6e02a277f1
Previously, the domain_context_clear() function incorrectly called
pci_for_each_dma_alias() to set up context entries for non-PCI devices.
This could lead to kernel hangs or other unexpected behavior.
Add a check to only call pci_for_each_dma_alias() for PCI devices. For
non-PCI devices, domain_context_clear_one() is called directly.
Reported-by: Todd Brandt <todd.e.brandt@intel.com>
Closes: https://bugzilla.kernel.org/show_bug.cgi?id=219363
Closes: https://bugzilla.kernel.org/show_bug.cgi?id=219349
Fixes: 9a16ab9d64
("iommu/vt-d: Make context clearing consistent with context mapping")
Cc: stable@vger.kernel.org
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Link: https://lore.kernel.org/r/20241014013744.102197-2-baolu.lu@linux.intel.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>
4920 lines
127 KiB
C
4920 lines
127 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright © 2006-2014 Intel Corporation.
|
|
*
|
|
* Authors: David Woodhouse <dwmw2@infradead.org>,
|
|
* Ashok Raj <ashok.raj@intel.com>,
|
|
* Shaohua Li <shaohua.li@intel.com>,
|
|
* Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
|
|
* Fenghua Yu <fenghua.yu@intel.com>
|
|
* Joerg Roedel <jroedel@suse.de>
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "DMAR: " fmt
|
|
#define dev_fmt(fmt) pr_fmt(fmt)
|
|
|
|
#include <linux/crash_dump.h>
|
|
#include <linux/dma-direct.h>
|
|
#include <linux/dmi.h>
|
|
#include <linux/memory.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/pci-ats.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/syscore_ops.h>
|
|
#include <linux/tboot.h>
|
|
#include <uapi/linux/iommufd.h>
|
|
|
|
#include "iommu.h"
|
|
#include "../dma-iommu.h"
|
|
#include "../irq_remapping.h"
|
|
#include "../iommu-pages.h"
|
|
#include "pasid.h"
|
|
#include "cap_audit.h"
|
|
#include "perfmon.h"
|
|
|
|
#define ROOT_SIZE VTD_PAGE_SIZE
|
|
#define CONTEXT_SIZE VTD_PAGE_SIZE
|
|
|
|
#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
|
|
#define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
|
|
#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
|
|
#define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
|
|
|
|
#define IOAPIC_RANGE_START (0xfee00000)
|
|
#define IOAPIC_RANGE_END (0xfeefffff)
|
|
#define IOVA_START_ADDR (0x1000)
|
|
|
|
#define DEFAULT_DOMAIN_ADDRESS_WIDTH 57
|
|
|
|
#define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << ((gaw) - VTD_PAGE_SHIFT)) - 1)
|
|
#define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << (gaw)) - 1)
|
|
|
|
/* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
|
|
to match. That way, we can use 'unsigned long' for PFNs with impunity. */
|
|
#define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
|
|
__DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
|
|
#define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
|
|
|
|
static void __init check_tylersburg_isoch(void);
|
|
static int rwbf_quirk;
|
|
|
|
/*
|
|
* set to 1 to panic kernel if can't successfully enable VT-d
|
|
* (used when kernel is launched w/ TXT)
|
|
*/
|
|
static int force_on = 0;
|
|
static int intel_iommu_tboot_noforce;
|
|
static int no_platform_optin;
|
|
|
|
#define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
|
|
|
|
/*
|
|
* Take a root_entry and return the Lower Context Table Pointer (LCTP)
|
|
* if marked present.
|
|
*/
|
|
static phys_addr_t root_entry_lctp(struct root_entry *re)
|
|
{
|
|
if (!(re->lo & 1))
|
|
return 0;
|
|
|
|
return re->lo & VTD_PAGE_MASK;
|
|
}
|
|
|
|
/*
|
|
* Take a root_entry and return the Upper Context Table Pointer (UCTP)
|
|
* if marked present.
|
|
*/
|
|
static phys_addr_t root_entry_uctp(struct root_entry *re)
|
|
{
|
|
if (!(re->hi & 1))
|
|
return 0;
|
|
|
|
return re->hi & VTD_PAGE_MASK;
|
|
}
|
|
|
|
static int device_rid_cmp_key(const void *key, const struct rb_node *node)
|
|
{
|
|
struct device_domain_info *info =
|
|
rb_entry(node, struct device_domain_info, node);
|
|
const u16 *rid_lhs = key;
|
|
|
|
if (*rid_lhs < PCI_DEVID(info->bus, info->devfn))
|
|
return -1;
|
|
|
|
if (*rid_lhs > PCI_DEVID(info->bus, info->devfn))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int device_rid_cmp(struct rb_node *lhs, const struct rb_node *rhs)
|
|
{
|
|
struct device_domain_info *info =
|
|
rb_entry(lhs, struct device_domain_info, node);
|
|
u16 key = PCI_DEVID(info->bus, info->devfn);
|
|
|
|
return device_rid_cmp_key(&key, rhs);
|
|
}
|
|
|
|
/*
|
|
* Looks up an IOMMU-probed device using its source ID.
|
|
*
|
|
* Returns the pointer to the device if there is a match. Otherwise,
|
|
* returns NULL.
|
|
*
|
|
* Note that this helper doesn't guarantee that the device won't be
|
|
* released by the iommu subsystem after being returned. The caller
|
|
* should use its own synchronization mechanism to avoid the device
|
|
* being released during its use if its possibly the case.
|
|
*/
|
|
struct device *device_rbtree_find(struct intel_iommu *iommu, u16 rid)
|
|
{
|
|
struct device_domain_info *info = NULL;
|
|
struct rb_node *node;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&iommu->device_rbtree_lock, flags);
|
|
node = rb_find(&rid, &iommu->device_rbtree, device_rid_cmp_key);
|
|
if (node)
|
|
info = rb_entry(node, struct device_domain_info, node);
|
|
spin_unlock_irqrestore(&iommu->device_rbtree_lock, flags);
|
|
|
|
return info ? info->dev : NULL;
|
|
}
|
|
|
|
static int device_rbtree_insert(struct intel_iommu *iommu,
|
|
struct device_domain_info *info)
|
|
{
|
|
struct rb_node *curr;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&iommu->device_rbtree_lock, flags);
|
|
curr = rb_find_add(&info->node, &iommu->device_rbtree, device_rid_cmp);
|
|
spin_unlock_irqrestore(&iommu->device_rbtree_lock, flags);
|
|
if (WARN_ON(curr))
|
|
return -EEXIST;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void device_rbtree_remove(struct device_domain_info *info)
|
|
{
|
|
struct intel_iommu *iommu = info->iommu;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&iommu->device_rbtree_lock, flags);
|
|
rb_erase(&info->node, &iommu->device_rbtree);
|
|
spin_unlock_irqrestore(&iommu->device_rbtree_lock, flags);
|
|
}
|
|
|
|
struct dmar_rmrr_unit {
|
|
struct list_head list; /* list of rmrr units */
|
|
struct acpi_dmar_header *hdr; /* ACPI header */
|
|
u64 base_address; /* reserved base address*/
|
|
u64 end_address; /* reserved end address */
|
|
struct dmar_dev_scope *devices; /* target devices */
|
|
int devices_cnt; /* target device count */
|
|
};
|
|
|
|
struct dmar_atsr_unit {
|
|
struct list_head list; /* list of ATSR units */
|
|
struct acpi_dmar_header *hdr; /* ACPI header */
|
|
struct dmar_dev_scope *devices; /* target devices */
|
|
int devices_cnt; /* target device count */
|
|
u8 include_all:1; /* include all ports */
|
|
};
|
|
|
|
struct dmar_satc_unit {
|
|
struct list_head list; /* list of SATC units */
|
|
struct acpi_dmar_header *hdr; /* ACPI header */
|
|
struct dmar_dev_scope *devices; /* target devices */
|
|
struct intel_iommu *iommu; /* the corresponding iommu */
|
|
int devices_cnt; /* target device count */
|
|
u8 atc_required:1; /* ATS is required */
|
|
};
|
|
|
|
static LIST_HEAD(dmar_atsr_units);
|
|
static LIST_HEAD(dmar_rmrr_units);
|
|
static LIST_HEAD(dmar_satc_units);
|
|
|
|
#define for_each_rmrr_units(rmrr) \
|
|
list_for_each_entry(rmrr, &dmar_rmrr_units, list)
|
|
|
|
static void intel_iommu_domain_free(struct iommu_domain *domain);
|
|
|
|
int dmar_disabled = !IS_ENABLED(CONFIG_INTEL_IOMMU_DEFAULT_ON);
|
|
int intel_iommu_sm = IS_ENABLED(CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON);
|
|
|
|
int intel_iommu_enabled = 0;
|
|
EXPORT_SYMBOL_GPL(intel_iommu_enabled);
|
|
|
|
static int intel_iommu_superpage = 1;
|
|
static int iommu_identity_mapping;
|
|
static int iommu_skip_te_disable;
|
|
static int disable_igfx_iommu;
|
|
|
|
#define IDENTMAP_AZALIA 4
|
|
|
|
const struct iommu_ops intel_iommu_ops;
|
|
static const struct iommu_dirty_ops intel_dirty_ops;
|
|
|
|
static bool translation_pre_enabled(struct intel_iommu *iommu)
|
|
{
|
|
return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
|
|
}
|
|
|
|
static void clear_translation_pre_enabled(struct intel_iommu *iommu)
|
|
{
|
|
iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
|
|
}
|
|
|
|
static void init_translation_status(struct intel_iommu *iommu)
|
|
{
|
|
u32 gsts;
|
|
|
|
gsts = readl(iommu->reg + DMAR_GSTS_REG);
|
|
if (gsts & DMA_GSTS_TES)
|
|
iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
|
|
}
|
|
|
|
static int __init intel_iommu_setup(char *str)
|
|
{
|
|
if (!str)
|
|
return -EINVAL;
|
|
|
|
while (*str) {
|
|
if (!strncmp(str, "on", 2)) {
|
|
dmar_disabled = 0;
|
|
pr_info("IOMMU enabled\n");
|
|
} else if (!strncmp(str, "off", 3)) {
|
|
dmar_disabled = 1;
|
|
no_platform_optin = 1;
|
|
pr_info("IOMMU disabled\n");
|
|
} else if (!strncmp(str, "igfx_off", 8)) {
|
|
disable_igfx_iommu = 1;
|
|
pr_info("Disable GFX device mapping\n");
|
|
} else if (!strncmp(str, "forcedac", 8)) {
|
|
pr_warn("intel_iommu=forcedac deprecated; use iommu.forcedac instead\n");
|
|
iommu_dma_forcedac = true;
|
|
} else if (!strncmp(str, "strict", 6)) {
|
|
pr_warn("intel_iommu=strict deprecated; use iommu.strict=1 instead\n");
|
|
iommu_set_dma_strict();
|
|
} else if (!strncmp(str, "sp_off", 6)) {
|
|
pr_info("Disable supported super page\n");
|
|
intel_iommu_superpage = 0;
|
|
} else if (!strncmp(str, "sm_on", 5)) {
|
|
pr_info("Enable scalable mode if hardware supports\n");
|
|
intel_iommu_sm = 1;
|
|
} else if (!strncmp(str, "sm_off", 6)) {
|
|
pr_info("Scalable mode is disallowed\n");
|
|
intel_iommu_sm = 0;
|
|
} else if (!strncmp(str, "tboot_noforce", 13)) {
|
|
pr_info("Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n");
|
|
intel_iommu_tboot_noforce = 1;
|
|
} else {
|
|
pr_notice("Unknown option - '%s'\n", str);
|
|
}
|
|
|
|
str += strcspn(str, ",");
|
|
while (*str == ',')
|
|
str++;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
__setup("intel_iommu=", intel_iommu_setup);
|
|
|
|
static int domain_pfn_supported(struct dmar_domain *domain, unsigned long pfn)
|
|
{
|
|
int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
|
|
|
|
return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
|
|
}
|
|
|
|
/*
|
|
* Calculate the Supported Adjusted Guest Address Widths of an IOMMU.
|
|
* Refer to 11.4.2 of the VT-d spec for the encoding of each bit of
|
|
* the returned SAGAW.
|
|
*/
|
|
static unsigned long __iommu_calculate_sagaw(struct intel_iommu *iommu)
|
|
{
|
|
unsigned long fl_sagaw, sl_sagaw;
|
|
|
|
fl_sagaw = BIT(2) | (cap_fl5lp_support(iommu->cap) ? BIT(3) : 0);
|
|
sl_sagaw = cap_sagaw(iommu->cap);
|
|
|
|
/* Second level only. */
|
|
if (!sm_supported(iommu) || !ecap_flts(iommu->ecap))
|
|
return sl_sagaw;
|
|
|
|
/* First level only. */
|
|
if (!ecap_slts(iommu->ecap))
|
|
return fl_sagaw;
|
|
|
|
return fl_sagaw & sl_sagaw;
|
|
}
|
|
|
|
static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
|
|
{
|
|
unsigned long sagaw;
|
|
int agaw;
|
|
|
|
sagaw = __iommu_calculate_sagaw(iommu);
|
|
for (agaw = width_to_agaw(max_gaw); agaw >= 0; agaw--) {
|
|
if (test_bit(agaw, &sagaw))
|
|
break;
|
|
}
|
|
|
|
return agaw;
|
|
}
|
|
|
|
/*
|
|
* Calculate max SAGAW for each iommu.
|
|
*/
|
|
int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
|
|
{
|
|
return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
|
|
}
|
|
|
|
/*
|
|
* calculate agaw for each iommu.
|
|
* "SAGAW" may be different across iommus, use a default agaw, and
|
|
* get a supported less agaw for iommus that don't support the default agaw.
|
|
*/
|
|
int iommu_calculate_agaw(struct intel_iommu *iommu)
|
|
{
|
|
return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
|
|
}
|
|
|
|
static bool iommu_paging_structure_coherency(struct intel_iommu *iommu)
|
|
{
|
|
return sm_supported(iommu) ?
|
|
ecap_smpwc(iommu->ecap) : ecap_coherent(iommu->ecap);
|
|
}
|
|
|
|
static void domain_update_iommu_coherency(struct dmar_domain *domain)
|
|
{
|
|
struct iommu_domain_info *info;
|
|
struct dmar_drhd_unit *drhd;
|
|
struct intel_iommu *iommu;
|
|
bool found = false;
|
|
unsigned long i;
|
|
|
|
domain->iommu_coherency = true;
|
|
xa_for_each(&domain->iommu_array, i, info) {
|
|
found = true;
|
|
if (!iommu_paging_structure_coherency(info->iommu)) {
|
|
domain->iommu_coherency = false;
|
|
break;
|
|
}
|
|
}
|
|
if (found)
|
|
return;
|
|
|
|
/* No hardware attached; use lowest common denominator */
|
|
rcu_read_lock();
|
|
for_each_active_iommu(iommu, drhd) {
|
|
if (!iommu_paging_structure_coherency(iommu)) {
|
|
domain->iommu_coherency = false;
|
|
break;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static int domain_update_iommu_superpage(struct dmar_domain *domain,
|
|
struct intel_iommu *skip)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
struct intel_iommu *iommu;
|
|
int mask = 0x3;
|
|
|
|
if (!intel_iommu_superpage)
|
|
return 0;
|
|
|
|
/* set iommu_superpage to the smallest common denominator */
|
|
rcu_read_lock();
|
|
for_each_active_iommu(iommu, drhd) {
|
|
if (iommu != skip) {
|
|
if (domain && domain->use_first_level) {
|
|
if (!cap_fl1gp_support(iommu->cap))
|
|
mask = 0x1;
|
|
} else {
|
|
mask &= cap_super_page_val(iommu->cap);
|
|
}
|
|
|
|
if (!mask)
|
|
break;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return fls(mask);
|
|
}
|
|
|
|
static int domain_update_device_node(struct dmar_domain *domain)
|
|
{
|
|
struct device_domain_info *info;
|
|
int nid = NUMA_NO_NODE;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&domain->lock, flags);
|
|
list_for_each_entry(info, &domain->devices, link) {
|
|
/*
|
|
* There could possibly be multiple device numa nodes as devices
|
|
* within the same domain may sit behind different IOMMUs. There
|
|
* isn't perfect answer in such situation, so we select first
|
|
* come first served policy.
|
|
*/
|
|
nid = dev_to_node(info->dev);
|
|
if (nid != NUMA_NO_NODE)
|
|
break;
|
|
}
|
|
spin_unlock_irqrestore(&domain->lock, flags);
|
|
|
|
return nid;
|
|
}
|
|
|
|
/* Return the super pagesize bitmap if supported. */
|
|
static unsigned long domain_super_pgsize_bitmap(struct dmar_domain *domain)
|
|
{
|
|
unsigned long bitmap = 0;
|
|
|
|
/*
|
|
* 1-level super page supports page size of 2MiB, 2-level super page
|
|
* supports page size of both 2MiB and 1GiB.
|
|
*/
|
|
if (domain->iommu_superpage == 1)
|
|
bitmap |= SZ_2M;
|
|
else if (domain->iommu_superpage == 2)
|
|
bitmap |= SZ_2M | SZ_1G;
|
|
|
|
return bitmap;
|
|
}
|
|
|
|
/* Some capabilities may be different across iommus */
|
|
void domain_update_iommu_cap(struct dmar_domain *domain)
|
|
{
|
|
domain_update_iommu_coherency(domain);
|
|
domain->iommu_superpage = domain_update_iommu_superpage(domain, NULL);
|
|
|
|
/*
|
|
* If RHSA is missing, we should default to the device numa domain
|
|
* as fall back.
|
|
*/
|
|
if (domain->nid == NUMA_NO_NODE)
|
|
domain->nid = domain_update_device_node(domain);
|
|
|
|
/*
|
|
* First-level translation restricts the input-address to a
|
|
* canonical address (i.e., address bits 63:N have the same
|
|
* value as address bit [N-1], where N is 48-bits with 4-level
|
|
* paging and 57-bits with 5-level paging). Hence, skip bit
|
|
* [N-1].
|
|
*/
|
|
if (domain->use_first_level)
|
|
domain->domain.geometry.aperture_end = __DOMAIN_MAX_ADDR(domain->gaw - 1);
|
|
else
|
|
domain->domain.geometry.aperture_end = __DOMAIN_MAX_ADDR(domain->gaw);
|
|
|
|
domain->domain.pgsize_bitmap |= domain_super_pgsize_bitmap(domain);
|
|
}
|
|
|
|
struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus,
|
|
u8 devfn, int alloc)
|
|
{
|
|
struct root_entry *root = &iommu->root_entry[bus];
|
|
struct context_entry *context;
|
|
u64 *entry;
|
|
|
|
/*
|
|
* Except that the caller requested to allocate a new entry,
|
|
* returning a copied context entry makes no sense.
|
|
*/
|
|
if (!alloc && context_copied(iommu, bus, devfn))
|
|
return NULL;
|
|
|
|
entry = &root->lo;
|
|
if (sm_supported(iommu)) {
|
|
if (devfn >= 0x80) {
|
|
devfn -= 0x80;
|
|
entry = &root->hi;
|
|
}
|
|
devfn *= 2;
|
|
}
|
|
if (*entry & 1)
|
|
context = phys_to_virt(*entry & VTD_PAGE_MASK);
|
|
else {
|
|
unsigned long phy_addr;
|
|
if (!alloc)
|
|
return NULL;
|
|
|
|
context = iommu_alloc_page_node(iommu->node, GFP_ATOMIC);
|
|
if (!context)
|
|
return NULL;
|
|
|
|
__iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
|
|
phy_addr = virt_to_phys((void *)context);
|
|
*entry = phy_addr | 1;
|
|
__iommu_flush_cache(iommu, entry, sizeof(*entry));
|
|
}
|
|
return &context[devfn];
|
|
}
|
|
|
|
/**
|
|
* is_downstream_to_pci_bridge - test if a device belongs to the PCI
|
|
* sub-hierarchy of a candidate PCI-PCI bridge
|
|
* @dev: candidate PCI device belonging to @bridge PCI sub-hierarchy
|
|
* @bridge: the candidate PCI-PCI bridge
|
|
*
|
|
* Return: true if @dev belongs to @bridge PCI sub-hierarchy, else false.
|
|
*/
|
|
static bool
|
|
is_downstream_to_pci_bridge(struct device *dev, struct device *bridge)
|
|
{
|
|
struct pci_dev *pdev, *pbridge;
|
|
|
|
if (!dev_is_pci(dev) || !dev_is_pci(bridge))
|
|
return false;
|
|
|
|
pdev = to_pci_dev(dev);
|
|
pbridge = to_pci_dev(bridge);
|
|
|
|
if (pbridge->subordinate &&
|
|
pbridge->subordinate->number <= pdev->bus->number &&
|
|
pbridge->subordinate->busn_res.end >= pdev->bus->number)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
u32 vtbar;
|
|
int rc;
|
|
|
|
/* We know that this device on this chipset has its own IOMMU.
|
|
* If we find it under a different IOMMU, then the BIOS is lying
|
|
* to us. Hope that the IOMMU for this device is actually
|
|
* disabled, and it needs no translation...
