55e6f8f29d
KVM SVM changes for 6.12: - Don't stuff the RSB after VM-Exit when RETPOLINE=y and AutoIBRS is enabled, i.e. when the CPU has already flushed the RSB. - Trace the per-CPU host save area as a VMCB pointer to improve readability and cleanup the retrieval of the SEV-ES host save area. - Remove unnecessary accounting of temporary nested VMCB related allocations.
5482 lines
151 KiB
C
5482 lines
151 KiB
C
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/kvm_host.h>
|
|
|
|
#include "irq.h"
|
|
#include "mmu.h"
|
|
#include "kvm_cache_regs.h"
|
|
#include "x86.h"
|
|
#include "smm.h"
|
|
#include "cpuid.h"
|
|
#include "pmu.h"
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/mod_devicetable.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/amd-iommu.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/trace_events.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/hashtable.h>
|
|
#include <linux/objtool.h>
|
|
#include <linux/psp-sev.h>
|
|
#include <linux/file.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/rwsem.h>
|
|
#include <linux/cc_platform.h>
|
|
#include <linux/smp.h>
|
|
|
|
#include <asm/apic.h>
|
|
#include <asm/perf_event.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/desc.h>
|
|
#include <asm/debugreg.h>
|
|
#include <asm/kvm_para.h>
|
|
#include <asm/irq_remapping.h>
|
|
#include <asm/spec-ctrl.h>
|
|
#include <asm/cpu_device_id.h>
|
|
#include <asm/traps.h>
|
|
#include <asm/reboot.h>
|
|
#include <asm/fpu/api.h>
|
|
|
|
#include <trace/events/ipi.h>
|
|
|
|
#include "trace.h"
|
|
|
|
#include "svm.h"
|
|
#include "svm_ops.h"
|
|
|
|
#include "kvm_onhyperv.h"
|
|
#include "svm_onhyperv.h"
|
|
|
|
MODULE_AUTHOR("Qumranet");
|
|
MODULE_DESCRIPTION("KVM support for SVM (AMD-V) extensions");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
#ifdef MODULE
|
|
static const struct x86_cpu_id svm_cpu_id[] = {
|
|
X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
|
|
{}
|
|
};
|
|
MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
|
|
#endif
|
|
|
|
#define SEG_TYPE_LDT 2
|
|
#define SEG_TYPE_BUSY_TSS16 3
|
|
|
|
static bool erratum_383_found __read_mostly;
|
|
|
|
u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
|
|
|
|
/*
|
|
* Set osvw_len to higher value when updated Revision Guides
|
|
* are published and we know what the new status bits are
|
|
*/
|
|
static uint64_t osvw_len = 4, osvw_status;
|
|
|
|
static DEFINE_PER_CPU(u64, current_tsc_ratio);
|
|
|
|
#define X2APIC_MSR(x) (APIC_BASE_MSR + (x >> 4))
|
|
|
|
static const struct svm_direct_access_msrs {
|
|
u32 index; /* Index of the MSR */
|
|
bool always; /* True if intercept is initially cleared */
|
|
} direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
|
|
{ .index = MSR_STAR, .always = true },
|
|
{ .index = MSR_IA32_SYSENTER_CS, .always = true },
|
|
{ .index = MSR_IA32_SYSENTER_EIP, .always = false },
|
|
{ .index = MSR_IA32_SYSENTER_ESP, .always = false },
|
|
#ifdef CONFIG_X86_64
|
|
{ .index = MSR_GS_BASE, .always = true },
|
|
{ .index = MSR_FS_BASE, .always = true },
|
|
{ .index = MSR_KERNEL_GS_BASE, .always = true },
|
|
{ .index = MSR_LSTAR, .always = true },
|
|
{ .index = MSR_CSTAR, .always = true },
|
|
{ .index = MSR_SYSCALL_MASK, .always = true },
|
|
#endif
|
|
{ .index = MSR_IA32_SPEC_CTRL, .always = false },
|
|
{ .index = MSR_IA32_PRED_CMD, .always = false },
|
|
{ .index = MSR_IA32_FLUSH_CMD, .always = false },
|
|
{ .index = MSR_IA32_DEBUGCTLMSR, .always = false },
|
|
{ .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
|
|
{ .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
|
|
{ .index = MSR_IA32_LASTINTFROMIP, .always = false },
|
|
{ .index = MSR_IA32_LASTINTTOIP, .always = false },
|
|
{ .index = MSR_IA32_XSS, .always = false },
|
|
{ .index = MSR_EFER, .always = false },
|
|
{ .index = MSR_IA32_CR_PAT, .always = false },
|
|
{ .index = MSR_AMD64_SEV_ES_GHCB, .always = true },
|
|
{ .index = MSR_TSC_AUX, .always = false },
|
|
{ .index = X2APIC_MSR(APIC_ID), .always = false },
|
|
{ .index = X2APIC_MSR(APIC_LVR), .always = false },
|
|
{ .index = X2APIC_MSR(APIC_TASKPRI), .always = false },
|
|
{ .index = X2APIC_MSR(APIC_ARBPRI), .always = false },
|
|
{ .index = X2APIC_MSR(APIC_PROCPRI), .always = false },
