reserved.
* Author: Darrick J. Wong <djwong@kernel.org>
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_btree.h"
#include "xfs_btree_staging.h"
#include "xfs_bit.h"
#include "xfs_log_format.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_inode.h"
#include "xfs_alloc.h"
#include "xfs_ialloc.h"
#include "xfs_ialloc_btree.h"
#include "xfs_icache.h"
#include "xfs_rmap.h"
#include "xfs_rmap_btree.h"
#include "xfs_log.h"
#include "xfs_trans_priv.h"
#include "xfs_error.h"
#include "xfs_health.h"
#include "xfs_ag.h"
#include "scrub/xfs_scrub.h"
#include "scrub/scrub.h"
#include "scrub/common.h"
#include "scrub/btree.h"
#include "scrub/trace.h"
#include "scrub/repair.h"
#include "scrub/bitmap.h"
#include "scrub/agb_bitmap.h"
#include "scrub/xfile.h"
#include "scrub/xfarray.h"
#include "scrub/newbt.h"
#include "scrub/reap.h"
/*
* Inode Btree Repair
* ==================
*
* A quick refresher of inode btrees on a v5 filesystem:
*
* - Inode records are read into memory in units of 'inode clusters'. However
* many inodes fit in a cluster buffer is the smallest number of inodes that
* can be allocated or freed. Clusters are never smaller than one fs block
* though they can span multiple blocks. The size (in fs blocks) is
* computed with xfs_icluster_size_fsb(). The fs block alignment of a
* cluster is computed with xfs_ialloc_cluster_alignment().
*
* - Each inode btree record can describe a single 'inode chunk'. The chunk
* size is defined to be 64 inodes. If sparse inodes are enabled, every
* inobt record must be aligned to the chunk size; if not, every record must
* be aligned to the start of a cluster. It is possible to construct an XFS
* geometry where one inobt record maps to multiple inode clusters; it is
* also possible to construct a geometry where multiple inobt records map to
* different parts of one inode cluster.
*
* - If sparse inodes are not enabled, the smallest unit of allocation for
* inode records is enough to contain one inode chunk's worth of inodes.
*
* - If sparse inodes are enabled, the holemask field will be active. Each
* bit of the holemask represents 4 potential inodes; if set, the
* corresponding space does *not* contain inodes and must be left alone.
* Clusters cannot be smaller than 4 inodes. The smallest unit of allocation
* of inode records is one inode cluster.
*
* So what's the rebuild algorithm?
*
* Iterate the reverse mapping records looking for OWN_INODES and OWN_INOBT
* records. The OWN_INOBT records are the old inode btree blocks and will be
* cleared out after we've rebuilt the tree. Each possible inode cluster
* within an OWN_INODES record will be read in; for each possible inobt record
* associated with that cluster, compute the freemask calculated from the
* i_mode data in the inode chunk. For sparse inodes the holemask will be
* calculated by creating the properly aligned inobt record and punching out
* any chunk that's missing. Inode allocations and frees grab the AGI first,
* so repair protects itself from concurrent access by locking the AGI.
*
* Once we've reconstructed all the inode records, we can create new inode
* btree roots and reload the btrees. We rebuild both inode trees at the same
* time because they have the same rmap owner and it would be more complex to
* figure out if the other tree isn't in need of a rebuild and which OWN_INOBT
* blocks it owns. We have all the data we need to build both, so dump
* everything and start over.
*
* We use the prefix 'xrep_ibt' because we rebuild both inode btrees at once.
*/
struct xrep_ibt {
/* Record under construction. */
struct xfs_inobt_rec_incore rie;
/* new inobt information */
struct xrep_newbt new_inobt;
/* new finobt information */
struct xrep_newbt new_finobt;
/* Old inode btree blocks we found in the rmap. */
struct xagb_bitmap old_iallocbt_blocks;
/* Reconstructed inode records. */
struct xfarray *inode_records;
struct xfs_scrub *sc;
/* Number of inodes assigned disk space. */
unsigned int icount;
/* Number of inodes in use. */
unsigned int iused;
/* Number of finobt records needed. */
unsigned int finobt_recs;
/* get_records()'s position in the inode record array. */
xfarray_idx_t array_cur;
};
/*
* Is this inode in use? If the inode is in memory we can tell from i_mode,
* otherwise we have to check di_mode in the on-disk buffer. We only care
* that the high (i.e. non-permission) bits of _mode are zero. This should be
* safe because repair keeps all AG headers locked until the end, and process
* trying to perform an inode allocation/free must lock the AGI.