|
|
*/
|
|
rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
|
|
if (rc) {
|
|
/* "can't" happen */
|
|
dev_info(&pdev->dev, "failed to run vt-d quirk\n");
|
|
return false;
|
|
}
|
|
vtbar &= 0xffff0000;
|
|
|
|
/* we know that the this iommu should be at offset 0xa000 from vtbar */
|
|
drhd = dmar_find_matched_drhd_unit(pdev);
|
|
if (!drhd || drhd->reg_base_addr - vtbar != 0xa000) {
|
|
pr_warn_once(FW_BUG "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n");
|
|
add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool iommu_is_dummy(struct intel_iommu *iommu, struct device *dev)
|
|
{
|
|
if (!iommu || iommu->drhd->ignored)
|
|
return true;
|
|
|
|
if (dev_is_pci(dev)) {
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
|
|
if (pdev->vendor == PCI_VENDOR_ID_INTEL &&
|
|
pdev->device == PCI_DEVICE_ID_INTEL_IOAT_SNB &&
|
|
quirk_ioat_snb_local_iommu(pdev))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static struct intel_iommu *device_lookup_iommu(struct device *dev, u8 *bus, u8 *devfn)
|
|
{
|
|
struct dmar_drhd_unit *drhd = NULL;
|
|
struct pci_dev *pdev = NULL;
|
|
struct intel_iommu *iommu;
|
|
struct device *tmp;
|
|
u16 segment = 0;
|
|
int i;
|
|
|
|
if (!dev)
|
|
return NULL;
|
|
|
|
if (dev_is_pci(dev)) {
|
|
struct pci_dev *pf_pdev;
|
|
|
|
pdev = pci_real_dma_dev(to_pci_dev(dev));
|
|
|
|
/* VFs aren't listed in scope tables; we need to look up
|
|
* the PF instead to find the IOMMU. */
|
|
pf_pdev = pci_physfn(pdev);
|
|
dev = &pf_pdev->dev;
|
|
segment = pci_domain_nr(pdev->bus);
|
|
} else if (has_acpi_companion(dev))
|
|
dev = &ACPI_COMPANION(dev)->dev;
|
|
|
|
rcu_read_lock();
|
|
for_each_iommu(iommu, drhd) {
|
|
if (pdev && segment != drhd->segment)
|
|
continue;
|
|
|
|
for_each_active_dev_scope(drhd->devices,
|
|
drhd->devices_cnt, i, tmp) {
|
|
if (tmp == dev) {
|
|
/* For a VF use its original BDF# not that of the PF
|
|
* which we used for the IOMMU lookup. Strictly speaking
|
|
* we could do this for all PCI devices; we only need to
|
|
* get the BDF# from the scope table for ACPI matches. */
|
|
if (pdev && pdev->is_virtfn)
|
|
goto got_pdev;
|
|
|
|
if (bus && devfn) {
|
|
*bus = drhd->devices[i].bus;
|
|
*devfn = drhd->devices[i].devfn;
|
|
}
|
|
goto out;
|
|
}
|
|
|
|
if (is_downstream_to_pci_bridge(dev, tmp))
|
|
goto got_pdev;
|
|
}
|
|
|
|
if (pdev && drhd->include_all) {
|
|
got_pdev:
|
|
if (bus && devfn) {
|
|
*bus = pdev->bus->number;
|
|
*devfn = pdev->devfn;
|
|
}
|
|
goto out;
|
|
}
|
|
}
|
|
iommu = NULL;
|
|
out:
|
|
if (iommu_is_dummy(iommu, dev))
|
|
iommu = NULL;
|
|
|
|
rcu_read_unlock();
|
|
|
|
return iommu;
|
|
}
|
|
|
|
static void domain_flush_cache(struct dmar_domain *domain,
|
|
void *addr, int size)
|
|
{
|
|
if (!domain->iommu_coherency)
|
|
clflush_cache_range(addr, size);
|
|
}
|
|
|
|
static void free_context_table(struct intel_iommu *iommu)
|
|
{
|
|
struct context_entry *context;
|
|
int i;
|
|
|
|
if (!iommu->root_entry)
|
|
return;
|
|
|
|
for (i = 0; i < ROOT_ENTRY_NR; i++) {
|
|
context = iommu_context_addr(iommu, i, 0, 0);
|
|
if (context)
|
|
iommu_free_page(context);
|
|
|
|
if (!sm_supported(iommu))
|
|
continue;
|
|
|
|
context = iommu_context_addr(iommu, i, 0x80, 0);
|
|
if (context)
|
|
iommu_free_page(context);
|
|
}
|
|
|
|
iommu_free_page(iommu->root_entry);
|
|
iommu->root_entry = NULL;
|
|
}
|
|
|
|
#ifdef CONFIG_DMAR_DEBUG
|
|
static void pgtable_walk(struct intel_iommu *iommu, unsigned long pfn,
|
|
u8 bus, u8 devfn, struct dma_pte *parent, int level)
|
|
{
|
|
struct dma_pte *pte;
|
|
int offset;
|
|
|
|
while (1) {
|
|
offset = pfn_level_offset(pfn, level);
|
|
pte = &parent[offset];
|
|
if (!pte || (dma_pte_superpage(pte) || !dma_pte_present(pte))) {
|
|
pr_info("PTE not present at level %d\n", level);
|
|
break;
|
|
}
|
|
|
|
pr_info("pte level: %d, pte value: 0x%016llx\n", level, pte->val);
|
|
|
|
if (level == 1)
|
|
break;
|
|
|
|
parent = phys_to_virt(dma_pte_addr(pte));
|
|
level--;
|
|
}
|
|
}
|
|
|
|
void dmar_fault_dump_ptes(struct intel_iommu *iommu, u16 source_id,
|
|
unsigned long long addr, u32 pasid)
|
|
{
|
|
struct pasid_dir_entry *dir, *pde;
|
|
struct pasid_entry *entries, *pte;
|
|
struct context_entry *ctx_entry;
|
|
struct root_entry *rt_entry;
|
|
int i, dir_index, index, level;
|
|
u8 devfn = source_id & 0xff;
|
|
u8 bus = source_id >> 8;
|
|
struct dma_pte *pgtable;
|
|
|
|
pr_info("Dump %s table entries for IOVA 0x%llx\n", iommu->name, addr);
|
|
|
|
/* root entry dump */
|
|
rt_entry = &iommu->root_entry[bus];
|
|
if (!rt_entry) {
|
|
pr_info("root table entry is not present\n");
|
|
return;
|
|
}
|
|
|
|
if (sm_supported(iommu))
|
|
pr_info("scalable mode root entry: hi 0x%016llx, low 0x%016llx\n",
|
|
rt_entry->hi, rt_entry->lo);
|
|
else
|
|
pr_info("root entry: 0x%016llx", rt_entry->lo);
|
|
|
|
/* context entry dump */
|
|
ctx_entry = iommu_context_addr(iommu, bus, devfn, 0);
|
|
if (!ctx_entry) {
|
|
pr_info("context table entry is not present\n");
|
|
return;
|
|
}
|
|
|
|
pr_info("context entry: hi 0x%016llx, low 0x%016llx\n",
|
|
ctx_entry->hi, ctx_entry->lo);
|
|
|
|
/* legacy mode does not require PASID entries */
|
|
if (!sm_supported(iommu)) {
|
|
level = agaw_to_level(ctx_entry->hi & 7);
|
|
pgtable = phys_to_virt(ctx_entry->lo & VTD_PAGE_MASK);
|
|
goto pgtable_walk;
|
|
}
|
|
|
|
/* get the pointer to pasid directory entry */
|
|
dir = phys_to_virt(ctx_entry->lo & VTD_PAGE_MASK);
|
|
if (!dir) {
|
|
pr_info("pasid directory entry is not present\n");
|
|
return;
|
|
}
|
|
/* For request-without-pasid, get the pasid from context entry */
|
|
if (intel_iommu_sm && pasid == IOMMU_PASID_INVALID)
|
|
pasid = IOMMU_NO_PASID;
|
|
|
|
dir_index = pasid >> PASID_PDE_SHIFT;
|
|
pde = &dir[dir_index];
|
|
pr_info("pasid dir entry: 0x%016llx\n", pde->val);
|
|
|
|
/* get the pointer to the pasid table entry */
|
|
entries = get_pasid_table_from_pde(pde);
|
|
if (!entries) {
|
|
pr_info("pasid table entry is not present\n");
|
|
return;
|
|
}
|
|
index = pasid & PASID_PTE_MASK;
|
|
pte = &entries[index];
|
|
for (i = 0; i < ARRAY_SIZE(pte->val); i++)
|
|
pr_info("pasid table entry[%d]: 0x%016llx\n", i, pte->val[i]);
|
|
|
|
if (pasid_pte_get_pgtt(pte) == PASID_ENTRY_PGTT_FL_ONLY) {
|
|
level = pte->val[2] & BIT_ULL(2) ? 5 : 4;
|
|
pgtable = phys_to_virt(pte->val[2] & VTD_PAGE_MASK);
|
|
} else {
|
|
level = agaw_to_level((pte->val[0] >> 2) & 0x7);
|
|
pgtable = phys_to_virt(pte->val[0] & VTD_PAGE_MASK);
|
|
}
|
|
|
|
pgtable_walk:
|
|
pgtable_walk(iommu, addr >> VTD_PAGE_SHIFT, bus, devfn, pgtable, level);
|
|
}
|
|
#endif
|
|
|
|
static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
|
|
unsigned long pfn, int *target_level,
|
|
gfp_t gfp)
|
|
{
|
|
struct dma_pte *parent, *pte;
|
|
int level = agaw_to_level(domain->agaw);
|
|
int offset;
|
|
|
|
if (!domain_pfn_supported(domain, pfn))
|
|
/* Address beyond IOMMU's addressing capabilities. */
|
|
return NULL;
|
|
|
|
parent = domain->pgd;
|
|
|
|
while (1) {
|
|
void *tmp_page;
|
|
|
|
offset = pfn_level_offset(pfn, level);
|
|
pte = &parent[offset];
|
|
if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
|
|
break;
|
|
if (level == *target_level)
|
|
break;
|
|
|
|
if (!dma_pte_present(pte)) {
|
|
uint64_t pteval, tmp;
|
|
|
|
tmp_page = iommu_alloc_page_node(domain->nid, gfp);
|
|
|
|
if (!tmp_page)
|
|
return NULL;
|
|
|
|
domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
|
|
pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
|
|
if (domain->use_first_level)
|
|
pteval |= DMA_FL_PTE_US | DMA_FL_PTE_ACCESS;
|
|
|
|
tmp = 0ULL;
|
|
if (!try_cmpxchg64(&pte->val, &tmp, pteval))
|
|
/* Someone else set it while we were thinking; use theirs. */
|
|
iommu_free_page(tmp_page);
|
|
else
|
|
domain_flush_cache(domain, pte, sizeof(*pte));
|
|
}
|
|
if (level == 1)
|
|
break;
|
|
|
|
parent = phys_to_virt(dma_pte_addr(pte));
|
|
level--;
|
|
}
|
|
|
|
if (!*target_level)
|
|
*target_level = level;
|
|
|
|
return pte;
|
|
}
|
|
|
|
/* return address's pte at specific level */
|
|
static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
|
|
unsigned long pfn,
|
|
int level, int *large_page)
|
|
{
|
|
struct dma_pte *parent, *pte;
|
|
int total = agaw_to_level(domain->agaw);
|
|
int offset;
|
|
|
|
parent = domain->pgd;
|
|
while (level <= total) {
|
|
offset = pfn_level_offset(pfn, total);
|
|
pte = &parent[offset];
|
|
if (level == total)
|
|
return pte;
|
|
|
|
if (!dma_pte_present(pte)) {
|
|
*large_page = total;
|
|
break;
|
|
}
|
|
|
|
if (dma_pte_superpage(pte)) {
|
|
*large_page = total;
|
|
return pte;
|
|
}
|
|
|
|
parent = phys_to_virt(dma_pte_addr(pte));
|
|
total--;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* clear last level pte, a tlb flush should be followed */
|
|
static void dma_pte_clear_range(struct dmar_domain *domain,
|
|
unsigned long start_pfn,
|
|
unsigned long last_pfn)
|
|
{
|
|
unsigned int large_page;
|
|
struct dma_pte *first_pte, *pte;
|
|
|
|
if (WARN_ON(!domain_pfn_supported(domain, last_pfn)) ||
|
|
WARN_ON(start_pfn > last_pfn))
|
|
return;
|
|
|
|
/* we don't need lock here; nobody else touches the iova range */
|
|
do {
|
|
large_page = 1;
|
|
first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
|
|
if (!pte) {
|
|
start_pfn = align_to_level(start_pfn + 1, large_page + 1);
|
|
continue;
|
|
}
|
|
do {
|
|
dma_clear_pte(pte);
|
|
start_pfn += lvl_to_nr_pages(large_page);
|
|
pte++;
|
|
} while (start_pfn <= last_pfn && !first_pte_in_page(pte));
|
|
|
|
domain_flush_cache(domain, first_pte,
|
|
(void *)pte - (void *)first_pte);
|
|
|
|
} while (start_pfn && start_pfn <= last_pfn);
|
|
}
|
|
|
|
static void dma_pte_free_level(struct dmar_domain *domain, int level,
|
|
int retain_level, struct dma_pte *pte,
|
|
unsigned long pfn, unsigned long start_pfn,
|
|
unsigned long last_pfn)
|
|
{
|
|
pfn = max(start_pfn, pfn);
|
|
pte = &pte[pfn_level_offset(pfn, level)];
|
|
|
|
do {
|
|
unsigned long level_pfn;
|
|
struct dma_pte *level_pte;
|
|
|
|
if (!dma_pte_present(pte) || dma_pte_superpage(pte))
|
|
goto next;
|
|
|
|
level_pfn = pfn & level_mask(level);
|
|
level_pte = phys_to_virt(dma_pte_addr(pte));
|
|
|
|
if (level > 2) {
|
|
dma_pte_free_level(domain, level - 1, retain_level,
|
|
level_pte, level_pfn, start_pfn,
|
|
last_pfn);
|
|
}
|
|
|
|
/*
|
|
* Free the page table if we're below the level we want to
|
|
* retain and the range covers the entire table.
|
|
*/
|
|
if (level < retain_level && !(start_pfn > level_pfn ||
|
|
last_pfn < level_pfn + level_size(level) - 1)) {
|
|
dma_clear_pte(pte);
|
|
domain_flush_cache(domain, pte, sizeof(*pte));
|
|
iommu_free_page(level_pte);
|
|
}
|
|
next:
|
|
pfn += level_size(level);
|
|
} while (!first_pte_in_page(++pte) && pfn <= last_pfn);
|
|
}
|
|
|
|
/*
|
|
* clear last level (leaf) ptes and free page table pages below the
|
|
* level we wish to keep intact.
|
|
*/
|
|
static void dma_pte_free_pagetable(struct dmar_domain *domain,
|
|
unsigned long start_pfn,
|
|
unsigned long last_pfn,
|
|
int retain_level)
|
|
{
|
|
dma_pte_clear_range(domain, start_pfn, last_pfn);
|
|
|
|
/* We don't need lock here; nobody else touches the iova range */
|
|
dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level,
|
|
domain->pgd, 0, start_pfn, last_pfn);
|
|
|
|
/* free pgd */
|
|
if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
|
|
iommu_free_page(domain->pgd);
|
|
domain->pgd = NULL;
|
|
}
|
|
}
|
|
|
|
/* When a page at a given level is being unlinked from its parent, we don't
|
|
need to *modify* it at all. All we need to do is make a list of all the
|
|
pages which can be freed just as soon as we've flushed the IOTLB and we
|
|
know the hardware page-walk will no longer touch them.
|
|
The 'pte' argument is the *parent* PTE, pointing to the page that is to
|
|
be freed. */
|
|
static void dma_pte_list_pagetables(struct dmar_domain *domain,
|
|
int level, struct dma_pte *pte,
|
|
struct list_head *freelist)
|
|
{
|
|
struct page *pg;
|
|
|
|
pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
|
|
list_add_tail(&pg->lru, freelist);
|
|
|
|
if (level == 1)
|
|
return;
|
|
|
|
pte = page_address(pg);
|
|
do {
|
|
if (dma_pte_present(pte) && !dma_pte_superpage(pte))
|
|
dma_pte_list_pagetables(domain, level - 1, pte, freelist);
|
|
pte++;
|
|
} while (!first_pte_in_page(pte));
|
|
}
|
|
|
|
static void dma_pte_clear_level(struct dmar_domain *domain, int level,
|
|
struct dma_pte *pte, unsigned long pfn,
|
|
unsigned long start_pfn, unsigned long last_pfn,
|
|
struct list_head *freelist)
|
|
{
|
|
struct dma_pte *first_pte = NULL, *last_pte = NULL;
|
|
|
|
pfn = max(start_pfn, pfn);
|
|
pte = &pte[pfn_level_offset(pfn, level)];
|
|
|
|
do {
|
|
unsigned long level_pfn = pfn & level_mask(level);
|
|
|
|
if (!dma_pte_present(pte))
|
|
goto next;
|
|
|
|
/* If range covers entire pagetable, free it */
|
|
if (start_pfn <= level_pfn &&
|
|
last_pfn >= level_pfn + level_size(level) - 1) {
|
|
/* These suborbinate page tables are going away entirely. Don't
|
|
bother to clear them; we're just going to *free* them. */
|
|
if (level > 1 && !dma_pte_superpage(pte))
|
|
dma_pte_list_pagetables(domain, level - 1, pte, freelist);
|
|
|
|
dma_clear_pte(pte);
|
|
if (!first_pte)
|
|
first_pte = pte;
|
|
last_pte = pte;
|
|
} else if (level > 1) {
|
|
/* Recurse down into a level that isn't *entirely* obsolete */
|
|
dma_pte_clear_level(domain, level - 1,
|
|
phys_to_virt(dma_pte_addr(pte)),
|
|
level_pfn, start_pfn, last_pfn,
|
|
freelist);
|
|
}
|
|
next:
|
|
pfn = level_pfn + level_size(level);
|
|
} while (!first_pte_in_page(++pte) && pfn <= last_pfn);
|
|
|
|
if (first_pte)
|
|
domain_flush_cache(domain, first_pte,
|
|
(void *)++last_pte - (void *)first_pte);
|
|
}
|
|
|
|
/* We can't just free the pages because the IOMMU may still be walking
|
|
the page tables, and may have cached the intermediate levels. The
|
|
pages can only be freed after the IOTLB flush has been done. */
|
|
static void domain_unmap(struct dmar_domain *domain, unsigned long start_pfn,
|
|
unsigned long last_pfn, struct list_head *freelist)
|
|
{
|
|
if (WARN_ON(!domain_pfn_supported(domain, last_pfn)) ||
|
|
WARN_ON(start_pfn > last_pfn))
|
|
return;
|
|
|
|
/* we don't need lock here; nobody else touches the iova range */
|
|
dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
|
|
domain->pgd, 0, start_pfn, last_pfn, freelist);
|
|
|
|
/* free pgd */
|
|
if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
|
|
struct page *pgd_page = virt_to_page(domain->pgd);
|
|
list_add_tail(&pgd_page->lru, freelist);
|
|
domain->pgd = NULL;
|
|
}
|
|
}
|
|
|
|
/* iommu handling */
|
|
static int iommu_alloc_root_entry(struct intel_iommu *iommu)
|
|
{
|
|
struct root_entry *root;
|
|
|
|
root = iommu_alloc_page_node(iommu->node, GFP_ATOMIC);
|
|
if (!root) {
|
|
pr_err("Allocating root entry for %s failed\n",
|
|
iommu->name);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
__iommu_flush_cache(iommu, root, ROOT_SIZE);
|
|
iommu->root_entry = root;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void iommu_set_root_entry(struct intel_iommu *iommu)
|
|
{
|
|
u64 addr;
|
|
u32 sts;
|
|
unsigned long flag;
|
|
|
|
addr = virt_to_phys(iommu->root_entry);
|
|
if (sm_supported(iommu))
|
|
addr |= DMA_RTADDR_SMT;
|
|
|
|
raw_spin_lock_irqsave(&iommu->register_lock, flag);
|
|
dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
|
|
|
|
writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
|
|
|
|
/* Make sure hardware complete it */
|
|
IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
|
|
readl, (sts & DMA_GSTS_RTPS), sts);
|
|
|
|
raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
|
|
/*
|
|
* Hardware invalidates all DMA remapping hardware translation
|
|
* caches as part of SRTP flow.
|
|
*/
|
|
if (cap_esrtps(iommu->cap))
|
|
return;
|
|
|
|
iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
|
|
if (sm_supported(iommu))
|
|
qi_flush_pasid_cache(iommu, 0, QI_PC_GLOBAL, 0);
|
|
iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
|
|
}
|
|
|
|
void iommu_flush_write_buffer(struct intel_iommu *iommu)
|
|
{
|
|
u32 val;
|
|
unsigned long flag;
|
|
|
|
if (!rwbf_quirk && !cap_rwbf(iommu->cap))
|
|
return;
|
|
|
|
raw_spin_lock_irqsave(&iommu->register_lock, flag);
|
|
writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
|
|
|
|
/* Make sure hardware complete it */
|
|
IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
|
|
readl, (!(val & DMA_GSTS_WBFS)), val);
|
|
|
|
raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
}
|
|
|
|
/* return value determine if we need a write buffer flush */
|
|
static void __iommu_flush_context(struct intel_iommu *iommu,
|
|
u16 did, u16 source_id, u8 function_mask,
|
|
u64 type)
|
|
{
|
|
u64 val = 0;
|
|
unsigned long flag;
|
|
|
|
switch (type) {
|
|
case DMA_CCMD_GLOBAL_INVL:
|
|
val = DMA_CCMD_GLOBAL_INVL;
|
|
break;
|
|
case DMA_CCMD_DOMAIN_INVL:
|
|
val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
|
|
break;
|
|
case DMA_CCMD_DEVICE_INVL:
|
|
val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
|
|
| DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
|
|
break;
|
|
default:
|
|
pr_warn("%s: Unexpected context-cache invalidation type 0x%llx\n",
|
|
iommu->name, type);
|
|
return;
|
|
}
|
|
val |= DMA_CCMD_ICC;
|
|
|
|
raw_spin_lock_irqsave(&iommu->register_lock, flag);
|
|
dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
|
|
|
|
/* Make sure hardware complete it */
|
|
IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
|
|
dmar_readq, (!(val & DMA_CCMD_ICC)), val);
|
|
|
|
raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
}
|
|
|
|
void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
|
|
unsigned int size_order, u64 type)
|
|
{
|
|
int tlb_offset = ecap_iotlb_offset(iommu->ecap);
|
|
u64 val = 0, val_iva = 0;
|
|
unsigned long flag;
|
|
|
|
switch (type) {
|
|
case DMA_TLB_GLOBAL_FLUSH:
|
|
/* global flush doesn't need set IVA_REG */
|
|
val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
|
|
break;
|
|
case DMA_TLB_DSI_FLUSH:
|
|
val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
|
|
break;
|
|
case DMA_TLB_PSI_FLUSH:
|
|
val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
|
|
/* IH bit is passed in as part of address */
|
|
val_iva = size_order | addr;
|
|
break;
|
|
default:
|
|
pr_warn("%s: Unexpected iotlb invalidation type 0x%llx\n",
|
|
iommu->name, type);
|
|
return;
|
|
}
|
|
|
|
if (cap_write_drain(iommu->cap))
|
|
val |= DMA_TLB_WRITE_DRAIN;
|
|
|
|
raw_spin_lock_irqsave(&iommu->register_lock, flag);
|
|
/* Note: Only uses first TLB reg currently */
|
|
if (val_iva)
|
|
dmar_writeq(iommu->reg + tlb_offset, val_iva);
|
|
dmar_writeq(iommu->reg + tlb_offset + 8, val);
|
|
|
|
/* Make sure hardware complete it */
|
|
IOMMU_WAIT_OP(iommu, tlb_offset + 8,
|
|
dmar_readq, (!(val & DMA_TLB_IVT)), val);
|
|
|
|
raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
|
|
/* check IOTLB invalidation granularity */
|
|
if (DMA_TLB_IAIG(val) == 0)
|
|
pr_err("Flush IOTLB failed\n");
|
|
if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
|
|
pr_debug("TLB flush request %Lx, actual %Lx\n",
|
|
(unsigned long long)DMA_TLB_IIRG(type),
|
|
(unsigned long long)DMA_TLB_IAIG(val));
|
|
}
|
|
|
|
static struct device_domain_info *
|
|
domain_lookup_dev_info(struct dmar_domain *domain,
|
|
struct intel_iommu *iommu, u8 bus, u8 devfn)
|
|
{
|
|
struct device_domain_info *info;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&domain->lock, flags);
|
|
list_for_each_entry(info, &domain->devices, link) {
|
|
if (info->iommu == iommu && info->bus == bus &&
|
|
info->devfn == devfn) {
|
|
spin_unlock_irqrestore(&domain->lock, flags);
|
|
return info;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&domain->lock, flags);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* The extra devTLB flush quirk impacts those QAT devices with PCI device
|
|
* IDs ranging from 0x4940 to 0x4943. It is exempted from risky_device()
|
|
* check because it applies only to the built-in QAT devices and it doesn't
|
|
* grant additional privileges.