|
|
{ .index = X2APIC_MSR(APIC_EOI), .always = false },
|
|
{ .index = X2APIC_MSR(APIC_RRR), .always = false },
|
|
{ .index = X2APIC_MSR(APIC_LDR), .always = false },
|
|
{ .index = X2APIC_MSR(APIC_DFR), .always = false },
|
|
{ .index = X2APIC_MSR(APIC_SPIV), .always = false },
|
|
{ .index = X2APIC_MSR(APIC_ISR), .always = false },
|
|
{ .index = X2APIC_MSR(APIC_TMR), .always = false },
|
|
{ .index = X2APIC_MSR(APIC_IRR), .always = false },
|
|
{ .index = X2APIC_MSR(APIC_ESR), .always = false },
|
|
{ .index = X2APIC_MSR(APIC_ICR), .always = false },
|
|
{ .index = X2APIC_MSR(APIC_ICR2), .always = false },
|
|
|
|
/*
|
|
* Note:
|
|
* AMD does not virtualize APIC TSC-deadline timer mode, but it is
|
|
* emulated by KVM. When setting APIC LVTT (0x832) register bit 18,
|
|
* the AVIC hardware would generate GP fault. Therefore, always
|
|
* intercept the MSR 0x832, and do not setup direct_access_msr.
|
|
*/
|
|
{ .index = X2APIC_MSR(APIC_LVTTHMR), .always = false },
|
|
{ .index = X2APIC_MSR(APIC_LVTPC), .always = false },
|
|
{ .index = X2APIC_MSR(APIC_LVT0), .always = false },
|
|
{ .index = X2APIC_MSR(APIC_LVT1), .always = false },
|
|
{ .index = X2APIC_MSR(APIC_LVTERR), .always = false },
|
|
{ .index = X2APIC_MSR(APIC_TMICT), .always = false },
|
|
{ .index = X2APIC_MSR(APIC_TMCCT), .always = false },
|
|
{ .index = X2APIC_MSR(APIC_TDCR), .always = false },
|
|
{ .index = MSR_INVALID, .always = false },
|
|
};
|
|
|
|
/*
|
|
* These 2 parameters are used to config the controls for Pause-Loop Exiting:
|
|
* pause_filter_count: On processors that support Pause filtering(indicated
|
|
* by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
|
|
* count value. On VMRUN this value is loaded into an internal counter.
|
|
* Each time a pause instruction is executed, this counter is decremented
|
|
* until it reaches zero at which time a #VMEXIT is generated if pause
|
|
* intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause
|
|
* Intercept Filtering for more details.
|
|
* This also indicate if ple logic enabled.
|
|
*
|
|
* pause_filter_thresh: In addition, some processor families support advanced
|
|
* pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
|
|
* the amount of time a guest is allowed to execute in a pause loop.
|
|
* In this mode, a 16-bit pause filter threshold field is added in the
|
|
* VMCB. The threshold value is a cycle count that is used to reset the
|
|
* pause counter. As with simple pause filtering, VMRUN loads the pause
|
|
* count value from VMCB into an internal counter. Then, on each pause
|
|
* instruction the hardware checks the elapsed number of cycles since
|
|
* the most recent pause instruction against the pause filter threshold.
|
|
* If the elapsed cycle count is greater than the pause filter threshold,
|
|
* then the internal pause count is reloaded from the VMCB and execution
|
|
* continues. If the elapsed cycle count is less than the pause filter
|
|
* threshold, then the internal pause count is decremented. If the count
|
|
* value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
|
|
* triggered. If advanced pause filtering is supported and pause filter
|
|
* threshold field is set to zero, the filter will operate in the simpler,
|
|
* count only mode.
|
|
*/
|
|
|
|
static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
|
|
module_param(pause_filter_thresh, ushort, 0444);
|
|
|
|
static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
|
|
module_param(pause_filter_count, ushort, 0444);
|
|
|
|
/* Default doubles per-vcpu window every exit. */
|
|
static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
|
|
module_param(pause_filter_count_grow, ushort, 0444);
|
|
|
|
/* Default resets per-vcpu window every exit to pause_filter_count. */
|
|
static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
|
|
module_param(pause_filter_count_shrink, ushort, 0444);
|
|
|
|
/* Default is to compute the maximum so we can never overflow. */
|
|
static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
|
|
module_param(pause_filter_count_max, ushort, 0444);
|
|
|
|
/*
|
|
* Use nested page tables by default. Note, NPT may get forced off by
|
|
* svm_hardware_setup() if it's unsupported by hardware or the host kernel.