*
* @cluster_ag_base is the inode offset of the cluster within the AG.
* @cluster_bp is the cluster buffer.
* @cluster_index is the inode offset within the inode cluster.
*/
STATIC int
xrep_ibt_check_ifree(
struct xrep_ibt *ri,
xfs_agino_t cluster_ag_base,
struct xfs_buf *cluster_bp,
unsigned int cluster_index,
bool *inuse)
{
struct xfs_scrub *sc = ri->sc;
struct xfs_mount *mp = sc->mp;
struct xfs_dinode *dip;
xfs_ino_t fsino;
xfs_agino_t agino;
xfs_agnumber_t agno = ri->sc->sa.pag->pag_agno;
unsigned int cluster_buf_base;
unsigned int offset;
int error;
agino = cluster_ag_base + cluster_index;
fsino = XFS_AGINO_TO_INO(mp, agno, agino);
/* Inode uncached or half assembled, read disk buffer */
cluster_buf_base = XFS_INO_TO_OFFSET(mp, cluster_ag_base);
offset = (cluster_buf_base + cluster_index) * mp->m_sb.sb_inodesize;
if (offset >= BBTOB(cluster_bp->b_length))
return -EFSCORRUPTED;
dip = xfs_buf_offset(cluster_bp, offset);
if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)
return -EFSCORRUPTED;
if (dip->di_version >= 3 && be64_to_cpu(dip->di_ino) != fsino)
return -EFSCORRUPTED;
/* Will the in-core inode tell us if it's in use? */
error = xchk_inode_is_allocated(sc, agino, inuse);
if (!error)
return 0;
*inuse = dip->di_mode != 0;
return 0;
}
/* Stash the accumulated inobt record for rebuilding. */
STATIC int
xrep_ibt_stash(
struct xrep_ibt *ri)
{
int error = 0;
if (xchk_should_terminate(ri->sc, &error))
return error;
ri->rie.ir_freecount = xfs_inobt_rec_freecount(&ri->rie);
if (xfs_inobt_check_irec(ri->sc->sa.pag, &ri->rie) != NULL)
return -EFSCORRUPTED;
if (ri->rie.ir_freecount > 0)
ri->finobt_recs++;
trace_xrep_ibt_found(ri->sc->mp, ri->sc->sa.pag->pag_agno, &ri->rie);
error = xfarray_append(ri->inode_records, &ri->rie);
if (error)
return error;
ri->rie.ir_startino = NULLAGINO;
return 0;
}
/*
* Given an extent of inodes and an inode cluster buffer, calculate the
* location of the corresponding inobt record (creating it if necessary),
* then update the parts of the holemask and freemask of that record that
* correspond to the inode extent we were given.
*
* @cluster_ir_startino is the AG inode number of an inobt record that we're
* proposing to create for this inode cluster. If sparse inodes are enabled,
* we must round down to a chunk boundary to find the actual sparse record.
* @cluster_bp is the buffer of the inode cluster.
* @nr_inodes is the number of inodes to check from the cluster.
*/
STATIC int
xrep_ibt_cluster_record(
struct xrep_ibt *ri,
xfs_agino_t cluster_ir_startino,
struct xfs_buf *cluster_bp,
unsigned int nr_inodes)
{
struct xfs_scrub *sc = ri->sc;
struct xfs_mount *mp = sc->mp;
xfs_agino_t ir_startino;
unsigned int cluster_base;
unsigned int cluster_index;
int error = 0;
ir_startino = cluster_ir_startino;
if (xfs_has_sparseinodes(mp))
ir_startino = rounddown(ir_startino, XFS_INODES_PER_CHUNK);
cluster_base = cluster_ir_startino - ir_startino;
/*
* If the accumulated inobt record doesn't map this cluster, add it to
* the list and reset it.