|
|
*/
|
|
#define BUGGY_QAT_DEVID_MASK 0x4940
|
|
static bool dev_needs_extra_dtlb_flush(struct pci_dev *pdev)
|
|
{
|
|
if (pdev->vendor != PCI_VENDOR_ID_INTEL)
|
|
return false;
|
|
|
|
if ((pdev->device & 0xfffc) != BUGGY_QAT_DEVID_MASK)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void iommu_enable_pci_caps(struct device_domain_info *info)
|
|
{
|
|
struct pci_dev *pdev;
|
|
|
|
if (!dev_is_pci(info->dev))
|
|
return;
|
|
|
|
pdev = to_pci_dev(info->dev);
|
|
if (info->ats_supported && pci_ats_page_aligned(pdev) &&
|
|
!pci_enable_ats(pdev, VTD_PAGE_SHIFT))
|
|
info->ats_enabled = 1;
|
|
}
|
|
|
|
static void iommu_disable_pci_caps(struct device_domain_info *info)
|
|
{
|
|
struct pci_dev *pdev;
|
|
|
|
if (!dev_is_pci(info->dev))
|
|
return;
|
|
|
|
pdev = to_pci_dev(info->dev);
|
|
|
|
if (info->ats_enabled) {
|
|
pci_disable_ats(pdev);
|
|
info->ats_enabled = 0;
|
|
}
|
|
}
|
|
|
|
static void intel_flush_iotlb_all(struct iommu_domain *domain)
|
|
{
|
|
cache_tag_flush_all(to_dmar_domain(domain));
|
|
}
|
|
|
|
static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
|
|
{
|
|
u32 pmen;
|
|
unsigned long flags;
|
|
|
|
if (!cap_plmr(iommu->cap) && !cap_phmr(iommu->cap))
|
|
return;
|
|
|
|
raw_spin_lock_irqsave(&iommu->register_lock, flags);
|
|
pmen = readl(iommu->reg + DMAR_PMEN_REG);
|
|
pmen &= ~DMA_PMEN_EPM;
|
|
writel(pmen, iommu->reg + DMAR_PMEN_REG);
|
|
|
|
/* wait for the protected region status bit to clear */
|
|
IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
|
|
readl, !(pmen & DMA_PMEN_PRS), pmen);
|
|
|
|
raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
|
|
}
|
|
|
|
static void iommu_enable_translation(struct intel_iommu *iommu)
|
|
{
|
|
u32 sts;
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&iommu->register_lock, flags);
|
|
iommu->gcmd |= DMA_GCMD_TE;
|
|
writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
|
|
|
|
/* Make sure hardware complete it */
|
|
IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
|
|
readl, (sts & DMA_GSTS_TES), sts);
|
|
|
|
raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
|
|
}
|
|
|
|
static void iommu_disable_translation(struct intel_iommu *iommu)
|
|
{
|
|
u32 sts;
|
|
unsigned long flag;
|
|
|
|
if (iommu_skip_te_disable && iommu->drhd->gfx_dedicated &&
|
|
(cap_read_drain(iommu->cap) || cap_write_drain(iommu->cap)))
|
|
return;
|
|
|
|
raw_spin_lock_irqsave(&iommu->register_lock, flag);
|
|
iommu->gcmd &= ~DMA_GCMD_TE;
|
|
writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
|
|
|
|
/* Make sure hardware complete it */
|
|
IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
|
|
readl, (!(sts & DMA_GSTS_TES)), sts);
|
|
|
|
raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
}
|
|
|
|
static int iommu_init_domains(struct intel_iommu *iommu)
|
|
{
|
|
u32 ndomains;
|
|
|
|
ndomains = cap_ndoms(iommu->cap);
|
|
pr_debug("%s: Number of Domains supported <%d>\n",
|
|
iommu->name, ndomains);
|
|
|
|
spin_lock_init(&iommu->lock);
|
|
|
|
iommu->domain_ids = bitmap_zalloc(ndomains, GFP_KERNEL);
|
|
if (!iommu->domain_ids)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* If Caching mode is set, then invalid translations are tagged
|
|
* with domain-id 0, hence we need to pre-allocate it. We also
|
|
* use domain-id 0 as a marker for non-allocated domain-id, so
|
|
* make sure it is not used for a real domain.
|
|
*/
|
|
set_bit(0, iommu->domain_ids);
|
|
|
|
/*
|
|
* Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid
|
|
* entry for first-level or pass-through translation modes should
|
|
* be programmed with a domain id different from those used for
|
|
* second-level or nested translation. We reserve a domain id for
|
|
* this purpose. This domain id is also used for identity domain
|
|
* in legacy mode.
|
|
*/
|
|
set_bit(FLPT_DEFAULT_DID, iommu->domain_ids);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void disable_dmar_iommu(struct intel_iommu *iommu)
|
|
{
|
|
if (!iommu->domain_ids)
|
|
return;
|
|
|
|
/*
|
|
* All iommu domains must have been detached from the devices,
|
|
* hence there should be no domain IDs in use.
|
|
*/
|
|
if (WARN_ON(bitmap_weight(iommu->domain_ids, cap_ndoms(iommu->cap))
|
|
> NUM_RESERVED_DID))
|
|
return;
|
|
|
|
if (iommu->gcmd & DMA_GCMD_TE)
|
|
iommu_disable_translation(iommu);
|
|
}
|
|
|
|
static void free_dmar_iommu(struct intel_iommu *iommu)
|
|
{
|
|
if (iommu->domain_ids) {
|
|
bitmap_free(iommu->domain_ids);
|
|
iommu->domain_ids = NULL;
|
|
}
|
|
|
|
if (iommu->copied_tables) {
|
|
bitmap_free(iommu->copied_tables);
|
|
iommu->copied_tables = NULL;
|
|
}
|
|
|
|
/* free context mapping */
|
|
free_context_table(iommu);
|
|
|
|
#ifdef CONFIG_INTEL_IOMMU_SVM
|
|
if (pasid_supported(iommu)) {
|
|
if (ecap_prs(iommu->ecap))
|
|
intel_svm_finish_prq(iommu);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Check and return whether first level is used by default for
|
|
* DMA translation.
|
|
*/
|
|
static bool first_level_by_default(unsigned int type)
|
|
{
|
|
/* Only SL is available in legacy mode */
|
|
if (!scalable_mode_support())
|
|
return false;
|
|
|
|
/* Only level (either FL or SL) is available, just use it */
|
|
if (intel_cap_flts_sanity() ^ intel_cap_slts_sanity())
|
|
return intel_cap_flts_sanity();
|
|
|
|
/* Both levels are available, decide it based on domain type */
|
|
return type != IOMMU_DOMAIN_UNMANAGED;
|
|
}
|
|
|
|
static struct dmar_domain *alloc_domain(unsigned int type)
|
|
{
|
|
struct dmar_domain *domain;
|
|
|
|
domain = kzalloc(sizeof(*domain), GFP_KERNEL);
|
|
if (!domain)
|
|
return NULL;
|
|
|
|
domain->nid = NUMA_NO_NODE;
|
|
if (first_level_by_default(type))
|
|
domain->use_first_level = true;
|
|
INIT_LIST_HEAD(&domain->devices);
|
|
INIT_LIST_HEAD(&domain->dev_pasids);
|
|
INIT_LIST_HEAD(&domain->cache_tags);
|
|
spin_lock_init(&domain->lock);
|
|
spin_lock_init(&domain->cache_lock);
|
|
xa_init(&domain->iommu_array);
|
|
|
|
return domain;
|
|
}
|
|
|
|
int domain_attach_iommu(struct dmar_domain *domain, struct intel_iommu *iommu)
|
|
{
|
|
struct iommu_domain_info *info, *curr;
|
|
unsigned long ndomains;
|
|
int num, ret = -ENOSPC;
|
|
|
|
if (domain->domain.type == IOMMU_DOMAIN_SVA)
|
|
return 0;
|
|
|
|
info = kzalloc(sizeof(*info), GFP_KERNEL);
|
|
if (!info)
|
|
return -ENOMEM;
|
|
|
|
spin_lock(&iommu->lock);
|
|
curr = xa_load(&domain->iommu_array, iommu->seq_id);
|
|
if (curr) {
|
|
curr->refcnt++;
|
|
spin_unlock(&iommu->lock);
|
|
kfree(info);
|
|
return 0;
|
|
}
|
|
|
|
ndomains = cap_ndoms(iommu->cap);
|
|
num = find_first_zero_bit(iommu->domain_ids, ndomains);
|
|
if (num >= ndomains) {
|
|
pr_err("%s: No free domain ids\n", iommu->name);
|
|
goto err_unlock;
|
|
}
|
|
|
|
set_bit(num, iommu->domain_ids);
|
|
info->refcnt = 1;
|
|
info->did = num;
|
|
info->iommu = iommu;
|
|
curr = xa_cmpxchg(&domain->iommu_array, iommu->seq_id,
|
|
NULL, info, GFP_ATOMIC);
|
|
if (curr) {
|
|
ret = xa_err(curr) ? : -EBUSY;
|
|
goto err_clear;
|
|
}
|
|
domain_update_iommu_cap(domain);
|
|
|
|
spin_unlock(&iommu->lock);
|
|
return 0;
|
|
|
|
err_clear:
|
|
clear_bit(info->did, iommu->domain_ids);
|
|
err_unlock:
|
|
spin_unlock(&iommu->lock);
|
|
kfree(info);
|
|
return ret;
|
|
}
|
|
|
|
void domain_detach_iommu(struct dmar_domain *domain, struct intel_iommu *iommu)
|
|
{
|
|
struct iommu_domain_info *info;
|
|
|
|
if (domain->domain.type == IOMMU_DOMAIN_SVA)
|
|
return;
|
|
|
|
spin_lock(&iommu->lock);
|
|
info = xa_load(&domain->iommu_array, iommu->seq_id);
|
|
if (--info->refcnt == 0) {
|
|
clear_bit(info->did, iommu->domain_ids);
|
|
xa_erase(&domain->iommu_array, iommu->seq_id);
|
|
domain->nid = NUMA_NO_NODE;
|
|
domain_update_iommu_cap(domain);
|
|
kfree(info);
|
|
}
|
|
spin_unlock(&iommu->lock);
|
|
}
|
|
|
|
static int guestwidth_to_adjustwidth(int gaw)
|
|
{
|
|
int agaw;
|
|
int r = (gaw - 12) % 9;
|
|
|
|
if (r == 0)
|
|
agaw = gaw;
|
|
else
|
|
agaw = gaw + 9 - r;
|
|
if (agaw > 64)
|
|
agaw = 64;
|
|
return agaw;
|
|
}
|
|
|
|
static void domain_exit(struct dmar_domain *domain)
|
|
{
|
|
if (domain->pgd) {
|
|
LIST_HEAD(freelist);
|
|
|
|
domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw), &freelist);
|
|
iommu_put_pages_list(&freelist);
|
|
}
|
|
|
|
if (WARN_ON(!list_empty(&domain->devices)))
|
|
return;
|
|
|
|
kfree(domain->qi_batch);
|
|
kfree(domain);
|
|
}
|
|
|
|
/*
|
|
* For kdump cases, old valid entries may be cached due to the
|
|
* in-flight DMA and copied pgtable, but there is no unmapping
|
|
* behaviour for them, thus we need an explicit cache flush for
|
|
* the newly-mapped device. For kdump, at this point, the device
|
|
* is supposed to finish reset at its driver probe stage, so no
|
|
* in-flight DMA will exist, and we don't need to worry anymore
|
|
* hereafter.
|
|
*/
|
|
static void copied_context_tear_down(struct intel_iommu *iommu,
|
|
struct context_entry *context,
|
|
u8 bus, u8 devfn)
|
|
{
|
|
u16 did_old;
|
|
|
|
if (!context_copied(iommu, bus, devfn))
|
|
return;
|
|
|
|
assert_spin_locked(&iommu->lock);
|
|
|
|
did_old = context_domain_id(context);
|
|
context_clear_entry(context);
|
|
|
|
if (did_old < cap_ndoms(iommu->cap)) {
|
|
iommu->flush.flush_context(iommu, did_old,
|
|
(((u16)bus) << 8) | devfn,
|
|
DMA_CCMD_MASK_NOBIT,
|
|
DMA_CCMD_DEVICE_INVL);
|
|
iommu->flush.flush_iotlb(iommu, did_old, 0, 0,
|
|
DMA_TLB_DSI_FLUSH);
|
|
}
|
|
|
|
clear_context_copied(iommu, bus, devfn);
|
|
}
|
|
|
|
/*
|
|
* It's a non-present to present mapping. If hardware doesn't cache
|
|
* non-present entry we only need to flush the write-buffer. If the
|
|
* _does_ cache non-present entries, then it does so in the special
|
|
* domain #0, which we have to flush:
|
|
*/
|
|
static void context_present_cache_flush(struct intel_iommu *iommu, u16 did,
|
|
u8 bus, u8 devfn)
|
|
{
|
|
if (cap_caching_mode(iommu->cap)) {
|
|
iommu->flush.flush_context(iommu, 0,
|
|
(((u16)bus) << 8) | devfn,
|
|
DMA_CCMD_MASK_NOBIT,
|
|
DMA_CCMD_DEVICE_INVL);
|
|
iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
|
|
} else {
|
|
iommu_flush_write_buffer(iommu);
|
|
}
|
|
}
|
|
|
|
static int domain_context_mapping_one(struct dmar_domain *domain,
|
|
struct intel_iommu *iommu,
|
|
u8 bus, u8 devfn)
|
|
{
|
|
struct device_domain_info *info =
|
|
domain_lookup_dev_info(domain, iommu, bus, devfn);
|
|
u16 did = domain_id_iommu(domain, iommu);
|
|
int translation = CONTEXT_TT_MULTI_LEVEL;
|
|
struct dma_pte *pgd = domain->pgd;
|
|
struct context_entry *context;
|
|
int agaw, ret;
|
|
|
|
pr_debug("Set context mapping for %02x:%02x.%d\n",
|
|
bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
|
|
|
|
spin_lock(&iommu->lock);
|
|
ret = -ENOMEM;
|
|
context = iommu_context_addr(iommu, bus, devfn, 1);
|
|
if (!context)
|
|
goto out_unlock;
|
|
|
|
ret = 0;
|
|
if (context_present(context) && !context_copied(iommu, bus, devfn))
|
|
goto out_unlock;
|
|
|
|
copied_context_tear_down(iommu, context, bus, devfn);
|
|
context_clear_entry(context);
|
|
|
|
context_set_domain_id(context, did);
|
|
|
|
/*
|
|
* Skip top levels of page tables for iommu which has
|
|
* less agaw than default. Unnecessary for PT mode.
|
|
*/
|
|
for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
|
|
ret = -ENOMEM;
|
|
pgd = phys_to_virt(dma_pte_addr(pgd));
|
|
if (!dma_pte_present(pgd))
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (info && info->ats_supported)
|
|
translation = CONTEXT_TT_DEV_IOTLB;
|
|
else
|
|
translation = CONTEXT_TT_MULTI_LEVEL;
|
|
|
|
context_set_address_root(context, virt_to_phys(pgd));
|
|
context_set_address_width(context, agaw);
|
|
context_set_translation_type(context, translation);
|
|
context_set_fault_enable(context);
|
|
context_set_present(context);
|
|
if (!ecap_coherent(iommu->ecap))
|
|
clflush_cache_range(context, sizeof(*context));
|
|
context_present_cache_flush(iommu, did, bus, devfn);
|
|
ret = 0;
|
|
|
|
out_unlock:
|
|
spin_unlock(&iommu->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int domain_context_mapping_cb(struct pci_dev *pdev,
|
|
u16 alias, void *opaque)
|
|
{
|
|
struct device_domain_info *info = dev_iommu_priv_get(&pdev->dev);
|
|
struct intel_iommu *iommu = info->iommu;
|
|
struct dmar_domain *domain = opaque;
|
|
|
|
return domain_context_mapping_one(domain, iommu,
|
|
PCI_BUS_NUM(alias), alias & 0xff);
|
|
}
|
|
|
|
static int
|
|
domain_context_mapping(struct dmar_domain *domain, struct device *dev)
|
|
{
|
|
struct device_domain_info *info = dev_iommu_priv_get(dev);
|
|
struct intel_iommu *iommu = info->iommu;
|
|
u8 bus = info->bus, devfn = info->devfn;
|
|
|
|
if (!dev_is_pci(dev))
|
|
return domain_context_mapping_one(domain, iommu, bus, devfn);
|
|
|
|
return pci_for_each_dma_alias(to_pci_dev(dev),
|
|
domain_context_mapping_cb, domain);
|
|
}
|
|
|
|
/* Return largest possible superpage level for a given mapping */
|
|
static int hardware_largepage_caps(struct dmar_domain *domain, unsigned long iov_pfn,
|
|
unsigned long phy_pfn, unsigned long pages)
|
|
{
|
|
int support, level = 1;
|
|
unsigned long pfnmerge;
|
|
|
|
support = domain->iommu_superpage;
|
|
|
|
/* To use a large page, the virtual *and* physical addresses
|
|
must be aligned to 2MiB/1GiB/etc. Lower bits set in either
|
|
of them will mean we have to use smaller pages. So just
|
|
merge them and check both at once. */
|
|
pfnmerge = iov_pfn | phy_pfn;
|
|
|
|
while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
|
|
pages >>= VTD_STRIDE_SHIFT;
|
|
if (!pages)
|
|
break;
|
|
pfnmerge >>= VTD_STRIDE_SHIFT;
|
|
level++;
|
|
support--;
|
|
}
|
|
return level;
|
|
}
|
|
|
|
/*
|
|
* Ensure that old small page tables are removed to make room for superpage(s).
|
|
* We're going to add new large pages, so make sure we don't remove their parent
|
|
* tables. The IOTLB/devTLBs should be flushed if any PDE/PTEs are cleared.