|
|
*/
|
|
bool npt_enabled = true;
|
|
module_param_named(npt, npt_enabled, bool, 0444);
|
|
|
|
/* allow nested virtualization in KVM/SVM */
|
|
static int nested = true;
|
|
module_param(nested, int, 0444);
|
|
|
|
/* enable/disable Next RIP Save */
|
|
int nrips = true;
|
|
module_param(nrips, int, 0444);
|
|
|
|
/* enable/disable Virtual VMLOAD VMSAVE */
|
|
static int vls = true;
|
|
module_param(vls, int, 0444);
|
|
|
|
/* enable/disable Virtual GIF */
|
|
int vgif = true;
|
|
module_param(vgif, int, 0444);
|
|
|
|
/* enable/disable LBR virtualization */
|
|
int lbrv = true;
|
|
module_param(lbrv, int, 0444);
|
|
|
|
static int tsc_scaling = true;
|
|
module_param(tsc_scaling, int, 0444);
|
|
|
|
/*
|
|
* enable / disable AVIC. Because the defaults differ for APICv
|
|
* support between VMX and SVM we cannot use module_param_named.
|
|
*/
|
|
static bool avic;
|
|
module_param(avic, bool, 0444);
|
|
|
|
bool __read_mostly dump_invalid_vmcb;
|
|
module_param(dump_invalid_vmcb, bool, 0644);
|
|
|
|
|
|
bool intercept_smi = true;
|
|
module_param(intercept_smi, bool, 0444);
|
|
|
|
bool vnmi = true;
|
|
module_param(vnmi, bool, 0444);
|
|
|
|
static bool svm_gp_erratum_intercept = true;
|
|
|
|
static u8 rsm_ins_bytes[] = "\x0f\xaa";
|
|
|
|
static unsigned long iopm_base;
|
|
|
|
DEFINE_PER_CPU(struct svm_cpu_data, svm_data);
|
|
|
|
/*
|
|
* Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via
|
|
* the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
|
|
*
|
|
* RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
|
|
* defer the restoration of TSC_AUX until the CPU returns to userspace.
|
|
*/
|
|
static int tsc_aux_uret_slot __read_mostly = -1;
|
|
|
|
static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
|
|
|
|
#define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
|
|
#define MSRS_RANGE_SIZE 2048
|
|
#define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
|
|
|
|
u32 svm_msrpm_offset(u32 msr)
|
|
{
|
|
u32 offset;
|
|
int i;
|
|
|
|
for (i = 0; i < NUM_MSR_MAPS; i++) {
|
|
if (msr < msrpm_ranges[i] ||
|
|
msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
|
|
continue;
|
|
|
|
offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
|
|
offset += (i * MSRS_RANGE_SIZE); /* add range offset */
|
|
|
|
/* Now we have the u8 offset - but need the u32 offset */
|
|
return offset / 4;
|
|
}
|
|
|
|
/* MSR not in any range */
|
|
return MSR_INVALID;
|
|
}
|
|
|
|
static void svm_flush_tlb_current(struct kvm_vcpu *vcpu);
|
|
|
|
static int get_npt_level(void)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
|
|
#else
|
|
return PT32E_ROOT_LEVEL;
|
|
#endif
|
|
}
|
|
|
|
int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
u64 old_efer = vcpu->arch.efer;
|
|
vcpu->arch.efer = efer;
|
|
|
|
if (!npt_enabled) {
|
|
/* Shadow paging assumes NX to be available. */
|
|
efer |= EFER_NX;
|
|
|
|
if (!(efer & EFER_LMA))
|
|
efer &= ~EFER_LME;
|
|
}
|
|
|
|
if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
|
|
if (!(efer & EFER_SVME)) {
|
|
svm_leave_nested(vcpu);
|
|
svm_set_gif(svm, true);
|
|
/* #GP intercept is still needed for vmware backdoor */
|
|
if (!enable_vmware_backdoor)
|
|
clr_exception_intercept(svm, GP_VECTOR);
|
|
|
|
/*
|
|
* Free the nested guest state, unless we are in SMM.
|
|
* In this case we will return to the nested guest
|
|
* as soon as we leave SMM.
|
|
*/
|
|
if (!is_smm(vcpu))
|
|
svm_free_nested(svm);
|
|
|
|
} else {
|
|
int ret = svm_allocate_nested(svm);
|
|
|
|
if (ret) {
|
|
vcpu->arch.efer = old_efer;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Never intercept #GP for SEV guests, KVM can't
|
|
* decrypt guest memory to workaround the erratum.