*/
if (ri->rie.ir_startino != NULLAGINO &&
ri->rie.ir_startino + XFS_INODES_PER_CHUNK <= ir_startino) {
error = xrep_ibt_stash(ri);
if (error)
return error;
}
if (ri->rie.ir_startino == NULLAGINO) {
ri->rie.ir_startino = ir_startino;
ri->rie.ir_free = XFS_INOBT_ALL_FREE;
ri->rie.ir_holemask = 0xFFFF;
ri->rie.ir_count = 0;
}
/* Record the whole cluster. */
ri->icount += nr_inodes;
ri->rie.ir_count += nr_inodes;
ri->rie.ir_holemask &= ~xfs_inobt_maskn(
cluster_base / XFS_INODES_PER_HOLEMASK_BIT,
nr_inodes / XFS_INODES_PER_HOLEMASK_BIT);
/* Which inodes within this cluster are free? */
for (cluster_index = 0; cluster_index < nr_inodes; cluster_index++) {
bool inuse = false;
error = xrep_ibt_check_ifree(ri, cluster_ir_startino,
cluster_bp, cluster_index, &inuse);
if (error)
return error;
if (!inuse)
continue;
ri->iused++;
ri->rie.ir_free &= ~XFS_INOBT_MASK(cluster_base +
cluster_index);
}
return 0;
}
/*
* For each inode cluster covering the physical extent recorded by the rmapbt,
* we must calculate the properly aligned startino of that cluster, then
* iterate each cluster to fill in used and filled masks appropriately. We
* then use the (startino, used, filled) information to construct the
* appropriate inode records.
*/
STATIC int
xrep_ibt_process_cluster(
struct xrep_ibt *ri,
xfs_agblock_t cluster_bno)
{
struct xfs_imap imap;
struct xfs_buf *cluster_bp;
struct xfs_scrub *sc = ri->sc;
struct xfs_mount *mp = sc->mp;
struct xfs_ino_geometry *igeo = M_IGEO(mp);
xfs_agino_t cluster_ag_base;
xfs_agino_t irec_index;
unsigned int nr_inodes;
int error;
nr_inodes = min_t(unsigned int, igeo->inodes_per_cluster,
XFS_INODES_PER_CHUNK);
/*
* Grab the inode cluster buffer. This is safe to do with a broken
* inobt because imap_to_bp directly maps the buffer without touching
* either inode btree.
*/
imap.im_blkno = XFS_AGB_TO_DADDR(mp, sc->sa.pag->pag_agno, cluster_bno);
imap.im_len = XFS_FSB_TO_BB(mp, igeo->blocks_per_cluster);
imap.im_boffset = 0;
error = xfs_imap_to_bp(mp, sc->tp, &imap, &cluster_bp);
if (error)
return error;
/*
* Record the contents of each possible inobt record mapping this
* cluster.
*/
cluster_ag_base = XFS_AGB_TO_AGINO(mp, cluster_bno);
for (irec_index = 0;
irec_index < igeo->inodes_per_cluster;
irec_index += XFS_INODES_PER_CHUNK) {
error = xrep_ibt_cluster_record(ri,
cluster_ag_base + irec_index, cluster_bp,
nr_inodes);
if (error)
break;
}
xfs_trans_brelse(sc->tp, cluster_bp);
return error;
}
/* Check for any obvious conflicts in the inode chunk extent. */
STATIC int
xrep_ibt_check_inode_ext(
struct xfs_scrub *sc,
xfs_agblock_t agbno,
xfs_extlen_t len)
{
struct xfs_mount *mp = sc->mp;
struct xfs_ino_geometry *igeo = M_IGEO(mp);
xfs_agino_t agino;
enum xbtree_recpacking outcome;
int error;
/* Inode records must be within the AG. */
if (!xfs_verify_agbext(sc->sa.pag, agbno, len))
return -EFSCORRUPTED;
/* The entire record must align to the inode cluster size. */
if (!IS_ALIGNED(agbno, igeo->blocks_per_cluster) ||
!IS_ALIGNED(agbno + len, igeo->blocks_per_cluster))
return -EFSCORRUPTED;
/*
* The entire record must also adhere to the inode cluster alignment
* size if sparse inodes are not enabled.