|
|
*/
|
|
static void switch_to_super_page(struct dmar_domain *domain,
|
|
unsigned long start_pfn,
|
|
unsigned long end_pfn, int level)
|
|
{
|
|
unsigned long lvl_pages = lvl_to_nr_pages(level);
|
|
struct dma_pte *pte = NULL;
|
|
|
|
while (start_pfn <= end_pfn) {
|
|
if (!pte)
|
|
pte = pfn_to_dma_pte(domain, start_pfn, &level,
|
|
GFP_ATOMIC);
|
|
|
|
if (dma_pte_present(pte)) {
|
|
dma_pte_free_pagetable(domain, start_pfn,
|
|
start_pfn + lvl_pages - 1,
|
|
level + 1);
|
|
|
|
cache_tag_flush_range(domain, start_pfn << VTD_PAGE_SHIFT,
|
|
end_pfn << VTD_PAGE_SHIFT, 0);
|
|
}
|
|
|
|
pte++;
|
|
start_pfn += lvl_pages;
|
|
if (first_pte_in_page(pte))
|
|
pte = NULL;
|
|
}
|
|
}
|
|
|
|
static int
|
|
__domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
|
|
unsigned long phys_pfn, unsigned long nr_pages, int prot,
|
|
gfp_t gfp)
|
|
{
|
|
struct dma_pte *first_pte = NULL, *pte = NULL;
|
|
unsigned int largepage_lvl = 0;
|
|
unsigned long lvl_pages = 0;
|
|
phys_addr_t pteval;
|
|
u64 attr;
|
|
|
|
if (unlikely(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1)))
|
|
return -EINVAL;
|
|
|
|
if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
|
|
return -EINVAL;
|
|
|
|
if (!(prot & DMA_PTE_WRITE) && domain->nested_parent) {
|
|
pr_err_ratelimited("Read-only mapping is disallowed on the domain which serves as the parent in a nested configuration, due to HW errata (ERRATA_772415_SPR17)\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
attr = prot & (DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP);
|
|
attr |= DMA_FL_PTE_PRESENT;
|
|
if (domain->use_first_level) {
|
|
attr |= DMA_FL_PTE_US | DMA_FL_PTE_ACCESS;
|
|
if (prot & DMA_PTE_WRITE)
|
|
attr |= DMA_FL_PTE_DIRTY;
|
|
}
|
|
|
|
domain->has_mappings = true;
|
|
|
|
pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | attr;
|
|
|
|
while (nr_pages > 0) {
|
|
uint64_t tmp;
|
|
|
|
if (!pte) {
|
|
largepage_lvl = hardware_largepage_caps(domain, iov_pfn,
|
|
phys_pfn, nr_pages);
|
|
|
|
pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl,
|
|
gfp);
|
|
if (!pte)
|
|
return -ENOMEM;
|
|
first_pte = pte;
|
|
|
|
lvl_pages = lvl_to_nr_pages(largepage_lvl);
|
|
|
|
/* It is large page*/
|
|
if (largepage_lvl > 1) {
|
|
unsigned long end_pfn;
|
|
unsigned long pages_to_remove;
|
|
|
|
pteval |= DMA_PTE_LARGE_PAGE;
|
|
pages_to_remove = min_t(unsigned long, nr_pages,
|
|
nr_pte_to_next_page(pte) * lvl_pages);
|
|
end_pfn = iov_pfn + pages_to_remove - 1;
|
|
switch_to_super_page(domain, iov_pfn, end_pfn, largepage_lvl);
|
|
} else {
|
|
pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
|
|
}
|
|
|
|
}
|
|
/* We don't need lock here, nobody else
|
|
* touches the iova range
|
|
*/
|
|
tmp = 0ULL;
|
|
if (!try_cmpxchg64_local(&pte->val, &tmp, pteval)) {
|
|
static int dumps = 5;
|
|
pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
|
|
iov_pfn, tmp, (unsigned long long)pteval);
|
|
if (dumps) {
|
|
dumps--;
|
|
debug_dma_dump_mappings(NULL);
|
|
}
|
|
WARN_ON(1);
|
|
}
|
|
|
|
nr_pages -= lvl_pages;
|
|
iov_pfn += lvl_pages;
|
|
phys_pfn += lvl_pages;
|
|
pteval += lvl_pages * VTD_PAGE_SIZE;
|
|
|
|
/* If the next PTE would be the first in a new page, then we
|
|
* need to flush the cache on the entries we've just written.
|
|
* And then we'll need to recalculate 'pte', so clear it and
|
|
* let it get set again in the if (!pte) block above.
|
|
*
|
|
* If we're done (!nr_pages) we need to flush the cache too.
|
|
*
|
|
* Also if we've been setting superpages, we may need to
|
|
* recalculate 'pte' and switch back to smaller pages for the
|
|
* end of the mapping, if the trailing size is not enough to
|
|
* use another superpage (i.e. nr_pages < lvl_pages).
|
|
*/
|
|
pte++;
|
|
if (!nr_pages || first_pte_in_page(pte) ||
|
|
(largepage_lvl > 1 && nr_pages < lvl_pages)) {
|
|
domain_flush_cache(domain, first_pte,
|
|
(void *)pte - (void *)first_pte);
|
|
pte = NULL;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void domain_context_clear_one(struct device_domain_info *info, u8 bus, u8 devfn)
|
|
{
|
|
struct intel_iommu *iommu = info->iommu;
|
|
struct context_entry *context;
|
|
u16 did;
|
|
|
|
spin_lock(&iommu->lock);
|
|
context = iommu_context_addr(iommu, bus, devfn, 0);
|
|
if (!context) {
|
|
spin_unlock(&iommu->lock);
|
|
return;
|
|
}
|
|
|
|
did = context_domain_id(context);
|
|
context_clear_entry(context);
|
|
__iommu_flush_cache(iommu, context, sizeof(*context));
|
|
spin_unlock(&iommu->lock);
|
|
intel_context_flush_present(info, context, did, true);
|
|
}
|
|
|
|
static int domain_setup_first_level(struct intel_iommu *iommu,
|
|
struct dmar_domain *domain,
|
|
struct device *dev,
|
|
u32 pasid)
|
|
{
|
|
struct dma_pte *pgd = domain->pgd;
|
|
int agaw, level;
|
|
int flags = 0;
|
|
|
|
/*
|
|
* Skip top levels of page tables for iommu which has
|
|
* less agaw than default. Unnecessary for PT mode.
|
|
*/
|
|
for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
|
|
pgd = phys_to_virt(dma_pte_addr(pgd));
|
|
if (!dma_pte_present(pgd))
|
|
return -ENOMEM;
|
|
}
|
|
|
|
level = agaw_to_level(agaw);
|
|
if (level != 4 && level != 5)
|
|
return -EINVAL;
|
|
|
|
if (level == 5)
|
|
flags |= PASID_FLAG_FL5LP;
|
|
|
|
if (domain->force_snooping)
|
|
flags |= PASID_FLAG_PAGE_SNOOP;
|
|
|
|
return intel_pasid_setup_first_level(iommu, dev, (pgd_t *)pgd, pasid,
|
|
domain_id_iommu(domain, iommu),
|
|
flags);
|
|
}
|
|
|
|
static bool dev_is_real_dma_subdevice(struct device *dev)
|
|
{
|
|
return dev && dev_is_pci(dev) &&
|
|
pci_real_dma_dev(to_pci_dev(dev)) != to_pci_dev(dev);
|
|
}
|
|
|
|
static int dmar_domain_attach_device(struct dmar_domain *domain,
|
|
struct device *dev)
|
|
{
|
|
struct device_domain_info *info = dev_iommu_priv_get(dev);
|
|
struct intel_iommu *iommu = info->iommu;
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
ret = domain_attach_iommu(domain, iommu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
info->domain = domain;
|
|
spin_lock_irqsave(&domain->lock, flags);
|
|
list_add(&info->link, &domain->devices);
|
|
spin_unlock_irqrestore(&domain->lock, flags);
|
|
|
|
if (dev_is_real_dma_subdevice(dev))
|
|
return 0;
|
|
|
|
if (!sm_supported(iommu))
|
|
ret = domain_context_mapping(domain, dev);
|
|
else if (domain->use_first_level)
|
|
ret = domain_setup_first_level(iommu, domain, dev, IOMMU_NO_PASID);
|
|
else
|
|
ret = intel_pasid_setup_second_level(iommu, domain, dev, IOMMU_NO_PASID);
|
|
|
|
if (ret)
|
|
goto out_block_translation;
|
|
|
|
iommu_enable_pci_caps(info);
|
|
|
|
ret = cache_tag_assign_domain(domain, dev, IOMMU_NO_PASID);
|
|
if (ret)
|
|
goto out_block_translation;
|
|
|
|
return 0;
|
|
|
|
out_block_translation:
|
|
device_block_translation(dev);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* device_rmrr_is_relaxable - Test whether the RMRR of this device
|
|
* is relaxable (ie. is allowed to be not enforced under some conditions)
|
|
* @dev: device handle
|
|
*
|
|
* We assume that PCI USB devices with RMRRs have them largely
|
|
* for historical reasons and that the RMRR space is not actively used post
|
|
* boot. This exclusion may change if vendors begin to abuse it.
|
|
*
|
|
* The same exception is made for graphics devices, with the requirement that
|
|
* any use of the RMRR regions will be torn down before assigning the device
|
|
* to a guest.
|
|
*
|
|
* Return: true if the RMRR is relaxable, false otherwise
|
|
*/
|
|
static bool device_rmrr_is_relaxable(struct device *dev)
|
|
{
|
|
struct pci_dev *pdev;
|
|
|
|
if (!dev_is_pci(dev))
|
|
return false;
|
|
|
|
pdev = to_pci_dev(dev);
|
|
if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
static int device_def_domain_type(struct device *dev)
|
|
{
|
|
struct device_domain_info *info = dev_iommu_priv_get(dev);
|
|
struct intel_iommu *iommu = info->iommu;
|
|
|
|
/*
|
|
* Hardware does not support the passthrough translation mode.
|
|
* Always use a dynamaic mapping domain.
|
|
*/
|
|
if (!ecap_pass_through(iommu->ecap))
|
|
return IOMMU_DOMAIN_DMA;
|
|
|
|
if (dev_is_pci(dev)) {
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
|
|
if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
|
|
return IOMMU_DOMAIN_IDENTITY;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void intel_iommu_init_qi(struct intel_iommu *iommu)
|
|
{
|
|
/*
|
|
* Start from the sane iommu hardware state.
|
|
* If the queued invalidation is already initialized by us
|
|
* (for example, while enabling interrupt-remapping) then
|
|
* we got the things already rolling from a sane state.
|
|
*/
|
|
if (!iommu->qi) {
|
|
/*
|
|
* Clear any previous faults.
|
|
*/
|
|
dmar_fault(-1, iommu);
|
|
/*
|
|
* Disable queued invalidation if supported and already enabled
|
|
* before OS handover.
|
|
*/
|
|
dmar_disable_qi(iommu);
|
|
}
|
|
|
|
if (dmar_enable_qi(iommu)) {
|
|
/*
|
|
* Queued Invalidate not enabled, use Register Based Invalidate
|
|
*/
|
|
iommu->flush.flush_context = __iommu_flush_context;
|
|
iommu->flush.flush_iotlb = __iommu_flush_iotlb;
|
|
pr_info("%s: Using Register based invalidation\n",
|
|
iommu->name);
|
|
} else {
|
|
iommu->flush.flush_context = qi_flush_context;
|
|
iommu->flush.flush_iotlb = qi_flush_iotlb;
|
|
pr_info("%s: Using Queued invalidation\n", iommu->name);
|
|
}
|
|
}
|
|
|
|
static int copy_context_table(struct intel_iommu *iommu,
|
|
struct root_entry *old_re,
|
|
struct context_entry **tbl,
|
|
int bus, bool ext)
|
|
{
|
|
int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
|
|
struct context_entry *new_ce = NULL, ce;
|
|
struct context_entry *old_ce = NULL;
|
|
struct root_entry re;
|
|
phys_addr_t old_ce_phys;
|
|
|
|
tbl_idx = ext ? bus * 2 : bus;
|
|
memcpy(&re, old_re, sizeof(re));
|
|
|
|
for (devfn = 0; devfn < 256; devfn++) {
|
|
/* First calculate the correct index */
|
|
idx = (ext ? devfn * 2 : devfn) % 256;
|
|
|
|
if (idx == 0) {
|
|
/* First save what we may have and clean up */
|
|
if (new_ce) {
|
|
tbl[tbl_idx] = new_ce;
|
|
__iommu_flush_cache(iommu, new_ce,
|
|
VTD_PAGE_SIZE);
|
|
pos = 1;
|
|
}
|
|
|
|
if (old_ce)
|
|
memunmap(old_ce);
|
|
|
|
ret = 0;
|
|
if (devfn < 0x80)
|
|
old_ce_phys = root_entry_lctp(&re);
|
|
else
|
|
old_ce_phys = root_entry_uctp(&re);
|
|
|
|
if (!old_ce_phys) {
|
|
if (ext && devfn == 0) {
|
|
/* No LCTP, try UCTP */
|
|
devfn = 0x7f;
|
|
continue;
|
|
} else {
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
ret = -ENOMEM;
|
|
old_ce = memremap(old_ce_phys, PAGE_SIZE,
|
|
MEMREMAP_WB);
|
|
if (!old_ce)
|
|
goto out;
|
|
|
|
new_ce = iommu_alloc_page_node(iommu->node, GFP_KERNEL);
|
|
if (!new_ce)
|
|
goto out_unmap;
|
|
|
|
ret = 0;
|
|
}
|
|
|
|
/* Now copy the context entry */
|
|
memcpy(&ce, old_ce + idx, sizeof(ce));
|
|
|
|
if (!context_present(&ce))
|
|
continue;
|
|
|
|
did = context_domain_id(&ce);
|
|
if (did >= 0 && did < cap_ndoms(iommu->cap))
|
|
set_bit(did, iommu->domain_ids);
|
|
|
|
set_context_copied(iommu, bus, devfn);
|
|
new_ce[idx] = ce;
|
|
}
|
|
|
|
tbl[tbl_idx + pos] = new_ce;
|
|
|
|
__iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
|
|
|
|
out_unmap:
|
|
memunmap(old_ce);
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int copy_translation_tables(struct intel_iommu *iommu)
|
|
{
|
|
struct context_entry **ctxt_tbls;
|
|
struct root_entry *old_rt;
|
|
phys_addr_t old_rt_phys;
|
|
int ctxt_table_entries;
|
|
u64 rtaddr_reg;
|
|
int bus, ret;
|
|
bool new_ext, ext;
|
|
|
|
rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
|
|
ext = !!(rtaddr_reg & DMA_RTADDR_SMT);
|
|
new_ext = !!sm_supported(iommu);
|
|
|
|
/*
|
|
* The RTT bit can only be changed when translation is disabled,
|
|
* but disabling translation means to open a window for data
|
|
* corruption. So bail out and don't copy anything if we would
|
|
* have to change the bit.
|
|
*/
|
|
if (new_ext != ext)
|
|
return -EINVAL;
|
|
|
|
iommu->copied_tables = bitmap_zalloc(BIT_ULL(16), GFP_KERNEL);
|
|
if (!iommu->copied_tables)
|
|
return -ENOMEM;
|
|
|
|
old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
|
|
if (!old_rt_phys)
|
|
return -EINVAL;
|
|
|
|
old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
|
|
if (!old_rt)
|
|
return -ENOMEM;
|
|
|
|
/* This is too big for the stack - allocate it from slab */
|
|
ctxt_table_entries = ext ? 512 : 256;
|
|
ret = -ENOMEM;
|
|
ctxt_tbls = kcalloc(ctxt_table_entries, sizeof(void *), GFP_KERNEL);
|
|
if (!ctxt_tbls)
|
|
goto out_unmap;
|
|
|
|
for (bus = 0; bus < 256; bus++) {
|
|
ret = copy_context_table(iommu, &old_rt[bus],
|
|
ctxt_tbls, bus, ext);
|
|
if (ret) {
|
|
pr_err("%s: Failed to copy context table for bus %d\n",
|
|
iommu->name, bus);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
spin_lock(&iommu->lock);
|
|
|
|
/* Context tables are copied, now write them to the root_entry table */
|
|
for (bus = 0; bus < 256; bus++) {
|
|
int idx = ext ? bus * 2 : bus;
|
|
u64 val;
|
|
|
|
if (ctxt_tbls[idx]) {
|
|
val = virt_to_phys(ctxt_tbls[idx]) | 1;
|
|
iommu->root_entry[bus].lo = val;
|
|
}
|
|
|
|
if (!ext || !ctxt_tbls[idx + 1])
|
|
continue;
|
|
|
|
val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
|
|
iommu->root_entry[bus].hi = val;
|
|
}
|
|
|
|
spin_unlock(&iommu->lock);
|
|
|
|
kfree(ctxt_tbls);
|
|
|
|
__iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);
|
|
|
|
ret = 0;
|
|
|
|
out_unmap:
|
|
memunmap(old_rt);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __init init_dmars(void)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
struct intel_iommu *iommu;
|
|
int ret;
|
|
|
|
ret = intel_cap_audit(CAP_AUDIT_STATIC_DMAR, NULL);
|
|
if (ret)
|
|
goto free_iommu;
|
|
|
|
for_each_iommu(iommu, drhd) {
|
|
if (drhd->ignored) {
|
|
iommu_disable_translation(iommu);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Find the max pasid size of all IOMMU's in the system.
|
|
* We need to ensure the system pasid table is no bigger
|
|
* than the smallest supported.
|
|
*/
|
|
if (pasid_supported(iommu)) {
|
|
u32 temp = 2 << ecap_pss(iommu->ecap);
|
|
|
|
intel_pasid_max_id = min_t(u32, temp,
|
|
intel_pasid_max_id);
|
|
}
|
|
|
|
intel_iommu_init_qi(iommu);
|
|
|
|
ret = iommu_init_domains(iommu);
|
|
if (ret)
|
|
goto free_iommu;
|
|
|
|
init_translation_status(iommu);
|
|
|
|
if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
|
|
iommu_disable_translation(iommu);
|
|
clear_translation_pre_enabled(iommu);
|
|
pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
|
|
iommu->name);
|
|
}
|
|
|
|
/*
|
|
* TBD:
|
|
* we could share the same root & context tables
|
|
* among all IOMMU's. Need to Split it later.
|
|
*/
|
|
ret = iommu_alloc_root_entry(iommu);
|
|
if (ret)
|
|
goto free_iommu;
|
|
|
|
if (translation_pre_enabled(iommu)) {
|
|
pr_info("Translation already enabled - trying to copy translation structures\n");
|
|
|
|
ret = copy_translation_tables(iommu);
|
|
if (ret) {
|
|
/*
|
|
* We found the IOMMU with translation
|
|
* enabled - but failed to copy over the
|
|
* old root-entry table. Try to proceed
|
|
* by disabling translation now and
|
|
* allocating a clean root-entry table.
|
|
* This might cause DMAR faults, but
|
|
* probably the dump will still succeed.
|
|
*/
|
|
pr_err("Failed to copy translation tables from previous kernel for %s\n",
|
|
iommu->name);
|
|
iommu_disable_translation(iommu);
|
|
clear_translation_pre_enabled(iommu);
|
|
} else {
|
|
pr_info("Copied translation tables from previous kernel for %s\n",
|
|
iommu->name);
|
|
}
|
|
}
|
|
|
|
intel_svm_check(iommu);
|
|
}
|
|
|
|
/*
|
|
* Now that qi is enabled on all iommus, set the root entry and flush
|
|
* caches. This is required on some Intel X58 chipsets, otherwise the
|
|
* flush_context function will loop forever and the boot hangs.
|
|
*/
|
|
for_each_active_iommu(iommu, drhd) {
|
|
iommu_flush_write_buffer(iommu);
|
|
iommu_set_root_entry(iommu);
|
|
}
|
|
|
|
check_tylersburg_isoch();
|
|
|
|
/*
|
|
* for each drhd
|
|
* enable fault log
|
|
* global invalidate context cache
|
|
* global invalidate iotlb
|
|
* enable translation
|
|
*/
|
|
for_each_iommu(iommu, drhd) {
|
|
if (drhd->ignored) {
|
|
/*
|
|
* we always have to disable PMRs or DMA may fail on
|
|
* this device
|
|
*/
|
|
if (force_on)
|
|
iommu_disable_protect_mem_regions(iommu);
|
|
continue;
|
|
}
|
|
|
|
iommu_flush_write_buffer(iommu);
|
|
|
|
#ifdef CONFIG_INTEL_IOMMU_SVM
|
|
if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
|
|
/*
|
|
* Call dmar_alloc_hwirq() with dmar_global_lock held,
|
|
* could cause possible lock race condition.