|
|
*/
|
|
if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm))
|
|
set_exception_intercept(svm, GP_VECTOR);
|
|
}
|
|
}
|
|
|
|
svm->vmcb->save.efer = efer | EFER_SVME;
|
|
vmcb_mark_dirty(svm->vmcb, VMCB_CR);
|
|
return 0;
|
|
}
|
|
|
|
static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
u32 ret = 0;
|
|
|
|
if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
|
|
ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
|
|
return ret;
|
|
}
|
|
|
|
static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if (mask == 0)
|
|
svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
|
|
else
|
|
svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
|
|
|
|
}
|
|
|
|
static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu,
|
|
bool commit_side_effects)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
unsigned long old_rflags;
|
|
|
|
/*
|
|
* SEV-ES does not expose the next RIP. The RIP update is controlled by
|
|
* the type of exit and the #VC handler in the guest.
|
|
*/
|
|
if (sev_es_guest(vcpu->kvm))
|
|
goto done;
|
|
|
|
if (nrips && svm->vmcb->control.next_rip != 0) {
|
|
WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
|
|
svm->next_rip = svm->vmcb->control.next_rip;
|
|
}
|
|
|
|
if (!svm->next_rip) {
|
|
if (unlikely(!commit_side_effects))
|
|
old_rflags = svm->vmcb->save.rflags;
|
|
|
|
if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
|
|
return 0;
|
|
|
|
if (unlikely(!commit_side_effects))
|
|
svm->vmcb->save.rflags = old_rflags;
|
|
} else {
|
|
kvm_rip_write(vcpu, svm->next_rip);
|
|
}
|
|
|
|
done:
|
|
if (likely(commit_side_effects))
|
|
svm_set_interrupt_shadow(vcpu, 0);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
|
|
{
|
|
return __svm_skip_emulated_instruction(vcpu, true);
|
|
}
|
|
|
|
static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long rip, old_rip = kvm_rip_read(vcpu);
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
/*
|
|
* Due to architectural shortcomings, the CPU doesn't always provide
|
|
* NextRIP, e.g. if KVM intercepted an exception that occurred while
|
|
* the CPU was vectoring an INTO/INT3 in the guest. Temporarily skip
|
|
* the instruction even if NextRIP is supported to acquire the next
|
|
* RIP so that it can be shoved into the NextRIP field, otherwise
|
|
* hardware will fail to advance guest RIP during event injection.
|
|
* Drop the exception/interrupt if emulation fails and effectively
|
|
* retry the instruction, it's the least awful option. If NRIPS is
|
|
* in use, the skip must not commit any side effects such as clearing
|
|
* the interrupt shadow or RFLAGS.RF.
|
|
*/
|
|
if (!__svm_skip_emulated_instruction(vcpu, !nrips))
|
|
return -EIO;
|
|
|
|
rip = kvm_rip_read(vcpu);
|
|
|
|
/*
|
|
* Save the injection information, even when using next_rip, as the
|
|
* VMCB's next_rip will be lost (cleared on VM-Exit) if the injection
|
|
* doesn't complete due to a VM-Exit occurring while the CPU is
|
|
* vectoring the event. Decoding the instruction isn't guaranteed to
|
|
* work as there may be no backing instruction, e.g. if the event is
|
|
* being injected by L1 for L2, or if the guest is patching INT3 into
|
|
* a different instruction.
|
|
*/
|
|
svm->soft_int_injected = true;
|
|
svm->soft_int_csbase = svm->vmcb->save.cs.base;
|
|
svm->soft_int_old_rip = old_rip;
|
|
svm->soft_int_next_rip = rip;
|
|
|
|
if (nrips)
|
|
kvm_rip_write(vcpu, old_rip);
|
|
|
|
if (static_cpu_has(X86_FEATURE_NRIPS))
|
|
svm->vmcb->control.next_rip = rip;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void svm_inject_exception(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_queued_exception *ex = &vcpu->arch.exception;
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
kvm_deliver_exception_payload(vcpu, ex);
|
|
|
|
if (kvm_exception_is_soft(ex->vector) &&
|
|
svm_update_soft_interrupt_rip(vcpu))
|
|
return;
|
|
|
|
svm->vmcb->control.event_inj = ex->vector
|
|
| SVM_EVTINJ_VALID
|
|
| (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
|
|
| SVM_EVTINJ_TYPE_EXEPT;
|
|
svm->vmcb->control.event_inj_err = ex->error_code;
|
|
}
|
|
|
|
static void svm_init_erratum_383(void)
|
|
{
|
|
u32 low, high;
|
|
int err;
|
|
u64 val;
|
|
|
|
if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
|
|
return;
|
|
|
|
/* Use _safe variants to not break nested virtualization */
|
|
val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
|
|
if (err)
|
|
return;
|
|
|
|
val |= (1ULL << 47);
|
|
|
|
low = lower_32_bits(val);
|
|
high = upper_32_bits(val);
|
|
|
|
native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
|
|
|
|
erratum_383_found = true;
|
|
}
|
|
|
|
static void svm_init_osvw(struct kvm_vcpu *vcpu)
|
|
{
|
|
/*
|
|
* Guests should see errata 400 and 415 as fixed (assuming that
|
|
* HLT and IO instructions are intercepted).