*/
if (!xfs_has_sparseinodes(mp) &&
(!IS_ALIGNED(agbno, igeo->cluster_align) ||
!IS_ALIGNED(agbno + len, igeo->cluster_align)))
return -EFSCORRUPTED;
/*
* On a sparse inode fs, this cluster could be part of a sparse chunk.
* Sparse clusters must be aligned to sparse chunk alignment.
*/
if (xfs_has_sparseinodes(mp) && mp->m_sb.sb_spino_align &&
(!IS_ALIGNED(agbno, mp->m_sb.sb_spino_align) ||
!IS_ALIGNED(agbno + len, mp->m_sb.sb_spino_align)))
return -EFSCORRUPTED;
/* Make sure the entire range of blocks are valid AG inodes. */
agino = XFS_AGB_TO_AGINO(mp, agbno);
if (!xfs_verify_agino(sc->sa.pag, agino))
return -EFSCORRUPTED;
agino = XFS_AGB_TO_AGINO(mp, agbno + len) - 1;
if (!xfs_verify_agino(sc->sa.pag, agino))
return -EFSCORRUPTED;
/* Make sure this isn't free space. */
error = xfs_alloc_has_records(sc->sa.bno_cur, agbno, len, &outcome);
if (error)
return error;
if (outcome != XBTREE_RECPACKING_EMPTY)
return -EFSCORRUPTED;
return 0;
}
/* Found a fragment of the old inode btrees; dispose of them later. */
STATIC int
xrep_ibt_record_old_btree_blocks(
struct xrep_ibt *ri,
const struct xfs_rmap_irec *rec)
{
if (!xfs_verify_agbext(ri->sc->sa.pag, rec->rm_startblock,
rec->rm_blockcount))
return -EFSCORRUPTED;
return xagb_bitmap_set(&ri->old_iallocbt_blocks, rec->rm_startblock,
rec->rm_blockcount);
}
/* Record extents that belong to inode cluster blocks. */
STATIC int
xrep_ibt_record_inode_blocks(
struct xrep_ibt *ri,
const struct xfs_rmap_irec *rec)
{
struct xfs_mount *mp = ri->sc->mp;
struct xfs_ino_geometry *igeo = M_IGEO(mp);
xfs_agblock_t cluster_base;
int error;
error = xrep_ibt_check_inode_ext(ri->sc, rec->rm_startblock,
rec->rm_blockcount);
if (error)
return error;
trace_xrep_ibt_walk_rmap(mp, ri->sc->sa.pag->pag_agno,
rec->rm_startblock, rec->rm_blockcount, rec->rm_owner,
rec->rm_offset, rec->rm_flags);
/*
* Record the free/hole masks for each inode cluster that could be
* mapped by this rmap record.
*/
for (cluster_base = 0;
cluster_base < rec->rm_blockcount;
cluster_base += igeo->blocks_per_cluster) {
error = xrep_ibt_process_cluster(ri,
rec->rm_startblock + cluster_base);
if (error)
return error;
}
return 0;
}
STATIC int
xrep_ibt_walk_rmap(
struct xfs_btree_cur *cur,
const struct xfs_rmap_irec *rec,
void *priv)
{
struct xrep_ibt *ri = priv;
int error = 0;
if (xchk_should_terminate(ri->sc, &error))
return error;
switch (rec->rm_owner) {
case XFS_RMAP_OWN_INOBT:
return xrep_ibt_record_old_btree_blocks(ri, rec);
case XFS_RMAP_OWN_INODES:
return xrep_ibt_record_inode_blocks(ri, rec);
}
return 0;
}
/*
* Iterate all reverse mappings to find the inodes (OWN_INODES) and the inode
* btrees (OWN_INOBT). Figure out if we have enough free space to reconstruct
* the inode btrees. The caller must clean up the lists if anything goes
* wrong.