|
|
*/
|
|
up_write(&dmar_global_lock);
|
|
ret = intel_svm_enable_prq(iommu);
|
|
down_write(&dmar_global_lock);
|
|
if (ret)
|
|
goto free_iommu;
|
|
}
|
|
#endif
|
|
ret = dmar_set_interrupt(iommu);
|
|
if (ret)
|
|
goto free_iommu;
|
|
}
|
|
|
|
return 0;
|
|
|
|
free_iommu:
|
|
for_each_active_iommu(iommu, drhd) {
|
|
disable_dmar_iommu(iommu);
|
|
free_dmar_iommu(iommu);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void __init init_no_remapping_devices(void)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
struct device *dev;
|
|
int i;
|
|
|
|
for_each_drhd_unit(drhd) {
|
|
if (!drhd->include_all) {
|
|
for_each_active_dev_scope(drhd->devices,
|
|
drhd->devices_cnt, i, dev)
|
|
break;
|
|
/* ignore DMAR unit if no devices exist */
|
|
if (i == drhd->devices_cnt)
|
|
drhd->ignored = 1;
|
|
}
|
|
}
|
|
|
|
for_each_active_drhd_unit(drhd) {
|
|
if (drhd->include_all)
|
|
continue;
|
|
|
|
for_each_active_dev_scope(drhd->devices,
|
|
drhd->devices_cnt, i, dev)
|
|
if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
|
|
break;
|
|
if (i < drhd->devices_cnt)
|
|
continue;
|
|
|
|
/* This IOMMU has *only* gfx devices. Either bypass it or
|
|
set the gfx_mapped flag, as appropriate */
|
|
drhd->gfx_dedicated = 1;
|
|
if (disable_igfx_iommu)
|
|
drhd->ignored = 1;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_SUSPEND
|
|
static int init_iommu_hw(void)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
struct intel_iommu *iommu = NULL;
|
|
int ret;
|
|
|
|
for_each_active_iommu(iommu, drhd) {
|
|
if (iommu->qi) {
|
|
ret = dmar_reenable_qi(iommu);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
for_each_iommu(iommu, drhd) {
|
|
if (drhd->ignored) {
|
|
/*
|
|
* we always have to disable PMRs or DMA may fail on
|
|
* this device
|
|
*/
|
|
if (force_on)
|
|
iommu_disable_protect_mem_regions(iommu);
|
|
continue;
|
|
}
|
|
|
|
iommu_flush_write_buffer(iommu);
|
|
iommu_set_root_entry(iommu);
|
|
iommu_enable_translation(iommu);
|
|
iommu_disable_protect_mem_regions(iommu);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void iommu_flush_all(void)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
struct intel_iommu *iommu;
|
|
|
|
for_each_active_iommu(iommu, drhd) {
|
|
iommu->flush.flush_context(iommu, 0, 0, 0,
|
|
DMA_CCMD_GLOBAL_INVL);
|
|
iommu->flush.flush_iotlb(iommu, 0, 0, 0,
|
|
DMA_TLB_GLOBAL_FLUSH);
|
|
}
|
|
}
|
|
|
|
static int iommu_suspend(void)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
struct intel_iommu *iommu = NULL;
|
|
unsigned long flag;
|
|
|
|
iommu_flush_all();
|
|
|
|
for_each_active_iommu(iommu, drhd) {
|
|
iommu_disable_translation(iommu);
|
|
|
|
raw_spin_lock_irqsave(&iommu->register_lock, flag);
|
|
|
|
iommu->iommu_state[SR_DMAR_FECTL_REG] =
|
|
readl(iommu->reg + DMAR_FECTL_REG);
|
|
iommu->iommu_state[SR_DMAR_FEDATA_REG] =
|
|
readl(iommu->reg + DMAR_FEDATA_REG);
|
|
iommu->iommu_state[SR_DMAR_FEADDR_REG] =
|
|
readl(iommu->reg + DMAR_FEADDR_REG);
|
|
iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
|
|
readl(iommu->reg + DMAR_FEUADDR_REG);
|
|
|
|
raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void iommu_resume(void)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
struct intel_iommu *iommu = NULL;
|
|
unsigned long flag;
|
|
|
|
if (init_iommu_hw()) {
|
|
if (force_on)
|
|
panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
|
|
else
|
|
WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
|
|
return;
|
|
}
|
|
|
|
for_each_active_iommu(iommu, drhd) {
|
|
|
|
raw_spin_lock_irqsave(&iommu->register_lock, flag);
|
|
|
|
writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
|
|
iommu->reg + DMAR_FECTL_REG);
|
|
writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
|
|
iommu->reg + DMAR_FEDATA_REG);
|
|
writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
|
|
iommu->reg + DMAR_FEADDR_REG);
|
|
writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
|
|
iommu->reg + DMAR_FEUADDR_REG);
|
|
|
|
raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
}
|
|
}
|
|
|
|
static struct syscore_ops iommu_syscore_ops = {
|
|
.resume = iommu_resume,
|
|
.suspend = iommu_suspend,
|
|
};
|
|
|
|
static void __init init_iommu_pm_ops(void)
|
|
{
|
|
register_syscore_ops(&iommu_syscore_ops);
|
|
}
|
|
|
|
#else
|
|
static inline void init_iommu_pm_ops(void) {}
|
|
#endif /* CONFIG_PM */
|
|
|
|
static int __init rmrr_sanity_check(struct acpi_dmar_reserved_memory *rmrr)
|
|
{
|
|
if (!IS_ALIGNED(rmrr->base_address, PAGE_SIZE) ||
|
|
!IS_ALIGNED(rmrr->end_address + 1, PAGE_SIZE) ||
|
|
rmrr->end_address <= rmrr->base_address ||
|
|
arch_rmrr_sanity_check(rmrr))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
|
|
{
|
|
struct acpi_dmar_reserved_memory *rmrr;
|
|
struct dmar_rmrr_unit *rmrru;
|
|
|
|
rmrr = (struct acpi_dmar_reserved_memory *)header;
|
|
if (rmrr_sanity_check(rmrr)) {
|
|
pr_warn(FW_BUG
|
|
"Your BIOS is broken; bad RMRR [%#018Lx-%#018Lx]\n"
|
|
"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
|
|
rmrr->base_address, rmrr->end_address,
|
|
dmi_get_system_info(DMI_BIOS_VENDOR),
|
|
dmi_get_system_info(DMI_BIOS_VERSION),
|
|
dmi_get_system_info(DMI_PRODUCT_VERSION));
|
|
add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
|
|
}
|
|
|
|
rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
|
|
if (!rmrru)
|
|
goto out;
|
|
|
|
rmrru->hdr = header;
|
|
|
|
rmrru->base_address = rmrr->base_address;
|
|
rmrru->end_address = rmrr->end_address;
|
|
|
|
rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
|
|
((void *)rmrr) + rmrr->header.length,
|
|
&rmrru->devices_cnt);
|
|
if (rmrru->devices_cnt && rmrru->devices == NULL)
|
|
goto free_rmrru;
|
|
|
|
list_add(&rmrru->list, &dmar_rmrr_units);
|
|
|
|
return 0;
|
|
free_rmrru:
|
|
kfree(rmrru);
|
|
out:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
|
|
{
|
|
struct dmar_atsr_unit *atsru;
|
|
struct acpi_dmar_atsr *tmp;
|
|
|
|
list_for_each_entry_rcu(atsru, &dmar_atsr_units, list,
|
|
dmar_rcu_check()) {
|
|
tmp = (struct acpi_dmar_atsr *)atsru->hdr;
|
|
if (atsr->segment != tmp->segment)
|
|
continue;
|
|
if (atsr->header.length != tmp->header.length)
|
|
continue;
|
|
if (memcmp(atsr, tmp, atsr->header.length) == 0)
|
|
return atsru;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
|
|
{
|
|
struct acpi_dmar_atsr *atsr;
|
|
struct dmar_atsr_unit *atsru;
|
|
|
|
if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled)
|
|
return 0;
|
|
|
|
atsr = container_of(hdr, struct acpi_dmar_atsr, header);
|
|
atsru = dmar_find_atsr(atsr);
|
|
if (atsru)
|
|
return 0;
|
|
|
|
atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
|
|
if (!atsru)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* If memory is allocated from slab by ACPI _DSM method, we need to
|
|
* copy the memory content because the memory buffer will be freed
|
|
* on return.
|
|
*/
|
|
atsru->hdr = (void *)(atsru + 1);
|
|
memcpy(atsru->hdr, hdr, hdr->length);
|
|
atsru->include_all = atsr->flags & 0x1;
|
|
if (!atsru->include_all) {
|
|
atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
|
|
(void *)atsr + atsr->header.length,
|
|
&atsru->devices_cnt);
|
|
if (atsru->devices_cnt && atsru->devices == NULL) {
|
|
kfree(atsru);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
list_add_rcu(&atsru->list, &dmar_atsr_units);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
|
|
{
|
|
dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
|
|
kfree(atsru);
|
|
}
|
|
|
|
int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
|
|
{
|
|
struct acpi_dmar_atsr *atsr;
|
|
struct dmar_atsr_unit *atsru;
|
|
|
|
atsr = container_of(hdr, struct acpi_dmar_atsr, header);
|
|
atsru = dmar_find_atsr(atsr);
|
|
if (atsru) {
|
|
list_del_rcu(&atsru->list);
|
|
synchronize_rcu();
|
|
intel_iommu_free_atsr(atsru);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
|
|
{
|
|
int i;
|
|
struct device *dev;
|
|
struct acpi_dmar_atsr *atsr;
|
|
struct dmar_atsr_unit *atsru;
|
|
|
|
atsr = container_of(hdr, struct acpi_dmar_atsr, header);
|
|
atsru = dmar_find_atsr(atsr);
|
|
if (!atsru)
|
|
return 0;
|
|
|
|
if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
|
|
for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
|
|
i, dev)
|
|
return -EBUSY;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct dmar_satc_unit *dmar_find_satc(struct acpi_dmar_satc *satc)
|
|
{
|
|
struct dmar_satc_unit *satcu;
|
|
struct acpi_dmar_satc *tmp;
|
|
|
|
list_for_each_entry_rcu(satcu, &dmar_satc_units, list,
|
|
dmar_rcu_check()) {
|
|
tmp = (struct acpi_dmar_satc *)satcu->hdr;
|
|
if (satc->segment != tmp->segment)
|
|
continue;
|
|
if (satc->header.length != tmp->header.length)
|
|
continue;
|
|
if (memcmp(satc, tmp, satc->header.length) == 0)
|
|
return satcu;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
int dmar_parse_one_satc(struct acpi_dmar_header *hdr, void *arg)
|
|
{
|
|
struct acpi_dmar_satc *satc;
|
|
struct dmar_satc_unit *satcu;
|
|
|
|
if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled)
|
|
return 0;
|
|
|
|
satc = container_of(hdr, struct acpi_dmar_satc, header);
|
|
satcu = dmar_find_satc(satc);
|
|
if (satcu)
|
|
return 0;
|
|
|
|
satcu = kzalloc(sizeof(*satcu) + hdr->length, GFP_KERNEL);
|
|
if (!satcu)
|
|
return -ENOMEM;
|
|
|
|
satcu->hdr = (void *)(satcu + 1);
|
|
memcpy(satcu->hdr, hdr, hdr->length);
|
|
satcu->atc_required = satc->flags & 0x1;
|
|
satcu->devices = dmar_alloc_dev_scope((void *)(satc + 1),
|
|
(void *)satc + satc->header.length,
|
|
&satcu->devices_cnt);
|
|
if (satcu->devices_cnt && !satcu->devices) {
|
|
kfree(satcu);
|
|
return -ENOMEM;
|
|
}
|
|
list_add_rcu(&satcu->list, &dmar_satc_units);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
|
|
{
|
|
int sp, ret;
|
|
struct intel_iommu *iommu = dmaru->iommu;
|
|
|
|
ret = intel_cap_audit(CAP_AUDIT_HOTPLUG_DMAR, iommu);
|
|
if (ret)
|
|
goto out;
|
|
|
|
sp = domain_update_iommu_superpage(NULL, iommu) - 1;
|
|
if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
|
|
pr_warn("%s: Doesn't support large page.\n",
|
|
iommu->name);
|
|
return -ENXIO;
|
|
}
|
|
|
|
/*
|
|
* Disable translation if already enabled prior to OS handover.
|
|
*/
|
|
if (iommu->gcmd & DMA_GCMD_TE)
|
|
iommu_disable_translation(iommu);
|
|
|
|
ret = iommu_init_domains(iommu);
|
|
if (ret == 0)
|
|
ret = iommu_alloc_root_entry(iommu);
|
|
if (ret)
|
|
goto out;
|
|
|
|
intel_svm_check(iommu);
|
|
|
|
if (dmaru->ignored) {
|
|
/*
|
|
* we always have to disable PMRs or DMA may fail on this device
|
|
*/
|
|
if (force_on)
|
|
iommu_disable_protect_mem_regions(iommu);
|
|
return 0;
|
|
}
|
|
|
|
intel_iommu_init_qi(iommu);
|
|
iommu_flush_write_buffer(iommu);
|
|
|
|
#ifdef CONFIG_INTEL_IOMMU_SVM
|
|
if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
|
|
ret = intel_svm_enable_prq(iommu);
|
|
if (ret)
|
|
goto disable_iommu;
|
|
}
|
|
#endif
|
|
ret = dmar_set_interrupt(iommu);
|
|
if (ret)
|
|
goto disable_iommu;
|
|
|
|
iommu_set_root_entry(iommu);
|
|
iommu_enable_translation(iommu);
|
|
|
|
iommu_disable_protect_mem_regions(iommu);
|
|
return 0;
|
|
|
|
disable_iommu:
|
|
disable_dmar_iommu(iommu);
|
|
out:
|
|
free_dmar_iommu(iommu);
|
|
return ret;
|
|
}
|
|
|
|
int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
|
|
{
|
|
int ret = 0;
|
|
struct intel_iommu *iommu = dmaru->iommu;
|
|
|
|
if (!intel_iommu_enabled)
|
|
return 0;
|
|
if (iommu == NULL)
|
|
return -EINVAL;
|
|
|
|
if (insert) {
|
|
ret = intel_iommu_add(dmaru);
|
|
} else {
|
|
disable_dmar_iommu(iommu);
|
|
free_dmar_iommu(iommu);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void intel_iommu_free_dmars(void)
|
|
{
|
|
struct dmar_rmrr_unit *rmrru, *rmrr_n;
|
|
struct dmar_atsr_unit *atsru, *atsr_n;
|
|
struct dmar_satc_unit *satcu, *satc_n;
|
|
|
|
list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
|
|
list_del(&rmrru->list);
|
|
dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
|
|
kfree(rmrru);
|
|
}
|
|
|
|
list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
|
|
list_del(&atsru->list);
|
|
intel_iommu_free_atsr(atsru);
|
|
}
|
|
list_for_each_entry_safe(satcu, satc_n, &dmar_satc_units, list) {
|
|
list_del(&satcu->list);
|
|
dmar_free_dev_scope(&satcu->devices, &satcu->devices_cnt);
|
|
kfree(satcu);
|
|
}
|
|
}
|
|
|
|
static struct dmar_satc_unit *dmar_find_matched_satc_unit(struct pci_dev *dev)
|
|
{
|
|
struct dmar_satc_unit *satcu;
|
|
struct acpi_dmar_satc *satc;
|
|
struct device *tmp;
|
|
int i;
|
|
|
|
dev = pci_physfn(dev);
|
|
rcu_read_lock();
|
|
|
|
list_for_each_entry_rcu(satcu, &dmar_satc_units, list) {
|
|
satc = container_of(satcu->hdr, struct acpi_dmar_satc, header);
|
|
if (satc->segment != pci_domain_nr(dev->bus))
|
|
continue;
|
|
for_each_dev_scope(satcu->devices, satcu->devices_cnt, i, tmp)
|
|
if (to_pci_dev(tmp) == dev)
|
|
goto out;
|
|
}
|
|
satcu = NULL;
|
|
out:
|
|
rcu_read_unlock();
|
|
return satcu;
|
|
}
|
|
|
|
static int dmar_ats_supported(struct pci_dev *dev, struct intel_iommu *iommu)
|
|
{
|
|
int i, ret = 1;
|
|
struct pci_bus *bus;
|
|
struct pci_dev *bridge = NULL;
|
|
struct device *tmp;
|
|
struct acpi_dmar_atsr *atsr;
|
|
struct dmar_atsr_unit *atsru;
|
|
struct dmar_satc_unit *satcu;
|
|
|
|
dev = pci_physfn(dev);
|
|
satcu = dmar_find_matched_satc_unit(dev);
|
|
if (satcu)
|
|
/*
|
|
* This device supports ATS as it is in SATC table.
|
|
* When IOMMU is in legacy mode, enabling ATS is done
|
|
* automatically by HW for the device that requires
|
|
* ATS, hence OS should not enable this device ATS
|
|
* to avoid duplicated TLB invalidation.
|
|
*/
|
|
return !(satcu->atc_required && !sm_supported(iommu));
|
|
|
|
for (bus = dev->bus; bus; bus = bus->parent) {
|
|
bridge = bus->self;
|
|
/* If it's an integrated device, allow ATS */
|
|
if (!bridge)
|
|
return 1;
|
|
/* Connected via non-PCIe: no ATS */
|
|
if (!pci_is_pcie(bridge) ||
|
|
pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
|
|
return 0;
|
|
/* If we found the root port, look it up in the ATSR */
|
|
if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
|
|
break;
|
|
}
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
|
|
atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
|
|
if (atsr->segment != pci_domain_nr(dev->bus))
|
|
continue;
|
|
|
|
for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
|
|
if (tmp == &bridge->dev)
|
|
goto out;
|
|
|
|
if (atsru->include_all)
|
|
goto out;
|
|
}
|
|
ret = 0;
|
|
out:
|
|
rcu_read_unlock();
|
|
|
|
return ret;
|
|
}
|
|
|
|
int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
|
|
{
|
|
int ret;
|
|
struct dmar_rmrr_unit *rmrru;
|
|
struct dmar_atsr_unit *atsru;
|
|
struct dmar_satc_unit *satcu;
|
|
struct acpi_dmar_atsr *atsr;
|
|
struct acpi_dmar_reserved_memory *rmrr;
|
|
struct acpi_dmar_satc *satc;
|
|
|
|
if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING)
|
|
return 0;
|
|
|
|
list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
|
|
rmrr = container_of(rmrru->hdr,
|
|
struct acpi_dmar_reserved_memory, header);
|
|
if (info->event == BUS_NOTIFY_ADD_DEVICE) {
|
|
ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
|
|
((void *)rmrr) + rmrr->header.length,
|
|
rmrr->segment, rmrru->devices,
|
|
rmrru->devices_cnt);
|
|
if (ret < 0)
|
|
return ret;
|
|
} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
|
|
dmar_remove_dev_scope(info, rmrr->segment,
|
|
rmrru->devices, rmrru->devices_cnt);
|
|
}
|
|
}
|
|
|
|
list_for_each_entry(atsru, &dmar_atsr_units, list) {
|
|
if (atsru->include_all)
|
|
continue;
|
|
|
|
atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
|
|
if (info->event == BUS_NOTIFY_ADD_DEVICE) {
|
|
ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
|
|
(void *)atsr + atsr->header.length,
|
|
atsr->segment, atsru->devices,
|
|
atsru->devices_cnt);
|
|
if (ret > 0)
|
|
break;
|
|
else if (ret < 0)
|
|
return ret;
|
|
} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
|
|
if (dmar_remove_dev_scope(info, atsr->segment,
|
|
atsru->devices, atsru->devices_cnt))
|
|
break;
|
|
}
|
|
}
|
|
list_for_each_entry(satcu, &dmar_satc_units, list) {
|
|
satc = container_of(satcu->hdr, struct acpi_dmar_satc, header);
|
|
if (info->event == BUS_NOTIFY_ADD_DEVICE) {
|
|
ret = dmar_insert_dev_scope(info, (void *)(satc + 1),
|
|
(void *)satc + satc->header.length,
|
|
satc->segment, satcu->devices,
|
|
satcu->devices_cnt);
|
|
if (ret > 0)
|
|
break;
|
|
else if (ret < 0)
|
|
return ret;
|
|
} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
|
|
if (dmar_remove_dev_scope(info, satc->segment,
|
|
satcu->devices, satcu->devices_cnt))
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void intel_disable_iommus(void)
|
|
{
|
|
struct intel_iommu *iommu = NULL;
|
|
struct dmar_drhd_unit *drhd;
|
|
|
|
for_each_iommu(iommu, drhd)
|
|
iommu_disable_translation(iommu);
|
|
}
|
|
|
|
void intel_iommu_shutdown(void)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
struct intel_iommu *iommu = NULL;
|
|
|
|
if (no_iommu || dmar_disabled)
|
|
return;
|
|
|
|
down_write(&dmar_global_lock);
|
|
|
|
/* Disable PMRs explicitly here. */
|
|
for_each_iommu(iommu, drhd)
|
|
iommu_disable_protect_mem_regions(iommu);
|
|
|
|
/* Make sure the IOMMUs are switched off */
|
|
intel_disable_iommus();
|
|
|
|
up_write(&dmar_global_lock);
|
|
}
|
|
|
|
static struct intel_iommu *dev_to_intel_iommu(struct device *dev)
|
|
{
|
|
struct iommu_device *iommu_dev = dev_to_iommu_device(dev);
|
|
|
|
return container_of(iommu_dev, struct intel_iommu, iommu);
|
|
}
|
|
|
|
static ssize_t version_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct intel_iommu *iommu = dev_to_intel_iommu(dev);
|
|
u32 ver = readl(iommu->reg + DMAR_VER_REG);
|
|
return sysfs_emit(buf, "%d:%d\n",
|
|
DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
|
|
}
|
|
static DEVICE_ATTR_RO(version);
|
|
|
|
static ssize_t address_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct intel_iommu *iommu = dev_to_intel_iommu(dev);
|
|
return sysfs_emit(buf, "%llx\n", iommu->reg_phys);
|
|
}
|
|
static DEVICE_ATTR_RO(address);
|
|
|
|
static ssize_t cap_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct intel_iommu *iommu = dev_to_intel_iommu(dev);
|
|
return sysfs_emit(buf, "%llx\n", iommu->cap);
|
|
}
|
|
static DEVICE_ATTR_RO(cap);
|
|
|
|
static ssize_t ecap_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct intel_iommu *iommu = dev_to_intel_iommu(dev);
|
|
return sysfs_emit(buf, "%llx\n", iommu->ecap);
|
|
}
|
|
static DEVICE_ATTR_RO(ecap);
|
|
|
|
static ssize_t domains_supported_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct intel_iommu *iommu = dev_to_intel_iommu(dev);
|
|
return sysfs_emit(buf, "%ld\n", cap_ndoms(iommu->cap));
|
|
}
|
|
static DEVICE_ATTR_RO(domains_supported);
|
|
|
|
static ssize_t domains_used_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct intel_iommu *iommu = dev_to_intel_iommu(dev);
|
|
return sysfs_emit(buf, "%d\n",
|
|
bitmap_weight(iommu->domain_ids,
|
|
cap_ndoms(iommu->cap)));
|
|
}
|
|
static DEVICE_ATTR_RO(domains_used);
|
|
|
|
static struct attribute *intel_iommu_attrs[] = {
|
|
&dev_attr_version.attr,
|
|
&dev_attr_address.attr,
|
|
&dev_attr_cap.attr,
|
|
&dev_attr_ecap.attr,
|
|
&dev_attr_domains_supported.attr,
|
|
&dev_attr_domains_used.attr,
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute_group intel_iommu_group = {
|
|
.name = "intel-iommu",
|
|
.attrs = intel_iommu_attrs,
|
|
};
|
|
|
|
const struct attribute_group *intel_iommu_groups[] = {
|
|
&intel_iommu_group,
|
|
NULL,
|
|
};
|
|
|
|
static bool has_external_pci(void)
|
|
{
|
|
struct pci_dev *pdev = NULL;
|
|
|
|
for_each_pci_dev(pdev)
|
|
if (pdev->external_facing) {
|
|
pci_dev_put(pdev);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static int __init platform_optin_force_iommu(void)
|
|
{
|
|
if (!dmar_platform_optin() || no_platform_optin || !has_external_pci())
|
|
return 0;
|
|
|
|
if (no_iommu || dmar_disabled)
|
|
pr_info("Intel-IOMMU force enabled due to platform opt in\n");
|
|
|
|
/*
|
|
* If Intel-IOMMU is disabled by default, we will apply identity
|
|
* map for all devices except those marked as being untrusted.