|
|
*/
|
|
vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
|
|
vcpu->arch.osvw.status = osvw_status & ~(6ULL);
|
|
|
|
/*
|
|
* By increasing VCPU's osvw.length to 3 we are telling the guest that
|
|
* all osvw.status bits inside that length, including bit 0 (which is
|
|
* reserved for erratum 298), are valid. However, if host processor's
|
|
* osvw_len is 0 then osvw_status[0] carries no information. We need to
|
|
* be conservative here and therefore we tell the guest that erratum 298
|
|
* is present (because we really don't know).
|
|
*/
|
|
if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
|
|
vcpu->arch.osvw.status |= 1;
|
|
}
|
|
|
|
static bool __kvm_is_svm_supported(void)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
struct cpuinfo_x86 *c = &cpu_data(cpu);
|
|
|
|
if (c->x86_vendor != X86_VENDOR_AMD &&
|
|
c->x86_vendor != X86_VENDOR_HYGON) {
|
|
pr_err("CPU %d isn't AMD or Hygon\n", cpu);
|
|
return false;
|
|
}
|
|
|
|
if (!cpu_has(c, X86_FEATURE_SVM)) {
|
|
pr_err("SVM not supported by CPU %d\n", cpu);
|
|
return false;
|
|
}
|
|
|
|
if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
|
|
pr_info("KVM is unsupported when running as an SEV guest\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool kvm_is_svm_supported(void)
|
|
{
|
|
bool supported;
|
|
|
|
migrate_disable();
|
|
supported = __kvm_is_svm_supported();
|
|
migrate_enable();
|
|
|
|
return supported;
|
|
}
|
|
|
|
static int svm_check_processor_compat(void)
|
|
{
|
|
if (!__kvm_is_svm_supported())
|
|
return -EIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __svm_write_tsc_multiplier(u64 multiplier)
|
|
{
|
|
if (multiplier == __this_cpu_read(current_tsc_ratio))
|
|
return;
|
|
|
|
wrmsrl(MSR_AMD64_TSC_RATIO, multiplier);
|
|
__this_cpu_write(current_tsc_ratio, multiplier);
|
|
}
|
|
|
|
static __always_inline struct sev_es_save_area *sev_es_host_save_area(struct svm_cpu_data *sd)
|
|
{
|
|
return &sd->save_area->host_sev_es_save;
|
|
}
|
|
|
|
static inline void kvm_cpu_svm_disable(void)
|
|
{
|
|
uint64_t efer;
|
|
|
|
wrmsrl(MSR_VM_HSAVE_PA, 0);
|
|
rdmsrl(MSR_EFER, efer);
|
|
if (efer & EFER_SVME) {
|
|
/*
|
|
* Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and
|
|
* NMI aren't blocked.
|
|
*/
|
|
stgi();
|
|
wrmsrl(MSR_EFER, efer & ~EFER_SVME);
|
|
}
|
|
}
|
|
|
|
static void svm_emergency_disable_virtualization_cpu(void)
|
|
{
|
|
kvm_rebooting = true;
|
|
|
|
kvm_cpu_svm_disable();
|
|
}
|
|
|
|
static void svm_disable_virtualization_cpu(void)
|
|
{
|
|
/* Make sure we clean up behind us */
|
|
if (tsc_scaling)
|
|
__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
|
|
|
|
kvm_cpu_svm_disable();
|
|
|
|
amd_pmu_disable_virt();
|
|
}
|
|
|
|
static int svm_enable_virtualization_cpu(void)
|
|
{
|
|
|
|
struct svm_cpu_data *sd;
|
|
uint64_t efer;
|
|
int me = raw_smp_processor_id();
|
|
|
|
rdmsrl(MSR_EFER, efer);
|
|
if (efer & EFER_SVME)
|
|
return -EBUSY;
|
|
|
|
sd = per_cpu_ptr(&svm_data, me);
|
|
sd->asid_generation = 1;
|
|
sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
|
|
sd->next_asid = sd->max_asid + 1;
|
|
sd->min_asid = max_sev_asid + 1;
|
|
|
|
wrmsrl(MSR_EFER, efer | EFER_SVME);
|
|
|
|
wrmsrl(MSR_VM_HSAVE_PA, sd->save_area_pa);
|
|
|
|
if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
|
|
/*
|
|
* Set the default value, even if we don't use TSC scaling
|
|
* to avoid having stale value in the msr
|
|
*/
|
|
__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
|
|
}
|
|
|
|
|
|
/*
|
|
* Get OSVW bits.