*/
STATIC int
xrep_ibt_find_inodes(
struct xrep_ibt *ri)
{
struct xfs_scrub *sc = ri->sc;
int error;
ri->rie.ir_startino = NULLAGINO;
/* Collect all reverse mappings for inode blocks. */
xrep_ag_btcur_init(sc, &sc->sa);
error = xfs_rmap_query_all(sc->sa.rmap_cur, xrep_ibt_walk_rmap, ri);
xchk_ag_btcur_free(&sc->sa);
if (error)
return error;
/* If we have a record ready to go, add it to the array. */
if (ri->rie.ir_startino != NULLAGINO)
return xrep_ibt_stash(ri);
return 0;
}
/* Update the AGI counters. */
STATIC int
xrep_ibt_reset_counters(
struct xrep_ibt *ri)
{
struct xfs_scrub *sc = ri->sc;
struct xfs_agi *agi = sc->sa.agi_bp->b_addr;
unsigned int freecount = ri->icount - ri->iused;
/* Trigger inode count recalculation */
xfs_force_summary_recalc(sc->mp);
/*
* The AGI header contains extra information related to the inode
* btrees, so we must update those fields here.
*/
agi->agi_count = cpu_to_be32(ri->icount);
agi->agi_freecount = cpu_to_be32(freecount);
xfs_ialloc_log_agi(sc->tp, sc->sa.agi_bp,
XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
/* Reinitialize with the values we just logged. */
return xrep_reinit_pagi(sc);
}
/* Retrieve finobt data for bulk load. */
STATIC int
xrep_fibt_get_records(
struct xfs_btree_cur *cur,
unsigned int idx,
struct xfs_btree_block *block,
unsigned int nr_wanted,
void *priv)
{
struct xfs_inobt_rec_incore *irec = &cur->bc_rec.i;
struct xrep_ibt *ri = priv;
union xfs_btree_rec *block_rec;
unsigned int loaded;
int error;
for (loaded = 0; loaded < nr_wanted; loaded++, idx++) {
do {
error = xfarray_load(ri->inode_records,
ri->array_cur++, irec);
} while (error == 0 && xfs_inobt_rec_freecount(irec) == 0);
if (error)
return error;
block_rec = xfs_btree_rec_addr(cur, idx, block);
cur->bc_ops->init_rec_from_cur(cur, block_rec);
}
return loaded;
}
/* Retrieve inobt data for bulk load. */
STATIC int
xrep_ibt_get_records(
struct xfs_btree_cur *cur,
unsigned int idx,
struct xfs_btree_block *block,
unsigned int nr_wanted,
void *priv)
{
struct xfs_inobt_rec_incore *irec = &cur->bc_rec.i;
struct xrep_ibt *ri = priv;
union xfs_btree_rec *block_rec;
unsigned int loaded;
int error;
for (loaded = 0; loaded < nr_wanted; loaded++, idx++) {
error = xfarray_load(ri->inode_records, ri->array_cur++, irec);
if (error)
return error;
block_rec = xfs_btree_rec_addr(cur, idx, block);
cur->bc_ops->init_rec_from_cur(cur, block_rec);
}
return loaded;
}
/* Feed one of the new inobt blocks to the bulk loader. */
STATIC int
xrep_ibt_claim_block(
struct xfs_btree_cur *cur,
union xfs_btree_ptr *ptr,
void *priv)
{
struct xrep_ibt *ri = priv;
return xrep_newbt_claim_block(cur, &ri->new_inobt, ptr);
}
/* Feed one of the new finobt blocks to the bulk loader. */
STATIC int
xrep_fibt_claim_block(
struct xfs_btree_cur *cur,
union xfs_btree_ptr *ptr,
void *priv)
{
struct xrep_ibt *ri = priv;
return xrep_newbt_claim_block(cur, &ri->new_finobt, ptr);
}
/* Make sure the records do not overlap in inumber address space. */
STATIC int
xrep_ibt_check_overlap(
struct xrep_ibt *ri)
{
struct xfs_inobt_rec_incore irec;
xfarray_idx_t cur;
xfs_agino_t next_agino = 0;
int error = 0;
foreach_xfarray_idx(ri->inode_records, cur) {
if (xchk_should_terminate(ri->sc, &error))
return error;
error = xfarray_load(ri->inode_records, cur, &irec);
if (error)
return error;
if (irec.ir_startino < next_agino)
return -EFSCORRUPTED;
next_agino = irec.ir_startino + XFS_INODES_PER_CHUNK;
}
return error;
}
/* Build new inode btrees and dispose of the old one. */
STATIC int
xrep_ibt_build_new_trees(
struct xrep_ibt *ri)
{
struct xfs_scrub *sc = ri->sc;
struct xfs_btree_cur *ino_cur;
struct xfs_btree_cur *fino_cur = NULL;
xfs_fsblock_t fsbno;
bool need_finobt;
int error;
need_finobt = xfs_has_finobt(sc->mp);
/*
* Create new btrees for staging all the inobt records we collected
* earlier. The records were collected in order of increasing agino,
* so we do not have to sort them. Ensure there are no overlapping
* records.