|
|
*/
|
|
if (dmar_disabled)
|
|
iommu_set_default_passthrough(false);
|
|
|
|
dmar_disabled = 0;
|
|
no_iommu = 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int __init probe_acpi_namespace_devices(void)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
/* To avoid a -Wunused-but-set-variable warning. */
|
|
struct intel_iommu *iommu __maybe_unused;
|
|
struct device *dev;
|
|
int i, ret = 0;
|
|
|
|
for_each_active_iommu(iommu, drhd) {
|
|
for_each_active_dev_scope(drhd->devices,
|
|
drhd->devices_cnt, i, dev) {
|
|
struct acpi_device_physical_node *pn;
|
|
struct acpi_device *adev;
|
|
|
|
if (dev->bus != &acpi_bus_type)
|
|
continue;
|
|
|
|
adev = to_acpi_device(dev);
|
|
mutex_lock(&adev->physical_node_lock);
|
|
list_for_each_entry(pn,
|
|
&adev->physical_node_list, node) {
|
|
ret = iommu_probe_device(pn->dev);
|
|
if (ret)
|
|
break;
|
|
}
|
|
mutex_unlock(&adev->physical_node_lock);
|
|
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __init int tboot_force_iommu(void)
|
|
{
|
|
if (!tboot_enabled())
|
|
return 0;
|
|
|
|
if (no_iommu || dmar_disabled)
|
|
pr_warn("Forcing Intel-IOMMU to enabled\n");
|
|
|
|
dmar_disabled = 0;
|
|
no_iommu = 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int __init intel_iommu_init(void)
|
|
{
|
|
int ret = -ENODEV;
|
|
struct dmar_drhd_unit *drhd;
|
|
struct intel_iommu *iommu;
|
|
|
|
/*
|
|
* Intel IOMMU is required for a TXT/tboot launch or platform
|
|
* opt in, so enforce that.
|
|
*/
|
|
force_on = (!intel_iommu_tboot_noforce && tboot_force_iommu()) ||
|
|
platform_optin_force_iommu();
|
|
|
|
down_write(&dmar_global_lock);
|
|
if (dmar_table_init()) {
|
|
if (force_on)
|
|
panic("tboot: Failed to initialize DMAR table\n");
|
|
goto out_free_dmar;
|
|
}
|
|
|
|
if (dmar_dev_scope_init() < 0) {
|
|
if (force_on)
|
|
panic("tboot: Failed to initialize DMAR device scope\n");
|
|
goto out_free_dmar;
|
|
}
|
|
|
|
up_write(&dmar_global_lock);
|
|
|
|
/*
|
|
* The bus notifier takes the dmar_global_lock, so lockdep will
|
|
* complain later when we register it under the lock.
|
|
*/
|
|
dmar_register_bus_notifier();
|
|
|
|
down_write(&dmar_global_lock);
|
|
|
|
if (!no_iommu)
|
|
intel_iommu_debugfs_init();
|
|
|
|
if (no_iommu || dmar_disabled) {
|
|
/*
|
|
* We exit the function here to ensure IOMMU's remapping and
|
|
* mempool aren't setup, which means that the IOMMU's PMRs
|
|
* won't be disabled via the call to init_dmars(). So disable
|
|
* it explicitly here. The PMRs were setup by tboot prior to
|
|
* calling SENTER, but the kernel is expected to reset/tear
|
|
* down the PMRs.
|
|
*/
|
|
if (intel_iommu_tboot_noforce) {
|
|
for_each_iommu(iommu, drhd)
|
|
iommu_disable_protect_mem_regions(iommu);
|
|
}
|
|
|
|
/*
|
|
* Make sure the IOMMUs are switched off, even when we
|
|
* boot into a kexec kernel and the previous kernel left
|
|
* them enabled
|
|
*/
|
|
intel_disable_iommus();
|
|
goto out_free_dmar;
|
|
}
|
|
|
|
if (list_empty(&dmar_rmrr_units))
|
|
pr_info("No RMRR found\n");
|
|
|
|
if (list_empty(&dmar_atsr_units))
|
|
pr_info("No ATSR found\n");
|
|
|
|
if (list_empty(&dmar_satc_units))
|
|
pr_info("No SATC found\n");
|
|
|
|
init_no_remapping_devices();
|
|
|
|
ret = init_dmars();
|
|
if (ret) {
|
|
if (force_on)
|
|
panic("tboot: Failed to initialize DMARs\n");
|
|
pr_err("Initialization failed\n");
|
|
goto out_free_dmar;
|
|
}
|
|
up_write(&dmar_global_lock);
|
|
|
|
init_iommu_pm_ops();
|
|
|
|
down_read(&dmar_global_lock);
|
|
for_each_active_iommu(iommu, drhd) {
|
|
/*
|
|
* The flush queue implementation does not perform
|
|
* page-selective invalidations that are required for efficient
|
|
* TLB flushes in virtual environments. The benefit of batching
|
|
* is likely to be much lower than the overhead of synchronizing
|
|
* the virtual and physical IOMMU page-tables.
|
|
*/
|
|
if (cap_caching_mode(iommu->cap) &&
|
|
!first_level_by_default(IOMMU_DOMAIN_DMA)) {
|
|
pr_info_once("IOMMU batching disallowed due to virtualization\n");
|
|
iommu_set_dma_strict();
|
|
}
|
|
iommu_device_sysfs_add(&iommu->iommu, NULL,
|
|
intel_iommu_groups,
|
|
"%s", iommu->name);
|
|
iommu_device_register(&iommu->iommu, &intel_iommu_ops, NULL);
|
|
|
|
iommu_pmu_register(iommu);
|
|
}
|
|
|
|
if (probe_acpi_namespace_devices())
|
|
pr_warn("ACPI name space devices didn't probe correctly\n");
|
|
|
|
/* Finally, we enable the DMA remapping hardware. */
|
|
for_each_iommu(iommu, drhd) {
|
|
if (!drhd->ignored && !translation_pre_enabled(iommu))
|
|
iommu_enable_translation(iommu);
|
|
|
|
iommu_disable_protect_mem_regions(iommu);
|
|
}
|
|
up_read(&dmar_global_lock);
|
|
|
|
pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
|
|
|
|
intel_iommu_enabled = 1;
|
|
|
|
return 0;
|
|
|
|
out_free_dmar:
|
|
intel_iommu_free_dmars();
|
|
up_write(&dmar_global_lock);
|
|
return ret;
|
|
}
|
|
|
|
static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
|
|
{
|
|
struct device_domain_info *info = opaque;
|
|
|
|
domain_context_clear_one(info, PCI_BUS_NUM(alias), alias & 0xff);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* NB - intel-iommu lacks any sort of reference counting for the users of
|
|
* dependent devices. If multiple endpoints have intersecting dependent
|
|
* devices, unbinding the driver from any one of them will possibly leave
|
|
* the others unable to operate.
|
|
*/
|
|
static void domain_context_clear(struct device_domain_info *info)
|
|
{
|
|
if (!dev_is_pci(info->dev)) {
|
|
domain_context_clear_one(info, info->bus, info->devfn);
|
|
return;
|
|
}
|
|
|
|
pci_for_each_dma_alias(to_pci_dev(info->dev),
|
|
&domain_context_clear_one_cb, info);
|
|
}
|
|
|
|
/*
|
|
* Clear the page table pointer in context or pasid table entries so that
|
|
* all DMA requests without PASID from the device are blocked. If the page
|
|
* table has been set, clean up the data structures.
|
|
*/
|
|
void device_block_translation(struct device *dev)
|
|
{
|
|
struct device_domain_info *info = dev_iommu_priv_get(dev);
|
|
struct intel_iommu *iommu = info->iommu;
|
|
unsigned long flags;
|
|
|
|
iommu_disable_pci_caps(info);
|
|
if (!dev_is_real_dma_subdevice(dev)) {
|
|
if (sm_supported(iommu))
|
|
intel_pasid_tear_down_entry(iommu, dev,
|
|
IOMMU_NO_PASID, false);
|
|
else
|
|
domain_context_clear(info);
|
|
}
|
|
|
|
if (!info->domain)
|
|
return;
|
|
|
|
spin_lock_irqsave(&info->domain->lock, flags);
|
|
list_del(&info->link);
|
|
spin_unlock_irqrestore(&info->domain->lock, flags);
|
|
|
|
cache_tag_unassign_domain(info->domain, dev, IOMMU_NO_PASID);
|
|
domain_detach_iommu(info->domain, iommu);
|
|
info->domain = NULL;
|
|
}
|
|
|
|
static int md_domain_init(struct dmar_domain *domain, int guest_width)
|
|
{
|
|
int adjust_width;
|
|
|
|
/* calculate AGAW */
|
|
domain->gaw = guest_width;
|
|
adjust_width = guestwidth_to_adjustwidth(guest_width);
|
|
domain->agaw = width_to_agaw(adjust_width);
|
|
|
|
domain->iommu_coherency = false;
|
|
domain->iommu_superpage = 0;
|
|
domain->max_addr = 0;
|
|
|
|
/* always allocate the top pgd */
|
|
domain->pgd = iommu_alloc_page_node(domain->nid, GFP_ATOMIC);
|
|
if (!domain->pgd)
|
|
return -ENOMEM;
|
|
domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
|
|
return 0;
|
|
}
|
|
|
|
static int blocking_domain_attach_dev(struct iommu_domain *domain,
|
|
struct device *dev)
|
|
{
|
|
device_block_translation(dev);
|
|
return 0;
|
|
}
|
|
|
|
static struct iommu_domain blocking_domain = {
|
|
.type = IOMMU_DOMAIN_BLOCKED,
|
|
.ops = &(const struct iommu_domain_ops) {
|
|
.attach_dev = blocking_domain_attach_dev,
|
|
}
|
|
};
|
|
|
|
static int iommu_superpage_capability(struct intel_iommu *iommu, bool first_stage)
|
|
{
|
|
if (!intel_iommu_superpage)
|
|
return 0;
|
|
|
|
if (first_stage)
|
|
return cap_fl1gp_support(iommu->cap) ? 2 : 1;
|
|
|
|
return fls(cap_super_page_val(iommu->cap));
|
|
}
|
|
|
|
static struct dmar_domain *paging_domain_alloc(struct device *dev, bool first_stage)
|
|
{
|
|
struct device_domain_info *info = dev_iommu_priv_get(dev);
|
|
struct intel_iommu *iommu = info->iommu;
|
|
struct dmar_domain *domain;
|
|
int addr_width;
|
|
|
|
domain = kzalloc(sizeof(*domain), GFP_KERNEL);
|
|
if (!domain)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
INIT_LIST_HEAD(&domain->devices);
|
|
INIT_LIST_HEAD(&domain->dev_pasids);
|
|
INIT_LIST_HEAD(&domain->cache_tags);
|
|
spin_lock_init(&domain->lock);
|
|
spin_lock_init(&domain->cache_lock);
|
|
xa_init(&domain->iommu_array);
|
|
|
|
domain->nid = dev_to_node(dev);
|
|
domain->use_first_level = first_stage;
|
|
|
|
/* calculate the address width */
|
|
addr_width = agaw_to_width(iommu->agaw);
|
|
if (addr_width > cap_mgaw(iommu->cap))
|
|
addr_width = cap_mgaw(iommu->cap);
|
|
domain->gaw = addr_width;
|
|
domain->agaw = iommu->agaw;
|
|
domain->max_addr = __DOMAIN_MAX_ADDR(addr_width);
|
|
|
|
/* iommu memory access coherency */
|
|
domain->iommu_coherency = iommu_paging_structure_coherency(iommu);
|
|
|
|
/* pagesize bitmap */
|
|
domain->domain.pgsize_bitmap = SZ_4K;
|
|
domain->iommu_superpage = iommu_superpage_capability(iommu, first_stage);
|
|
domain->domain.pgsize_bitmap |= domain_super_pgsize_bitmap(domain);
|
|
|
|
/*
|
|
* IOVA aperture: First-level translation restricts the input-address
|
|
* to a canonical address (i.e., address bits 63:N have the same value
|
|
* as address bit [N-1], where N is 48-bits with 4-level paging and
|
|
* 57-bits with 5-level paging). Hence, skip bit [N-1].
|
|
*/
|
|
domain->domain.geometry.force_aperture = true;
|
|
domain->domain.geometry.aperture_start = 0;
|
|
if (first_stage)
|
|
domain->domain.geometry.aperture_end = __DOMAIN_MAX_ADDR(domain->gaw - 1);
|
|
else
|
|
domain->domain.geometry.aperture_end = __DOMAIN_MAX_ADDR(domain->gaw);
|
|
|
|
/* always allocate the top pgd */
|
|
domain->pgd = iommu_alloc_page_node(domain->nid, GFP_KERNEL);
|
|
if (!domain->pgd) {
|
|
kfree(domain);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
|
|
|
|
return domain;
|
|
}
|
|
|
|
static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
|
|
{
|
|
struct dmar_domain *dmar_domain;
|
|
struct iommu_domain *domain;
|
|
|
|
switch (type) {
|
|
case IOMMU_DOMAIN_DMA:
|
|
case IOMMU_DOMAIN_UNMANAGED:
|
|
dmar_domain = alloc_domain(type);
|
|
if (!dmar_domain) {
|
|
pr_err("Can't allocate dmar_domain\n");
|
|
return NULL;
|
|
}
|
|
if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
|
|
pr_err("Domain initialization failed\n");
|
|
domain_exit(dmar_domain);
|
|
return NULL;
|
|
}
|
|
|
|
domain = &dmar_domain->domain;
|
|
domain->geometry.aperture_start = 0;
|
|
domain->geometry.aperture_end =
|
|
__DOMAIN_MAX_ADDR(dmar_domain->gaw);
|
|
domain->geometry.force_aperture = true;
|
|
|
|
return domain;
|
|
default:
|
|
return NULL;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static struct iommu_domain *
|
|
intel_iommu_domain_alloc_user(struct device *dev, u32 flags,
|
|
struct iommu_domain *parent,
|
|
const struct iommu_user_data *user_data)
|
|
{
|
|
struct device_domain_info *info = dev_iommu_priv_get(dev);
|
|
bool dirty_tracking = flags & IOMMU_HWPT_ALLOC_DIRTY_TRACKING;
|
|
bool nested_parent = flags & IOMMU_HWPT_ALLOC_NEST_PARENT;
|
|
struct intel_iommu *iommu = info->iommu;
|
|
struct dmar_domain *dmar_domain;
|
|
struct iommu_domain *domain;
|
|
|
|
/* Must be NESTING domain */
|
|
if (parent) {
|
|
if (!nested_supported(iommu) || flags)
|
|
return ERR_PTR(-EOPNOTSUPP);
|
|
return intel_nested_domain_alloc(parent, user_data);
|
|
}
|
|
|
|
if (flags &
|
|
(~(IOMMU_HWPT_ALLOC_NEST_PARENT | IOMMU_HWPT_ALLOC_DIRTY_TRACKING)))
|
|
return ERR_PTR(-EOPNOTSUPP);
|
|
if (nested_parent && !nested_supported(iommu))
|
|
return ERR_PTR(-EOPNOTSUPP);
|
|
if (user_data || (dirty_tracking && !ssads_supported(iommu)))
|
|
return ERR_PTR(-EOPNOTSUPP);
|
|
|
|
/* Do not use first stage for user domain translation. */
|
|
dmar_domain = paging_domain_alloc(dev, false);
|
|
if (IS_ERR(dmar_domain))
|
|
return ERR_CAST(dmar_domain);
|
|
domain = &dmar_domain->domain;
|
|
domain->type = IOMMU_DOMAIN_UNMANAGED;
|
|
domain->owner = &intel_iommu_ops;
|
|
domain->ops = intel_iommu_ops.default_domain_ops;
|
|
|
|
if (nested_parent) {
|
|
dmar_domain->nested_parent = true;
|
|
INIT_LIST_HEAD(&dmar_domain->s1_domains);
|
|
spin_lock_init(&dmar_domain->s1_lock);
|
|
}
|
|
|
|
if (dirty_tracking) {
|
|
if (dmar_domain->use_first_level) {
|
|
iommu_domain_free(domain);
|
|
return ERR_PTR(-EOPNOTSUPP);
|
|
}
|
|
domain->dirty_ops = &intel_dirty_ops;
|
|
}
|
|
|
|
return domain;
|
|
}
|
|
|
|
static void intel_iommu_domain_free(struct iommu_domain *domain)
|
|
{
|
|
struct dmar_domain *dmar_domain = to_dmar_domain(domain);
|
|
|
|
WARN_ON(dmar_domain->nested_parent &&
|
|
!list_empty(&dmar_domain->s1_domains));
|
|
domain_exit(dmar_domain);
|
|
}
|
|
|
|
int prepare_domain_attach_device(struct iommu_domain *domain,
|
|
struct device *dev)
|
|
{
|
|
struct device_domain_info *info = dev_iommu_priv_get(dev);
|
|
struct dmar_domain *dmar_domain = to_dmar_domain(domain);
|
|
struct intel_iommu *iommu = info->iommu;
|
|
int addr_width;
|
|
|
|
if (dmar_domain->force_snooping && !ecap_sc_support(iommu->ecap))
|
|
return -EINVAL;
|
|
|
|
if (domain->dirty_ops && !ssads_supported(iommu))
|
|
return -EINVAL;
|
|
|
|
/* check if this iommu agaw is sufficient for max mapped address */
|
|
addr_width = agaw_to_width(iommu->agaw);
|
|
if (addr_width > cap_mgaw(iommu->cap))
|
|
addr_width = cap_mgaw(iommu->cap);
|
|
|
|
if (dmar_domain->max_addr > (1LL << addr_width))
|
|
return -EINVAL;
|
|
dmar_domain->gaw = addr_width;
|
|
|
|
/*
|
|
* Knock out extra levels of page tables if necessary
|
|
*/
|
|
while (iommu->agaw < dmar_domain->agaw) {
|
|
struct dma_pte *pte;
|
|
|
|
pte = dmar_domain->pgd;
|
|
if (dma_pte_present(pte)) {
|
|
dmar_domain->pgd = phys_to_virt(dma_pte_addr(pte));
|
|
iommu_free_page(pte);
|
|
}
|
|
dmar_domain->agaw--;
|
|
}
|
|
|
|
if (sm_supported(iommu) && !dev_is_real_dma_subdevice(dev) &&
|
|
context_copied(iommu, info->bus, info->devfn))
|
|
return intel_pasid_setup_sm_context(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int intel_iommu_attach_device(struct iommu_domain *domain,
|
|
struct device *dev)
|
|
{
|
|
int ret;
|
|
|
|
device_block_translation(dev);
|
|
|
|
ret = prepare_domain_attach_device(domain, dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return dmar_domain_attach_device(to_dmar_domain(domain), dev);
|
|
}
|
|
|
|
static int intel_iommu_map(struct iommu_domain *domain,
|
|
unsigned long iova, phys_addr_t hpa,
|
|
size_t size, int iommu_prot, gfp_t gfp)
|
|
{
|
|
struct dmar_domain *dmar_domain = to_dmar_domain(domain);
|
|
u64 max_addr;
|
|
int prot = 0;
|
|
|
|
if (iommu_prot & IOMMU_READ)
|
|
prot |= DMA_PTE_READ;
|
|
if (iommu_prot & IOMMU_WRITE)
|
|
prot |= DMA_PTE_WRITE;
|
|
if (dmar_domain->set_pte_snp)
|
|
prot |= DMA_PTE_SNP;
|
|
|
|
max_addr = iova + size;
|
|
if (dmar_domain->max_addr < max_addr) {
|
|
u64 end;
|
|
|
|
/* check if minimum agaw is sufficient for mapped address */
|
|
end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
|
|
if (end < max_addr) {
|
|
pr_err("%s: iommu width (%d) is not "
|
|
"sufficient for the mapped address (%llx)\n",
|
|
__func__, dmar_domain->gaw, max_addr);
|
|
return -EFAULT;
|
|
}
|
|
dmar_domain->max_addr = max_addr;
|
|
}
|
|
/* Round up size to next multiple of PAGE_SIZE, if it and
|
|
the low bits of hpa would take us onto the next page */
|
|
size = aligned_nrpages(hpa, size);
|
|
return __domain_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
|
|
hpa >> VTD_PAGE_SHIFT, size, prot, gfp);
|
|
}
|
|
|
|
static int intel_iommu_map_pages(struct iommu_domain *domain,
|
|
unsigned long iova, phys_addr_t paddr,
|
|
size_t pgsize, size_t pgcount,
|
|
int prot, gfp_t gfp, size_t *mapped)
|
|
{
|
|
unsigned long pgshift = __ffs(pgsize);
|
|
size_t size = pgcount << pgshift;
|
|
int ret;
|
|
|
|
if (pgsize != SZ_4K && pgsize != SZ_2M && pgsize != SZ_1G)
|
|
return -EINVAL;
|
|
|
|
if (!IS_ALIGNED(iova | paddr, pgsize))
|
|
return -EINVAL;
|
|
|
|
ret = intel_iommu_map(domain, iova, paddr, size, prot, gfp);
|
|
if (!ret && mapped)
|
|
*mapped = size;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static size_t intel_iommu_unmap(struct iommu_domain *domain,
|
|
unsigned long iova, size_t size,
|
|
struct iommu_iotlb_gather *gather)
|
|
{
|
|
struct dmar_domain *dmar_domain = to_dmar_domain(domain);
|
|
unsigned long start_pfn, last_pfn;
|
|
int level = 0;
|
|
|
|
/* Cope with horrid API which requires us to unmap more than the
|
|
size argument if it happens to be a large-page mapping. */
|
|
if (unlikely(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT,
|
|
&level, GFP_ATOMIC)))
|
|
return 0;
|
|
|
|
if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
|
|
size = VTD_PAGE_SIZE << level_to_offset_bits(level);
|
|
|
|
start_pfn = iova >> VTD_PAGE_SHIFT;
|
|
last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
|
|
|
|
domain_unmap(dmar_domain, start_pfn, last_pfn, &gather->freelist);
|
|
|
|
if (dmar_domain->max_addr == iova + size)
|
|
dmar_domain->max_addr = iova;
|
|
|
|
/*
|
|
* We do not use page-selective IOTLB invalidation in flush queue,
|
|
* so there is no need to track page and sync iotlb.