|
|
*
|
|
* Note that it is possible to have a system with mixed processor
|
|
* revisions and therefore different OSVW bits. If bits are not the same
|
|
* on different processors then choose the worst case (i.e. if erratum
|
|
* is present on one processor and not on another then assume that the
|
|
* erratum is present everywhere).
|
|
*/
|
|
if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
|
|
uint64_t len, status = 0;
|
|
int err;
|
|
|
|
len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
|
|
if (!err)
|
|
status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
|
|
&err);
|
|
|
|
if (err)
|
|
osvw_status = osvw_len = 0;
|
|
else {
|
|
if (len < osvw_len)
|
|
osvw_len = len;
|
|
osvw_status |= status;
|
|
osvw_status &= (1ULL << osvw_len) - 1;
|
|
}
|
|
} else
|
|
osvw_status = osvw_len = 0;
|
|
|
|
svm_init_erratum_383();
|
|
|
|
amd_pmu_enable_virt();
|
|
|
|
/*
|
|
* If TSC_AUX virtualization is supported, TSC_AUX becomes a swap type
|
|
* "B" field (see sev_es_prepare_switch_to_guest()) for SEV-ES guests.
|
|
* Since Linux does not change the value of TSC_AUX once set, prime the
|
|
* TSC_AUX field now to avoid a RDMSR on every vCPU run.
|
|
*/
|
|
if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) {
|
|
u32 __maybe_unused msr_hi;
|
|
|
|
rdmsr(MSR_TSC_AUX, sev_es_host_save_area(sd)->tsc_aux, msr_hi);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void svm_cpu_uninit(int cpu)
|
|
{
|
|
struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
|
|
|
|
if (!sd->save_area)
|
|
return;
|
|
|
|
kfree(sd->sev_vmcbs);
|
|
__free_page(__sme_pa_to_page(sd->save_area_pa));
|
|
sd->save_area_pa = 0;
|
|
sd->save_area = NULL;
|
|
}
|
|
|
|
static int svm_cpu_init(int cpu)
|
|
{
|
|
struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
|
|
struct page *save_area_page;
|
|
int ret = -ENOMEM;
|
|
|
|
memset(sd, 0, sizeof(struct svm_cpu_data));
|
|
save_area_page = snp_safe_alloc_page_node(cpu_to_node(cpu), GFP_KERNEL);
|
|
if (!save_area_page)
|
|
return ret;
|
|
|
|
ret = sev_cpu_init(sd);
|
|
if (ret)
|
|
goto free_save_area;
|
|
|
|
sd->save_area = page_address(save_area_page);
|
|
sd->save_area_pa = __sme_page_pa(save_area_page);
|
|
return 0;
|
|
|
|
free_save_area:
|
|
__free_page(save_area_page);
|
|
return ret;
|
|
|
|
}
|
|
|
|
static void set_dr_intercepts(struct vcpu_svm *svm)
|
|
{
|
|
struct vmcb *vmcb = svm->vmcb01.ptr;
|
|
|
|
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ);
|
|
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ);
|
|
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ);
|
|
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ);
|
|
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ);
|
|
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ);
|
|
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ);
|
|
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE);
|
|
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE);
|
|
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE);
|
|
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE);
|
|
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE);
|
|
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE);
|
|
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE);
|
|
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
|
|
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
|
|
|
|
recalc_intercepts(svm);
|
|
}
|
|
|
|
static void clr_dr_intercepts(struct vcpu_svm *svm)
|
|
{
|
|
struct vmcb *vmcb = svm->vmcb01.ptr;
|
|
|
|
vmcb->control.intercepts[INTERCEPT_DR] = 0;
|
|
|
|
recalc_intercepts(svm);
|
|
}
|
|
|
|
static int direct_access_msr_slot(u32 msr)
|
|
{
|
|
u32 i;
|
|
|
|
for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
|
|
if (direct_access_msrs[i].index == msr)
|
|
return i;
|
|
|
|
return -ENOENT;
|
|
}
|
|
|
|
static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
|
|
int write)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
int slot = direct_access_msr_slot(msr);
|
|
|
|
if (slot == -ENOENT)
|
|
return;
|
|
|
|
/* Set the shadow bitmaps to the desired intercept states */
|
|
if (read)
|
|
set_bit(slot, svm->shadow_msr_intercept.read);
|
|
else
|
|
clear_bit(slot, svm->shadow_msr_intercept.read);
|
|
|
|
if (write)
|
|
set_bit(slot, svm->shadow_msr_intercept.write);
|
|
else
|
|
clear_bit(slot, svm->shadow_msr_intercept.write);
|
|
}
|
|
|
|
static bool valid_msr_intercept(u32 index)
|
|
{
|
|
return direct_access_msr_slot(index) != -ENOENT;
|
|
}
|
|
|
|
static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
|
|
{
|
|
u8 bit_write;
|
|
unsigned long tmp;
|
|
u32 offset;
|
|
u32 *msrpm;
|
|
|
|
/*
|
|
* For non-nested case:
|
|
* If the L01 MSR bitmap does not intercept the MSR, then we need to
|
|
* save it.