*/
error = xrep_ibt_check_overlap(ri);
if (error)
return error;
/*
* The new inode btrees will not be rooted in the AGI until we've
* successfully rebuilt the tree.
*
* Start by setting up the inobt staging cursor.
*/
fsbno = XFS_AGB_TO_FSB(sc->mp, sc->sa.pag->pag_agno,
XFS_IBT_BLOCK(sc->mp));
xrep_newbt_init_ag(&ri->new_inobt, sc, &XFS_RMAP_OINFO_INOBT, fsbno,
XFS_AG_RESV_NONE);
ri->new_inobt.bload.claim_block = xrep_ibt_claim_block;
ri->new_inobt.bload.get_records = xrep_ibt_get_records;
ino_cur = xfs_inobt_init_cursor(sc->sa.pag, NULL, NULL);
xfs_btree_stage_afakeroot(ino_cur, &ri->new_inobt.afake);
error = xfs_btree_bload_compute_geometry(ino_cur, &ri->new_inobt.bload,
xfarray_length(ri->inode_records));
if (error)
goto err_inocur;
/* Set up finobt staging cursor. */
if (need_finobt) {
enum xfs_ag_resv_type resv = XFS_AG_RESV_METADATA;
if (sc->mp->m_finobt_nores)
resv = XFS_AG_RESV_NONE;
fsbno = XFS_AGB_TO_FSB(sc->mp, sc->sa.pag->pag_agno,
XFS_FIBT_BLOCK(sc->mp));
xrep_newbt_init_ag(&ri->new_finobt, sc, &XFS_RMAP_OINFO_INOBT,
fsbno, resv);
ri->new_finobt.bload.claim_block = xrep_fibt_claim_block;
ri->new_finobt.bload.get_records = xrep_fibt_get_records;
fino_cur = xfs_finobt_init_cursor(sc->sa.pag, NULL, NULL);
xfs_btree_stage_afakeroot(fino_cur, &ri->new_finobt.afake);
error = xfs_btree_bload_compute_geometry(fino_cur,
&ri->new_finobt.bload, ri->finobt_recs);
if (error)
goto err_finocur;
}
/* Last chance to abort before we start committing fixes. */
if (xchk_should_terminate(sc, &error))
goto err_finocur;
/* Reserve all the space we need to build the new btrees. */
error = xrep_newbt_alloc_blocks(&ri->new_inobt,
ri->new_inobt.bload.nr_blocks);
if (error)
goto err_finocur;
if (need_finobt) {
error = xrep_newbt_alloc_blocks(&ri->new_finobt,
ri->new_finobt.bload.nr_blocks);
if (error)
goto err_finocur;
}
/* Add all inobt records. */
ri->array_cur = XFARRAY_CURSOR_INIT;
error = xfs_btree_bload(ino_cur, &ri->new_inobt.bload, ri);
if (error)
goto err_finocur;
/* Add all finobt records. */
if (need_finobt) {
ri->array_cur = XFARRAY_CURSOR_INIT;
error = xfs_btree_bload(fino_cur, &ri->new_finobt.bload, ri);
if (error)
goto err_finocur;
}
/*
* Install the new btrees in the AG header. After this point the old
* btrees are no longer accessible and the new trees are live.