|
|
*/
|
|
if (!iommu_iotlb_gather_queued(gather))
|
|
iommu_iotlb_gather_add_page(domain, gather, iova, size);
|
|
|
|
return size;
|
|
}
|
|
|
|
static size_t intel_iommu_unmap_pages(struct iommu_domain *domain,
|
|
unsigned long iova,
|
|
size_t pgsize, size_t pgcount,
|
|
struct iommu_iotlb_gather *gather)
|
|
{
|
|
unsigned long pgshift = __ffs(pgsize);
|
|
size_t size = pgcount << pgshift;
|
|
|
|
return intel_iommu_unmap(domain, iova, size, gather);
|
|
}
|
|
|
|
static void intel_iommu_tlb_sync(struct iommu_domain *domain,
|
|
struct iommu_iotlb_gather *gather)
|
|
{
|
|
cache_tag_flush_range(to_dmar_domain(domain), gather->start,
|
|
gather->end, list_empty(&gather->freelist));
|
|
iommu_put_pages_list(&gather->freelist);
|
|
}
|
|
|
|
static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
|
|
dma_addr_t iova)
|
|
{
|
|
struct dmar_domain *dmar_domain = to_dmar_domain(domain);
|
|
struct dma_pte *pte;
|
|
int level = 0;
|
|
u64 phys = 0;
|
|
|
|
pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level,
|
|
GFP_ATOMIC);
|
|
if (pte && dma_pte_present(pte))
|
|
phys = dma_pte_addr(pte) +
|
|
(iova & (BIT_MASK(level_to_offset_bits(level) +
|
|
VTD_PAGE_SHIFT) - 1));
|
|
|
|
return phys;
|
|
}
|
|
|
|
static bool domain_support_force_snooping(struct dmar_domain *domain)
|
|
{
|
|
struct device_domain_info *info;
|
|
bool support = true;
|
|
|
|
assert_spin_locked(&domain->lock);
|
|
list_for_each_entry(info, &domain->devices, link) {
|
|
if (!ecap_sc_support(info->iommu->ecap)) {
|
|
support = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return support;
|
|
}
|
|
|
|
static void domain_set_force_snooping(struct dmar_domain *domain)
|
|
{
|
|
struct device_domain_info *info;
|
|
|
|
assert_spin_locked(&domain->lock);
|
|
/*
|
|
* Second level page table supports per-PTE snoop control. The
|
|
* iommu_map() interface will handle this by setting SNP bit.
|
|
*/
|
|
if (!domain->use_first_level) {
|
|
domain->set_pte_snp = true;
|
|
return;
|
|
}
|
|
|
|
list_for_each_entry(info, &domain->devices, link)
|
|
intel_pasid_setup_page_snoop_control(info->iommu, info->dev,
|
|
IOMMU_NO_PASID);
|
|
}
|
|
|
|
static bool intel_iommu_enforce_cache_coherency(struct iommu_domain *domain)
|
|
{
|
|
struct dmar_domain *dmar_domain = to_dmar_domain(domain);
|
|
unsigned long flags;
|
|
|
|
if (dmar_domain->force_snooping)
|
|
return true;
|
|
|
|
spin_lock_irqsave(&dmar_domain->lock, flags);
|
|
if (!domain_support_force_snooping(dmar_domain) ||
|
|
(!dmar_domain->use_first_level && dmar_domain->has_mappings)) {
|
|
spin_unlock_irqrestore(&dmar_domain->lock, flags);
|
|
return false;
|
|
}
|
|
|
|
domain_set_force_snooping(dmar_domain);
|
|
dmar_domain->force_snooping = true;
|
|
spin_unlock_irqrestore(&dmar_domain->lock, flags);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool intel_iommu_capable(struct device *dev, enum iommu_cap cap)
|
|
{
|
|
struct device_domain_info *info = dev_iommu_priv_get(dev);
|
|
|
|
switch (cap) {
|
|
case IOMMU_CAP_CACHE_COHERENCY:
|
|
case IOMMU_CAP_DEFERRED_FLUSH:
|
|
return true;
|
|
case IOMMU_CAP_PRE_BOOT_PROTECTION:
|
|
return dmar_platform_optin();
|
|
case IOMMU_CAP_ENFORCE_CACHE_COHERENCY:
|
|
return ecap_sc_support(info->iommu->ecap);
|
|
case IOMMU_CAP_DIRTY_TRACKING:
|
|
return ssads_supported(info->iommu);
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static struct iommu_device *intel_iommu_probe_device(struct device *dev)
|
|
{
|
|
struct pci_dev *pdev = dev_is_pci(dev) ? to_pci_dev(dev) : NULL;
|
|
struct device_domain_info *info;
|
|
struct intel_iommu *iommu;
|
|
u8 bus, devfn;
|
|
int ret;
|
|
|
|
iommu = device_lookup_iommu(dev, &bus, &devfn);
|
|
if (!iommu || !iommu->iommu.ops)
|
|
return ERR_PTR(-ENODEV);
|
|
|
|
info = kzalloc(sizeof(*info), GFP_KERNEL);
|
|
if (!info)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
if (dev_is_real_dma_subdevice(dev)) {
|
|
info->bus = pdev->bus->number;
|
|
info->devfn = pdev->devfn;
|
|
info->segment = pci_domain_nr(pdev->bus);
|
|
} else {
|
|
info->bus = bus;
|
|
info->devfn = devfn;
|
|
info->segment = iommu->segment;
|
|
}
|
|
|
|
info->dev = dev;
|
|
info->iommu = iommu;
|
|
if (dev_is_pci(dev)) {
|
|
if (ecap_dev_iotlb_support(iommu->ecap) &&
|
|
pci_ats_supported(pdev) &&
|
|
dmar_ats_supported(pdev, iommu)) {
|
|
info->ats_supported = 1;
|
|
info->dtlb_extra_inval = dev_needs_extra_dtlb_flush(pdev);
|
|
|
|
/*
|
|
* For IOMMU that supports device IOTLB throttling
|
|
* (DIT), we assign PFSID to the invalidation desc
|
|
* of a VF such that IOMMU HW can gauge queue depth
|
|
* at PF level. If DIT is not set, PFSID will be
|
|
* treated as reserved, which should be set to 0.
|
|
*/
|
|
if (ecap_dit(iommu->ecap))
|
|
info->pfsid = pci_dev_id(pci_physfn(pdev));
|
|
info->ats_qdep = pci_ats_queue_depth(pdev);
|
|
}
|
|
if (sm_supported(iommu)) {
|
|
if (pasid_supported(iommu)) {
|
|
int features = pci_pasid_features(pdev);
|
|
|
|
if (features >= 0)
|
|
info->pasid_supported = features | 1;
|
|
}
|
|
|
|
if (info->ats_supported && ecap_prs(iommu->ecap) &&
|
|
pci_pri_supported(pdev))
|
|
info->pri_supported = 1;
|
|
}
|
|
}
|
|
|
|
dev_iommu_priv_set(dev, info);
|
|
if (pdev && pci_ats_supported(pdev)) {
|
|
pci_prepare_ats(pdev, VTD_PAGE_SHIFT);
|
|
ret = device_rbtree_insert(iommu, info);
|
|
if (ret)
|
|
goto free;
|
|
}
|
|
|
|
if (sm_supported(iommu) && !dev_is_real_dma_subdevice(dev)) {
|
|
ret = intel_pasid_alloc_table(dev);
|
|
if (ret) {
|
|
dev_err(dev, "PASID table allocation failed\n");
|
|
goto clear_rbtree;
|
|
}
|
|
|
|
if (!context_copied(iommu, info->bus, info->devfn)) {
|
|
ret = intel_pasid_setup_sm_context(dev);
|
|
if (ret)
|
|
goto free_table;
|
|
}
|
|
}
|
|
|
|
intel_iommu_debugfs_create_dev(info);
|
|
|
|
/*
|
|
* The PCIe spec, in its wisdom, declares that the behaviour of the
|
|
* device is undefined if you enable PASID support after ATS support.
|
|
* So always enable PASID support on devices which have it, even if
|
|
* we can't yet know if we're ever going to use it.
|
|
*/
|
|
if (info->pasid_supported &&
|
|
!pci_enable_pasid(pdev, info->pasid_supported & ~1))
|
|
info->pasid_enabled = 1;
|
|
|
|
return &iommu->iommu;
|
|
free_table:
|
|
intel_pasid_free_table(dev);
|
|
clear_rbtree:
|
|
device_rbtree_remove(info);
|
|
free:
|
|
kfree(info);
|
|
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static void intel_iommu_release_device(struct device *dev)
|
|
{
|
|
struct device_domain_info *info = dev_iommu_priv_get(dev);
|
|
struct intel_iommu *iommu = info->iommu;
|
|
|
|
if (info->pasid_enabled) {
|
|
pci_disable_pasid(to_pci_dev(dev));
|
|
info->pasid_enabled = 0;
|
|
}
|
|
|
|
mutex_lock(&iommu->iopf_lock);
|
|
if (dev_is_pci(dev) && pci_ats_supported(to_pci_dev(dev)))
|
|
device_rbtree_remove(info);
|
|
mutex_unlock(&iommu->iopf_lock);
|
|
|
|
if (sm_supported(iommu) && !dev_is_real_dma_subdevice(dev) &&
|
|
!context_copied(iommu, info->bus, info->devfn))
|
|
intel_pasid_teardown_sm_context(dev);
|
|
|
|
intel_pasid_free_table(dev);
|
|
intel_iommu_debugfs_remove_dev(info);
|
|
kfree(info);
|
|
set_dma_ops(dev, NULL);
|
|
}
|
|
|
|
static void intel_iommu_get_resv_regions(struct device *device,
|
|
struct list_head *head)
|
|
{
|
|
int prot = DMA_PTE_READ | DMA_PTE_WRITE;
|
|
struct iommu_resv_region *reg;
|
|
struct dmar_rmrr_unit *rmrr;
|
|
struct device *i_dev;
|
|
int i;
|
|
|
|
rcu_read_lock();
|
|
for_each_rmrr_units(rmrr) {
|
|
for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
|
|
i, i_dev) {
|
|
struct iommu_resv_region *resv;
|
|
enum iommu_resv_type type;
|
|
size_t length;
|
|
|
|
if (i_dev != device &&
|
|
!is_downstream_to_pci_bridge(device, i_dev))
|
|
continue;
|
|
|
|
length = rmrr->end_address - rmrr->base_address + 1;
|
|
|
|
type = device_rmrr_is_relaxable(device) ?
|
|
IOMMU_RESV_DIRECT_RELAXABLE : IOMMU_RESV_DIRECT;
|
|
|
|
resv = iommu_alloc_resv_region(rmrr->base_address,
|
|
length, prot, type,
|
|
GFP_ATOMIC);
|
|
if (!resv)
|
|
break;
|
|
|
|
list_add_tail(&resv->list, head);
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
#ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
|
|
if (dev_is_pci(device)) {
|
|
struct pci_dev *pdev = to_pci_dev(device);
|
|
|
|
if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) {
|
|
reg = iommu_alloc_resv_region(0, 1UL << 24, prot,
|
|
IOMMU_RESV_DIRECT_RELAXABLE,
|
|
GFP_KERNEL);
|
|
if (reg)
|
|
list_add_tail(®->list, head);
|
|
}
|
|
}
|
|
#endif /* CONFIG_INTEL_IOMMU_FLOPPY_WA */
|
|
|
|
reg = iommu_alloc_resv_region(IOAPIC_RANGE_START,
|
|
IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1,
|
|
0, IOMMU_RESV_MSI, GFP_KERNEL);
|
|
if (!reg)
|
|
return;
|
|
list_add_tail(®->list, head);
|
|
}
|
|
|
|
static struct iommu_group *intel_iommu_device_group(struct device *dev)
|
|
{
|
|
if (dev_is_pci(dev))
|
|
return pci_device_group(dev);
|
|
return generic_device_group(dev);
|
|
}
|
|
|
|
static int intel_iommu_enable_sva(struct device *dev)
|
|
{
|
|
struct device_domain_info *info = dev_iommu_priv_get(dev);
|
|
struct intel_iommu *iommu;
|
|
|
|
if (!info || dmar_disabled)
|
|
return -EINVAL;
|
|
|
|
iommu = info->iommu;
|
|
if (!iommu)
|
|
return -EINVAL;
|
|
|
|
if (!(iommu->flags & VTD_FLAG_SVM_CAPABLE))
|
|
return -ENODEV;
|
|
|
|
if (!info->pasid_enabled || !info->ats_enabled)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Devices having device-specific I/O fault handling should not
|
|
* support PCI/PRI. The IOMMU side has no means to check the
|
|
* capability of device-specific IOPF. Therefore, IOMMU can only
|
|
* default that if the device driver enables SVA on a non-PRI
|
|
* device, it will handle IOPF in its own way.
|
|
*/
|
|
if (!info->pri_supported)
|
|
return 0;
|
|
|
|
/* Devices supporting PRI should have it enabled. */
|
|
if (!info->pri_enabled)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int context_flip_pri(struct device_domain_info *info, bool enable)
|
|
{
|
|
struct intel_iommu *iommu = info->iommu;
|
|
u8 bus = info->bus, devfn = info->devfn;
|
|
struct context_entry *context;
|
|
u16 did;
|
|
|
|
spin_lock(&iommu->lock);
|
|
if (context_copied(iommu, bus, devfn)) {
|
|
spin_unlock(&iommu->lock);
|
|
return -EINVAL;
|
|
}
|
|
|
|
context = iommu_context_addr(iommu, bus, devfn, false);
|
|
if (!context || !context_present(context)) {
|
|
spin_unlock(&iommu->lock);
|
|
return -ENODEV;
|
|
}
|
|
did = context_domain_id(context);
|
|
|
|
if (enable)
|
|
context_set_sm_pre(context);
|
|
else
|
|
context_clear_sm_pre(context);
|
|
|
|
if (!ecap_coherent(iommu->ecap))
|
|
clflush_cache_range(context, sizeof(*context));
|
|
intel_context_flush_present(info, context, did, true);
|
|
spin_unlock(&iommu->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int intel_iommu_enable_iopf(struct device *dev)
|
|
{
|
|
struct pci_dev *pdev = dev_is_pci(dev) ? to_pci_dev(dev) : NULL;
|
|
struct device_domain_info *info = dev_iommu_priv_get(dev);
|
|
struct intel_iommu *iommu;
|
|
int ret;
|
|
|
|
if (!pdev || !info || !info->ats_enabled || !info->pri_supported)
|
|
return -ENODEV;
|
|
|
|
if (info->pri_enabled)
|
|
return -EBUSY;
|
|
|
|
iommu = info->iommu;
|
|
if (!iommu)
|
|
return -EINVAL;
|
|
|
|
/* PASID is required in PRG Response Message. */
|
|
if (info->pasid_enabled && !pci_prg_resp_pasid_required(pdev))
|
|
return -EINVAL;
|
|
|
|
ret = pci_reset_pri(pdev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = iopf_queue_add_device(iommu->iopf_queue, dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = context_flip_pri(info, true);
|
|
if (ret)
|
|
goto err_remove_device;
|
|
|
|
ret = pci_enable_pri(pdev, PRQ_DEPTH);
|
|
if (ret)
|
|
goto err_clear_pri;
|
|
|
|
info->pri_enabled = 1;
|
|
|
|
return 0;
|
|
err_clear_pri:
|
|
context_flip_pri(info, false);
|
|
err_remove_device:
|
|
iopf_queue_remove_device(iommu->iopf_queue, dev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int intel_iommu_disable_iopf(struct device *dev)
|
|
{
|
|
struct device_domain_info *info = dev_iommu_priv_get(dev);
|
|
struct intel_iommu *iommu = info->iommu;
|
|
|
|
if (!info->pri_enabled)
|
|
return -EINVAL;
|
|
|
|
/* Disable new PRI reception: */
|
|
context_flip_pri(info, false);
|
|
|
|
/*
|
|
* Remove device from fault queue and acknowledge all outstanding
|
|
* PRQs to the device:
|
|
*/
|
|
iopf_queue_remove_device(iommu->iopf_queue, dev);
|
|
|
|
/*
|
|
* PCIe spec states that by clearing PRI enable bit, the Page
|
|
* Request Interface will not issue new page requests, but has
|
|
* outstanding page requests that have been transmitted or are
|
|
* queued for transmission. This is supposed to be called after
|
|
* the device driver has stopped DMA, all PASIDs have been
|
|
* unbound and the outstanding PRQs have been drained.
|
|
*/
|
|
pci_disable_pri(to_pci_dev(dev));
|
|
info->pri_enabled = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
intel_iommu_dev_enable_feat(struct device *dev, enum iommu_dev_features feat)
|
|
{
|
|
switch (feat) {
|
|
case IOMMU_DEV_FEAT_IOPF:
|
|
return intel_iommu_enable_iopf(dev);
|
|
|
|
case IOMMU_DEV_FEAT_SVA:
|
|
return intel_iommu_enable_sva(dev);
|
|
|
|
default:
|
|
return -ENODEV;
|
|
}
|
|
}
|
|
|
|
static int
|
|
intel_iommu_dev_disable_feat(struct device *dev, enum iommu_dev_features feat)
|
|
{
|
|
switch (feat) {
|
|
case IOMMU_DEV_FEAT_IOPF:
|
|
return intel_iommu_disable_iopf(dev);
|
|
|
|
case IOMMU_DEV_FEAT_SVA:
|
|
return 0;
|
|
|
|
default:
|
|
return -ENODEV;
|
|
}
|
|
}
|
|
|
|
static bool intel_iommu_is_attach_deferred(struct device *dev)
|
|
{
|
|
struct device_domain_info *info = dev_iommu_priv_get(dev);
|
|
|
|
return translation_pre_enabled(info->iommu) && !info->domain;
|
|
}
|
|
|
|
/*
|
|
* Check that the device does not live on an external facing PCI port that is
|
|
* marked as untrusted. Such devices should not be able to apply quirks and
|
|
* thus not be able to bypass the IOMMU restrictions.
|
|
*/
|
|
static bool risky_device(struct pci_dev *pdev)
|
|
{
|
|
if (pdev->untrusted) {
|
|
pci_info(pdev,
|
|
"Skipping IOMMU quirk for dev [%04X:%04X] on untrusted PCI link\n",
|
|
pdev->vendor, pdev->device);
|
|
pci_info(pdev, "Please check with your BIOS/Platform vendor about this\n");
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static int intel_iommu_iotlb_sync_map(struct iommu_domain *domain,
|
|
unsigned long iova, size_t size)
|
|
{
|
|
cache_tag_flush_range_np(to_dmar_domain(domain), iova, iova + size - 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void intel_iommu_remove_dev_pasid(struct device *dev, ioasid_t pasid,
|
|
struct iommu_domain *domain)
|
|
{
|
|
struct device_domain_info *info = dev_iommu_priv_get(dev);
|
|
struct dev_pasid_info *curr, *dev_pasid = NULL;
|
|
struct intel_iommu *iommu = info->iommu;
|
|
struct dmar_domain *dmar_domain;
|
|
unsigned long flags;
|
|
|
|
if (domain->type == IOMMU_DOMAIN_IDENTITY) {
|
|
intel_pasid_tear_down_entry(iommu, dev, pasid, false);
|
|
return;
|
|
}
|
|
|
|
dmar_domain = to_dmar_domain(domain);
|
|
spin_lock_irqsave(&dmar_domain->lock, flags);
|
|
list_for_each_entry(curr, &dmar_domain->dev_pasids, link_domain) {
|
|
if (curr->dev == dev && curr->pasid == pasid) {
|
|
list_del(&curr->link_domain);
|
|
dev_pasid = curr;
|
|
break;
|
|
}
|
|
}
|
|
WARN_ON_ONCE(!dev_pasid);
|
|
spin_unlock_irqrestore(&dmar_domain->lock, flags);
|
|
|
|
cache_tag_unassign_domain(dmar_domain, dev, pasid);
|
|
domain_detach_iommu(dmar_domain, iommu);
|
|
intel_iommu_debugfs_remove_dev_pasid(dev_pasid);
|
|
kfree(dev_pasid);
|
|
intel_pasid_tear_down_entry(iommu, dev, pasid, false);
|
|
intel_drain_pasid_prq(dev, pasid);
|
|
}
|
|
|
|
static int intel_iommu_set_dev_pasid(struct iommu_domain *domain,
|
|
struct device *dev, ioasid_t pasid)
|
|
{
|
|
struct device_domain_info *info = dev_iommu_priv_get(dev);
|
|
struct dmar_domain *dmar_domain = to_dmar_domain(domain);
|
|
struct intel_iommu *iommu = info->iommu;
|
|
struct dev_pasid_info *dev_pasid;
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
if (!pasid_supported(iommu) || dev_is_real_dma_subdevice(dev))
|
|
return -EOPNOTSUPP;
|
|
|
|
if (domain->dirty_ops)
|
|
return -EINVAL;
|
|
|
|
if (context_copied(iommu, info->bus, info->devfn))
|
|
return -EBUSY;
|
|
|
|
ret = prepare_domain_attach_device(domain, dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
dev_pasid = kzalloc(sizeof(*dev_pasid), GFP_KERNEL);
|
|
if (!dev_pasid)
|
|
return -ENOMEM;
|
|
|
|
ret = domain_attach_iommu(dmar_domain, iommu);
|
|
if (ret)
|
|
goto out_free;
|
|
|
|
ret = cache_tag_assign_domain(dmar_domain, dev, pasid);
|
|
if (ret)
|
|
goto out_detach_iommu;
|
|
|
|
if (dmar_domain->use_first_level)
|
|
ret = domain_setup_first_level(iommu, dmar_domain,
|
|
dev, pasid);
|
|
else
|
|
ret = intel_pasid_setup_second_level(iommu, dmar_domain,
|
|
dev, pasid);
|
|
if (ret)
|
|
goto out_unassign_tag;
|
|
|
|
dev_pasid->dev = dev;
|
|
dev_pasid->pasid = pasid;
|
|
spin_lock_irqsave(&dmar_domain->lock, flags);
|
|
list_add(&dev_pasid->link_domain, &dmar_domain->dev_pasids);
|
|
spin_unlock_irqrestore(&dmar_domain->lock, flags);
|
|
|
|
if (domain->type & __IOMMU_DOMAIN_PAGING)
|
|
intel_iommu_debugfs_create_dev_pasid(dev_pasid);
|
|
|
|
return 0;
|
|
out_unassign_tag:
|
|
cache_tag_unassign_domain(dmar_domain, dev, pasid);
|
|
out_detach_iommu:
|
|
domain_detach_iommu(dmar_domain, iommu);
|
|
out_free:
|
|
kfree(dev_pasid);
|
|
return ret;
|
|
}
|
|
|
|
static void *intel_iommu_hw_info(struct device *dev, u32 *length, u32 *type)
|
|
{
|
|
struct device_domain_info *info = dev_iommu_priv_get(dev);
|
|
struct intel_iommu *iommu = info->iommu;
|
|
struct iommu_hw_info_vtd *vtd;
|
|
|
|
vtd = kzalloc(sizeof(*vtd), GFP_KERNEL);
|
|
if (!vtd)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
vtd->flags = IOMMU_HW_INFO_VTD_ERRATA_772415_SPR17;
|
|
vtd->cap_reg = iommu->cap;
|
|
vtd->ecap_reg = iommu->ecap;
|
|
*length = sizeof(*vtd);
|
|
*type = IOMMU_HW_INFO_TYPE_INTEL_VTD;
|
|
return vtd;
|
|
}
|
|
|
|
/*
|
|
* Set dirty tracking for the device list of a domain. The caller must
|
|
* hold the domain->lock when calling it.