|
|
*
|
|
* For nested case:
|
|
* If the L02 MSR bitmap does not intercept the MSR, then we need to
|
|
* save it.
|
|
*/
|
|
msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
|
|
to_svm(vcpu)->msrpm;
|
|
|
|
offset = svm_msrpm_offset(msr);
|
|
bit_write = 2 * (msr & 0x0f) + 1;
|
|
tmp = msrpm[offset];
|
|
|
|
BUG_ON(offset == MSR_INVALID);
|
|
|
|
return test_bit(bit_write, &tmp);
|
|
}
|
|
|
|
static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
|
|
u32 msr, int read, int write)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
u8 bit_read, bit_write;
|
|
unsigned long tmp;
|
|
u32 offset;
|
|
|
|
/*
|
|
* If this warning triggers extend the direct_access_msrs list at the
|
|
* beginning of the file
|
|
*/
|
|
WARN_ON(!valid_msr_intercept(msr));
|
|
|
|
/* Enforce non allowed MSRs to trap */
|
|
if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
|
|
read = 0;
|
|
|
|
if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
|
|
write = 0;
|
|
|
|
offset = svm_msrpm_offset(msr);
|
|
bit_read = 2 * (msr & 0x0f);
|
|
bit_write = 2 * (msr & 0x0f) + 1;
|
|
tmp = msrpm[offset];
|
|
|
|
BUG_ON(offset == MSR_INVALID);
|
|
|
|
read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
|
|
write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
|
|
|
|
msrpm[offset] = tmp;
|
|
|
|
svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
|
|
svm->nested.force_msr_bitmap_recalc = true;
|
|
}
|
|
|
|
void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
|
|
int read, int write)
|
|
{
|
|
set_shadow_msr_intercept(vcpu, msr, read, write);
|
|
set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
|
|
}
|
|
|
|
u32 *svm_vcpu_alloc_msrpm(void)
|
|
{
|
|
unsigned int order = get_order(MSRPM_SIZE);
|
|
struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order);
|
|
u32 *msrpm;
|
|
|
|
if (!pages)
|
|
return NULL;
|
|
|
|
msrpm = page_address(pages);
|
|
memset(msrpm, 0xff, PAGE_SIZE * (1 << order));
|
|
|
|
return msrpm;
|
|
}
|
|
|
|
void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
|
|
if (!direct_access_msrs[i].always)
|
|
continue;
|
|
set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
|
|
}
|
|
}
|
|
|
|
void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept)
|
|
{
|
|
int i;
|
|
|
|
if (intercept == svm->x2avic_msrs_intercepted)
|
|
return;
|
|
|
|
if (!x2avic_enabled)
|
|
return;
|
|
|
|
for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) {
|
|
int index = direct_access_msrs[i].index;
|
|
|
|
if ((index < APIC_BASE_MSR) ||
|
|
(index > APIC_BASE_MSR + 0xff))
|
|
continue;
|
|
set_msr_interception(&svm->vcpu, svm->msrpm, index,
|
|
!intercept, !intercept);
|
|
}
|
|
|
|
svm->x2avic_msrs_intercepted = intercept;
|
|
}
|
|
|
|
void svm_vcpu_free_msrpm(u32 *msrpm)
|
|
{
|
|
__free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
|
|
}
|
|
|
|
static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
u32 i;
|
|
|
|
/*
|
|
* Set intercept permissions for all direct access MSRs again. They
|
|
* will automatically get filtered through the MSR filter, so we are
|
|
* back in sync after this.
|
|
*/
|
|
for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
|
|
u32 msr = direct_access_msrs[i].index;
|
|
u32 read = test_bit(i, svm->shadow_msr_intercept.read);
|
|
u32 write = test_bit(i, svm->shadow_msr_intercept.write);
|
|
|
|
set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
|
|
}
|
|
}
|
|
|
|
static void add_msr_offset(u32 offset)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < MSRPM_OFFSETS; ++i) {
|
|
|
|
/* Offset already in list? */
|
|
if (msrpm_offsets[i] == offset)
|
|
return;
|
|
|
|
/* Slot used by another offset? */
|
|
if (msrpm_offsets[i] != MSR_INVALID)
|
|
continue;
|
|
|
|
/* Add offset to list */
|
|
msrpm_offsets[i] = offset;
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If this BUG triggers the msrpm_offsets table has an overflow. Just
|
|
* increase MSRPM_OFFSETS in this case.