*/
xfs_inobt_commit_staged_btree(ino_cur, sc->tp, sc->sa.agi_bp);
xfs_btree_del_cursor(ino_cur, 0);
if (fino_cur) {
xfs_inobt_commit_staged_btree(fino_cur, sc->tp, sc->sa.agi_bp);
xfs_btree_del_cursor(fino_cur, 0);
}
/* Reset the AGI counters now that we've changed the inode roots. */
error = xrep_ibt_reset_counters(ri);
if (error)
goto err_finobt;
/* Free unused blocks and bitmap. */
if (need_finobt) {
error = xrep_newbt_commit(&ri->new_finobt);
if (error)
goto err_inobt;
}
error = xrep_newbt_commit(&ri->new_inobt);
if (error)
return error;
return xrep_roll_ag_trans(sc);
err_finocur:
if (need_finobt)
xfs_btree_del_cursor(fino_cur, error);
err_inocur:
xfs_btree_del_cursor(ino_cur, error);
err_finobt:
if (need_finobt)
xrep_newbt_cancel(&ri->new_finobt);
err_inobt:
xrep_newbt_cancel(&ri->new_inobt);
return error;
}
/*
* Now that we've logged the roots of the new btrees, invalidate all of the
* old blocks and free them.
*/
STATIC int
xrep_ibt_remove_old_trees(
struct xrep_ibt *ri)
{
struct xfs_scrub *sc = ri->sc;
int error;
/*
* Free the old inode btree blocks if they're not in use. It's ok to
* reap with XFS_AG_RESV_NONE even if the finobt had a per-AG
* reservation because we reset the reservation before releasing the
* AGI and AGF header buffer locks.
*/
error = xrep_reap_agblocks(sc, &ri->old_iallocbt_blocks,
&XFS_RMAP_OINFO_INOBT, XFS_AG_RESV_NONE);
if (error)
return error;
/*
* If the finobt is enabled and has a per-AG reservation, make sure we
* reinitialize the per-AG reservations.
*/
if (xfs_has_finobt(sc->mp) && !sc->mp->m_finobt_nores)
sc->flags |= XREP_RESET_PERAG_RESV;
return 0;
}
/* Repair both inode btrees. */
int
xrep_iallocbt(
struct xfs_scrub *sc)
{
struct xrep_ibt *ri;
struct xfs_mount *mp = sc->mp;
char *descr;
xfs_agino_t first_agino, last_agino;
int error = 0;
/* We require the rmapbt to rebuild anything. */
if (!xfs_has_rmapbt(mp))
return -EOPNOTSUPP;
ri = kzalloc(sizeof(struct xrep_ibt), XCHK_GFP_FLAGS);
if (!ri)
return -ENOMEM;
ri->sc = sc;
/* We rebuild both inode btrees. */
sc->sick_mask = XFS_SICK_AG_INOBT | XFS_SICK_AG_FINOBT;
/* Set up enough storage to handle an AG with nothing but inodes. */
xfs_agino_range(mp, sc->sa.pag->pag_agno, &first_agino, &last_agino);
last_agino /= XFS_INODES_PER_CHUNK;
descr = xchk_xfile_ag_descr(sc, "inode index records");
error = xfarray_create(descr, last_agino,
sizeof(struct xfs_inobt_rec_incore),
&ri->inode_records);
kfree(descr);
if (error)
goto out_ri;
/* Collect the inode data and find the old btree blocks. */
xagb_bitmap_init(&ri->old_iallocbt_blocks);
error = xrep_ibt_find_inodes(ri);
if (error)
goto out_bitmap;
/* Rebuild the inode indexes. */
error = xrep_ibt_build_new_trees(ri);
if (error)
goto out_bitmap;
/* Kill the old tree. */
error = xrep_ibt_remove_old_trees(ri);
if (error)
goto out_bitmap;
out_bitmap:
xagb_bitmap_destroy(&ri->old_iallocbt_blocks);
xfarray_destroy(ri->inode_records);
out_ri:
kfree(ri);
return error;
}
/* Make sure both btrees are ok after we've rebuilt them. */
int
xrep_revalidate_iallocbt(
struct xfs_scrub *sc)
{
__u32 old_type = sc->sm->sm_type;
int error;
/*
* We must update sm_type temporarily so that the tree-to-tree cross
* reference checks will work in the correct direction, and also so
* that tracing will report correctly if there are more errors.
*/
sc->sm->sm_type = XFS_SCRUB_TYPE_INOBT;
error = xchk_iallocbt(sc);
if (error)
goto out;
if (xfs_has_finobt(sc->mp)) {
sc->sm->sm_type = XFS_SCRUB_TYPE_FINOBT;
error = xchk_iallocbt(sc);
}
out:
sc->sm->sm_type = old_type;
return error;
}