|
|
*/
|
|
static int device_set_dirty_tracking(struct list_head *devices, bool enable)
|
|
{
|
|
struct device_domain_info *info;
|
|
int ret = 0;
|
|
|
|
list_for_each_entry(info, devices, link) {
|
|
ret = intel_pasid_setup_dirty_tracking(info->iommu, info->dev,
|
|
IOMMU_NO_PASID, enable);
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int parent_domain_set_dirty_tracking(struct dmar_domain *domain,
|
|
bool enable)
|
|
{
|
|
struct dmar_domain *s1_domain;
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
spin_lock(&domain->s1_lock);
|
|
list_for_each_entry(s1_domain, &domain->s1_domains, s2_link) {
|
|
spin_lock_irqsave(&s1_domain->lock, flags);
|
|
ret = device_set_dirty_tracking(&s1_domain->devices, enable);
|
|
spin_unlock_irqrestore(&s1_domain->lock, flags);
|
|
if (ret)
|
|
goto err_unwind;
|
|
}
|
|
spin_unlock(&domain->s1_lock);
|
|
return 0;
|
|
|
|
err_unwind:
|
|
list_for_each_entry(s1_domain, &domain->s1_domains, s2_link) {
|
|
spin_lock_irqsave(&s1_domain->lock, flags);
|
|
device_set_dirty_tracking(&s1_domain->devices,
|
|
domain->dirty_tracking);
|
|
spin_unlock_irqrestore(&s1_domain->lock, flags);
|
|
}
|
|
spin_unlock(&domain->s1_lock);
|
|
return ret;
|
|
}
|
|
|
|
static int intel_iommu_set_dirty_tracking(struct iommu_domain *domain,
|
|
bool enable)
|
|
{
|
|
struct dmar_domain *dmar_domain = to_dmar_domain(domain);
|
|
int ret;
|
|
|
|
spin_lock(&dmar_domain->lock);
|
|
if (dmar_domain->dirty_tracking == enable)
|
|
goto out_unlock;
|
|
|
|
ret = device_set_dirty_tracking(&dmar_domain->devices, enable);
|
|
if (ret)
|
|
goto err_unwind;
|
|
|
|
if (dmar_domain->nested_parent) {
|
|
ret = parent_domain_set_dirty_tracking(dmar_domain, enable);
|
|
if (ret)
|
|
goto err_unwind;
|
|
}
|
|
|
|
dmar_domain->dirty_tracking = enable;
|
|
out_unlock:
|
|
spin_unlock(&dmar_domain->lock);
|
|
|
|
return 0;
|
|
|
|
err_unwind:
|
|
device_set_dirty_tracking(&dmar_domain->devices,
|
|
dmar_domain->dirty_tracking);
|
|
spin_unlock(&dmar_domain->lock);
|
|
return ret;
|
|
}
|
|
|
|
static int intel_iommu_read_and_clear_dirty(struct iommu_domain *domain,
|
|
unsigned long iova, size_t size,
|
|
unsigned long flags,
|
|
struct iommu_dirty_bitmap *dirty)
|
|
{
|
|
struct dmar_domain *dmar_domain = to_dmar_domain(domain);
|
|
unsigned long end = iova + size - 1;
|
|
unsigned long pgsize;
|
|
|
|
/*
|
|
* IOMMUFD core calls into a dirty tracking disabled domain without an
|
|
* IOVA bitmap set in order to clean dirty bits in all PTEs that might
|
|
* have occurred when we stopped dirty tracking. This ensures that we
|
|
* never inherit dirtied bits from a previous cycle.
|
|
*/
|
|
if (!dmar_domain->dirty_tracking && dirty->bitmap)
|
|
return -EINVAL;
|
|
|
|
do {
|
|
struct dma_pte *pte;
|
|
int lvl = 0;
|
|
|
|
pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &lvl,
|
|
GFP_ATOMIC);
|
|
pgsize = level_size(lvl) << VTD_PAGE_SHIFT;
|
|
if (!pte || !dma_pte_present(pte)) {
|
|
iova += pgsize;
|
|
continue;
|
|
}
|
|
|
|
if (dma_sl_pte_test_and_clear_dirty(pte, flags))
|
|
iommu_dirty_bitmap_record(dirty, iova, pgsize);
|
|
iova += pgsize;
|
|
} while (iova < end);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct iommu_dirty_ops intel_dirty_ops = {
|
|
.set_dirty_tracking = intel_iommu_set_dirty_tracking,
|
|
.read_and_clear_dirty = intel_iommu_read_and_clear_dirty,
|
|
};
|
|
|
|
static int context_setup_pass_through(struct device *dev, u8 bus, u8 devfn)
|
|
{
|
|
struct device_domain_info *info = dev_iommu_priv_get(dev);
|
|
struct intel_iommu *iommu = info->iommu;
|
|
struct context_entry *context;
|
|
|
|
spin_lock(&iommu->lock);
|
|
context = iommu_context_addr(iommu, bus, devfn, 1);
|
|
if (!context) {
|
|
spin_unlock(&iommu->lock);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (context_present(context) && !context_copied(iommu, bus, devfn)) {
|
|
spin_unlock(&iommu->lock);
|
|
return 0;
|
|
}
|
|
|
|
copied_context_tear_down(iommu, context, bus, devfn);
|
|
context_clear_entry(context);
|
|
context_set_domain_id(context, FLPT_DEFAULT_DID);
|
|
|
|
/*
|
|
* In pass through mode, AW must be programmed to indicate the largest
|
|
* AGAW value supported by hardware. And ASR is ignored by hardware.
|
|
*/
|
|
context_set_address_width(context, iommu->msagaw);
|
|
context_set_translation_type(context, CONTEXT_TT_PASS_THROUGH);
|
|
context_set_fault_enable(context);
|
|
context_set_present(context);
|
|
if (!ecap_coherent(iommu->ecap))
|
|
clflush_cache_range(context, sizeof(*context));
|
|
context_present_cache_flush(iommu, FLPT_DEFAULT_DID, bus, devfn);
|
|
spin_unlock(&iommu->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int context_setup_pass_through_cb(struct pci_dev *pdev, u16 alias, void *data)
|
|
{
|
|
struct device *dev = data;
|
|
|
|
if (dev != &pdev->dev)
|
|
return 0;
|
|
|
|
return context_setup_pass_through(dev, PCI_BUS_NUM(alias), alias & 0xff);
|
|
}
|
|
|
|
static int device_setup_pass_through(struct device *dev)
|
|
{
|
|
struct device_domain_info *info = dev_iommu_priv_get(dev);
|
|
|
|
if (!dev_is_pci(dev))
|
|
return context_setup_pass_through(dev, info->bus, info->devfn);
|
|
|
|
return pci_for_each_dma_alias(to_pci_dev(dev),
|
|
context_setup_pass_through_cb, dev);
|
|
}
|
|
|
|
static int identity_domain_attach_dev(struct iommu_domain *domain, struct device *dev)
|
|
{
|
|
struct device_domain_info *info = dev_iommu_priv_get(dev);
|
|
struct intel_iommu *iommu = info->iommu;
|
|
int ret;
|
|
|
|
device_block_translation(dev);
|
|
|
|
if (dev_is_real_dma_subdevice(dev))
|
|
return 0;
|
|
|
|
if (sm_supported(iommu)) {
|
|
ret = intel_pasid_setup_pass_through(iommu, dev, IOMMU_NO_PASID);
|
|
if (!ret)
|
|
iommu_enable_pci_caps(info);
|
|
} else {
|
|
ret = device_setup_pass_through(dev);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int identity_domain_set_dev_pasid(struct iommu_domain *domain,
|
|
struct device *dev, ioasid_t pasid)
|
|
{
|
|
struct device_domain_info *info = dev_iommu_priv_get(dev);
|
|
struct intel_iommu *iommu = info->iommu;
|
|
|
|
if (!pasid_supported(iommu) || dev_is_real_dma_subdevice(dev))
|
|
return -EOPNOTSUPP;
|
|
|
|
return intel_pasid_setup_pass_through(iommu, dev, pasid);
|
|
}
|
|
|
|
static struct iommu_domain identity_domain = {
|
|
.type = IOMMU_DOMAIN_IDENTITY,
|
|
.ops = &(const struct iommu_domain_ops) {
|
|
.attach_dev = identity_domain_attach_dev,
|
|
.set_dev_pasid = identity_domain_set_dev_pasid,
|
|
},
|
|
};
|
|
|
|
const struct iommu_ops intel_iommu_ops = {
|
|
.blocked_domain = &blocking_domain,
|
|
.release_domain = &blocking_domain,
|
|
.identity_domain = &identity_domain,
|
|
.capable = intel_iommu_capable,
|
|
.hw_info = intel_iommu_hw_info,
|
|
.domain_alloc = intel_iommu_domain_alloc,
|
|
.domain_alloc_user = intel_iommu_domain_alloc_user,
|
|
.domain_alloc_sva = intel_svm_domain_alloc,
|
|
.probe_device = intel_iommu_probe_device,
|
|
.release_device = intel_iommu_release_device,
|
|
.get_resv_regions = intel_iommu_get_resv_regions,
|
|
.device_group = intel_iommu_device_group,
|
|
.dev_enable_feat = intel_iommu_dev_enable_feat,
|
|
.dev_disable_feat = intel_iommu_dev_disable_feat,
|
|
.is_attach_deferred = intel_iommu_is_attach_deferred,
|
|
.def_domain_type = device_def_domain_type,
|
|
.remove_dev_pasid = intel_iommu_remove_dev_pasid,
|
|
.pgsize_bitmap = SZ_4K,
|
|
#ifdef CONFIG_INTEL_IOMMU_SVM
|
|
.page_response = intel_svm_page_response,
|
|
#endif
|
|
.default_domain_ops = &(const struct iommu_domain_ops) {
|
|
.attach_dev = intel_iommu_attach_device,
|
|
.set_dev_pasid = intel_iommu_set_dev_pasid,
|
|
.map_pages = intel_iommu_map_pages,
|
|
.unmap_pages = intel_iommu_unmap_pages,
|
|
.iotlb_sync_map = intel_iommu_iotlb_sync_map,
|
|
.flush_iotlb_all = intel_flush_iotlb_all,
|
|
.iotlb_sync = intel_iommu_tlb_sync,
|
|
.iova_to_phys = intel_iommu_iova_to_phys,
|
|
.free = intel_iommu_domain_free,
|
|
.enforce_cache_coherency = intel_iommu_enforce_cache_coherency,
|
|
}
|
|
};
|
|
|
|
static void quirk_iommu_igfx(struct pci_dev *dev)
|
|
{
|
|
if (risky_device(dev))
|
|
return;
|
|
|
|
pci_info(dev, "Disabling IOMMU for graphics on this chipset\n");
|
|
disable_igfx_iommu = 1;
|
|
}
|
|
|
|
/* G4x/GM45 integrated gfx dmar support is totally busted. */
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_igfx);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_igfx);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_igfx);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_igfx);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_igfx);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_igfx);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_igfx);
|
|
|
|
/* Broadwell igfx malfunctions with dmar */
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1606, quirk_iommu_igfx);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160B, quirk_iommu_igfx);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160E, quirk_iommu_igfx);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1602, quirk_iommu_igfx);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160A, quirk_iommu_igfx);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160D, quirk_iommu_igfx);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1616, quirk_iommu_igfx);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161B, quirk_iommu_igfx);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161E, quirk_iommu_igfx);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1612, quirk_iommu_igfx);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161A, quirk_iommu_igfx);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161D, quirk_iommu_igfx);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1626, quirk_iommu_igfx);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162B, quirk_iommu_igfx);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162E, quirk_iommu_igfx);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1622, quirk_iommu_igfx);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162A, quirk_iommu_igfx);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162D, quirk_iommu_igfx);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1636, quirk_iommu_igfx);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163B, quirk_iommu_igfx);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163E, quirk_iommu_igfx);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1632, quirk_iommu_igfx);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163A, quirk_iommu_igfx);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163D, quirk_iommu_igfx);
|
|
|
|
static void quirk_iommu_rwbf(struct pci_dev *dev)
|
|
{
|
|
if (risky_device(dev))
|
|
return;
|
|
|
|
/*
|
|
* Mobile 4 Series Chipset neglects to set RWBF capability,
|
|
* but needs it. Same seems to hold for the desktop versions.
|
|
*/
|
|
pci_info(dev, "Forcing write-buffer flush capability\n");
|
|
rwbf_quirk = 1;
|
|
}
|
|
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
|
|
|
|
#define GGC 0x52
|
|
#define GGC_MEMORY_SIZE_MASK (0xf << 8)
|
|
#define GGC_MEMORY_SIZE_NONE (0x0 << 8)
|
|
#define GGC_MEMORY_SIZE_1M (0x1 << 8)
|
|
#define GGC_MEMORY_SIZE_2M (0x3 << 8)
|
|
#define GGC_MEMORY_VT_ENABLED (0x8 << 8)
|
|
#define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
|
|
#define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
|
|
#define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
|
|
|
|
static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
|
|
{
|
|
unsigned short ggc;
|
|
|
|
if (risky_device(dev))
|
|
return;
|
|
|
|
if (pci_read_config_word(dev, GGC, &ggc))
|
|
return;
|
|
|
|
if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
|
|
pci_info(dev, "BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
|
|
disable_igfx_iommu = 1;
|
|
} else if (!disable_igfx_iommu) {
|
|
/* we have to ensure the gfx device is idle before we flush */
|
|
pci_info(dev, "Disabling batched IOTLB flush on Ironlake\n");
|
|
iommu_set_dma_strict();
|
|
}
|
|
}
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
|
|
|
|
static void quirk_igfx_skip_te_disable(struct pci_dev *dev)
|
|
{
|
|
unsigned short ver;
|
|
|
|
if (!IS_GFX_DEVICE(dev))
|
|
return;
|
|
|
|
ver = (dev->device >> 8) & 0xff;
|
|
if (ver != 0x45 && ver != 0x46 && ver != 0x4c &&
|
|
ver != 0x4e && ver != 0x8a && ver != 0x98 &&
|
|
ver != 0x9a && ver != 0xa7 && ver != 0x7d)
|
|
return;
|
|
|
|
if (risky_device(dev))
|
|
return;
|
|
|
|
pci_info(dev, "Skip IOMMU disabling for graphics\n");
|
|
iommu_skip_te_disable = 1;
|
|
}
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_ANY_ID, quirk_igfx_skip_te_disable);
|
|
|
|
/* On Tylersburg chipsets, some BIOSes have been known to enable the
|
|
ISOCH DMAR unit for the Azalia sound device, but not give it any
|
|
TLB entries, which causes it to deadlock. Check for that. We do
|
|
this in a function called from init_dmars(), instead of in a PCI
|
|
quirk, because we don't want to print the obnoxious "BIOS broken"
|
|
message if VT-d is actually disabled.
|
|
*/
|
|
static void __init check_tylersburg_isoch(void)
|
|
{
|
|
struct pci_dev *pdev;
|
|
uint32_t vtisochctrl;
|
|
|
|
/* If there's no Azalia in the system anyway, forget it. */
|
|
pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
|
|
if (!pdev)
|
|
return;
|
|
|
|
if (risky_device(pdev)) {
|
|
pci_dev_put(pdev);
|
|
return;
|
|
}
|
|
|
|
pci_dev_put(pdev);
|
|
|
|
/* System Management Registers. Might be hidden, in which case
|
|
we can't do the sanity check. But that's OK, because the
|
|
known-broken BIOSes _don't_ actually hide it, so far. */
|
|
pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
|
|
if (!pdev)
|
|
return;
|
|
|
|
if (risky_device(pdev)) {
|
|
pci_dev_put(pdev);
|
|
return;
|
|
}
|
|
|
|
if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
|
|
pci_dev_put(pdev);
|
|
return;
|
|
}
|
|
|
|
pci_dev_put(pdev);
|
|
|
|
/* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
|
|
if (vtisochctrl & 1)
|
|
return;
|
|
|
|
/* Drop all bits other than the number of TLB entries */
|
|
vtisochctrl &= 0x1c;
|
|
|
|
/* If we have the recommended number of TLB entries (16), fine. */
|
|
if (vtisochctrl == 0x10)
|
|
return;
|
|
|
|
/* Zero TLB entries? You get to ride the short bus to school. */
|
|
if (!vtisochctrl) {
|
|
WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
|
|
"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
|
|
dmi_get_system_info(DMI_BIOS_VENDOR),
|
|
dmi_get_system_info(DMI_BIOS_VERSION),
|
|
dmi_get_system_info(DMI_PRODUCT_VERSION));
|
|
iommu_identity_mapping |= IDENTMAP_AZALIA;
|
|
return;
|
|
}
|
|
|
|
pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
|
|
vtisochctrl);
|
|
}
|
|
|
|
/*
|
|
* Here we deal with a device TLB defect where device may inadvertently issue ATS
|
|
* invalidation completion before posted writes initiated with translated address
|
|
* that utilized translations matching the invalidation address range, violating
|
|
* the invalidation completion ordering.
|
|
* Therefore, any use cases that cannot guarantee DMA is stopped before unmap is
|
|
* vulnerable to this defect. In other words, any dTLB invalidation initiated not
|
|
* under the control of the trusted/privileged host device driver must use this
|
|
* quirk.
|
|
* Device TLBs are invalidated under the following six conditions:
|
|
* 1. Device driver does DMA API unmap IOVA
|
|
* 2. Device driver unbind a PASID from a process, sva_unbind_device()
|
|
* 3. PASID is torn down, after PASID cache is flushed. e.g. process
|
|
* exit_mmap() due to crash
|
|
* 4. Under SVA usage, called by mmu_notifier.invalidate_range() where
|
|
* VM has to free pages that were unmapped
|
|
* 5. Userspace driver unmaps a DMA buffer
|
|
* 6. Cache invalidation in vSVA usage (upcoming)
|
|
*
|
|
* For #1 and #2, device drivers are responsible for stopping DMA traffic
|
|
* before unmap/unbind. For #3, iommu driver gets mmu_notifier to
|
|
* invalidate TLB the same way as normal user unmap which will use this quirk.
|
|
* The dTLB invalidation after PASID cache flush does not need this quirk.
|
|
*
|
|
* As a reminder, #6 will *NEED* this quirk as we enable nested translation.
|
|
*/
|
|
void quirk_extra_dev_tlb_flush(struct device_domain_info *info,
|
|
unsigned long address, unsigned long mask,
|
|
u32 pasid, u16 qdep)
|
|
{
|
|
u16 sid;
|
|
|
|
if (likely(!info->dtlb_extra_inval))
|
|
return;
|
|
|
|
sid = PCI_DEVID(info->bus, info->devfn);
|
|
if (pasid == IOMMU_NO_PASID) {
|
|
qi_flush_dev_iotlb(info->iommu, sid, info->pfsid,
|
|
qdep, address, mask);
|
|
} else {
|
|
qi_flush_dev_iotlb_pasid(info->iommu, sid, info->pfsid,
|
|
pasid, qdep, address, mask);
|
|
}
|
|
}
|
|
|
|
#define ecmd_get_status_code(res) (((res) & 0xff) >> 1)
|
|
|
|
/*
|
|
* Function to submit a command to the enhanced command interface. The
|
|
* valid enhanced command descriptions are defined in Table 47 of the
|
|
* VT-d spec. The VT-d hardware implementation may support some but not
|
|
* all commands, which can be determined by checking the Enhanced
|
|
* Command Capability Register.
|
|
*
|
|
* Return values:
|
|
* - 0: Command successful without any error;
|
|
* - Negative: software error value;
|
|
* - Nonzero positive: failure status code defined in Table 48.
|
|
*/
|
|
int ecmd_submit_sync(struct intel_iommu *iommu, u8 ecmd, u64 oa, u64 ob)
|
|
{
|
|
unsigned long flags;
|
|
u64 res;
|
|
int ret;
|
|
|
|
if (!cap_ecmds(iommu->cap))
|
|
return -ENODEV;
|
|
|
|
raw_spin_lock_irqsave(&iommu->register_lock, flags);
|
|
|
|
res = dmar_readq(iommu->reg + DMAR_ECRSP_REG);
|
|
if (res & DMA_ECMD_ECRSP_IP) {
|
|
ret = -EBUSY;
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* Unconditionally write the operand B, because
|
|
* - There is no side effect if an ecmd doesn't require an
|
|
* operand B, but we set the register to some value.
|
|
* - It's not invoked in any critical path. The extra MMIO
|
|
* write doesn't bring any performance concerns.
|
|
*/
|
|
dmar_writeq(iommu->reg + DMAR_ECEO_REG, ob);
|
|
dmar_writeq(iommu->reg + DMAR_ECMD_REG, ecmd | (oa << DMA_ECMD_OA_SHIFT));
|
|
|
|
IOMMU_WAIT_OP(iommu, DMAR_ECRSP_REG, dmar_readq,
|
|
!(res & DMA_ECMD_ECRSP_IP), res);
|
|
|
|
if (res & DMA_ECMD_ECRSP_IP) {
|
|
ret = -ETIMEDOUT;
|
|
goto err;
|
|
}
|
|
|
|
ret = ecmd_get_status_code(res);
|
|
err:
|
|
raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
|
|
|
|
return ret;
|
|
}
|