|
|
*/
|
|
BUG();
|
|
}
|
|
|
|
static void init_msrpm_offsets(void)
|
|
{
|
|
int i;
|
|
|
|
memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
|
|
|
|
for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
|
|
u32 offset;
|
|
|
|
offset = svm_msrpm_offset(direct_access_msrs[i].index);
|
|
BUG_ON(offset == MSR_INVALID);
|
|
|
|
add_msr_offset(offset);
|
|
}
|
|
}
|
|
|
|
void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
|
|
{
|
|
to_vmcb->save.dbgctl = from_vmcb->save.dbgctl;
|
|
to_vmcb->save.br_from = from_vmcb->save.br_from;
|
|
to_vmcb->save.br_to = from_vmcb->save.br_to;
|
|
to_vmcb->save.last_excp_from = from_vmcb->save.last_excp_from;
|
|
to_vmcb->save.last_excp_to = from_vmcb->save.last_excp_to;
|
|
|
|
vmcb_mark_dirty(to_vmcb, VMCB_LBR);
|
|
}
|
|
|
|
void svm_enable_lbrv(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
|
|
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
|
|
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
|
|
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
|
|
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
|
|
|
|
if (sev_es_guest(vcpu->kvm))
|
|
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_DEBUGCTLMSR, 1, 1);
|
|
|
|
/* Move the LBR msrs to the vmcb02 so that the guest can see them. */
|
|
if (is_guest_mode(vcpu))
|
|
svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr);
|
|
}
|
|
|
|
static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
KVM_BUG_ON(sev_es_guest(vcpu->kvm), vcpu->kvm);
|
|
|
|
svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
|
|
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
|
|
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
|
|
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
|
|
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
|
|
|
|
/*
|
|
* Move the LBR msrs back to the vmcb01 to avoid copying them
|
|
* on nested guest entries.
|
|
*/
|
|
if (is_guest_mode(vcpu))
|
|
svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb);
|
|
}
|
|
|
|
static struct vmcb *svm_get_lbr_vmcb(struct vcpu_svm *svm)
|
|
{
|
|
/*
|
|
* If LBR virtualization is disabled, the LBR MSRs are always kept in
|
|
* vmcb01. If LBR virtualization is enabled and L1 is running VMs of
|
|
* its own, the MSRs are moved between vmcb01 and vmcb02 as needed.
|
|
*/
|
|
return svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK ? svm->vmcb :
|
|
svm->vmcb01.ptr;
|
|
}
|
|
|
|
void svm_update_lbrv(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK;
|
|
bool enable_lbrv = (svm_get_lbr_vmcb(svm)->save.dbgctl & DEBUGCTLMSR_LBR) ||
|
|
(is_guest_mode(vcpu) && guest_can_use(vcpu, X86_FEATURE_LBRV) &&
|
|
(svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK));
|
|
|
|
if (enable_lbrv == current_enable_lbrv)
|
|
return;
|
|
|
|
if (enable_lbrv)
|
|
svm_enable_lbrv(vcpu);
|
|
else
|
|
svm_disable_lbrv(vcpu);
|
|
}
|
|
|
|
void disable_nmi_singlestep(struct vcpu_svm *svm)
|
|
{
|
|
svm->nmi_singlestep = false;
|
|
|
|
if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
|
|
/* Clear our flags if they were not set by the guest */
|
|
if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
|
|
svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
|
|
if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
|
|
svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
|
|
}
|
|
}
|
|
|
|
static void grow_ple_window(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct vmcb_control_area *control = &svm->vmcb->control;
|
|
int old = control->pause_filter_count;
|
|
|
|
if (kvm_pause_in_guest(vcpu->kvm))
|
|
return;
|
|
|
|
control->pause_filter_count = __grow_ple_window(old,
|
|
pause_filter_count,
|
|
pause_filter_count_grow,
|
|
pause_filter_count_max);
|
|
|
|
if (control->pause_filter_count != old) {
|
|
vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
|
|
trace_kvm_ple_window_update(vcpu->vcpu_id,
|
|
control->pause_filter_count, old);
|
|
}
|
|
}
|
|
|
|
static void shrink_ple_window(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct vmcb_control_area *control = &svm->vmcb->control;
|
|
int old = control->pause_filter_count;
|
|
|
|
if (kvm_pause_in_guest(vcpu->kvm))
|
|
return;
|
|
|
|
control->pause_filter_count =
|
|
__shrink_ple_window(old,
|
|
pause_filter_count,
|
|
pause_filter_count_shrink,
|
|
pause_filter_count);
|
|
if (control->pause_filter_count != old) {
|
|
vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
|
|
trace_kvm_ple_window_update(vcpu->vcpu_id,
|
|
control->pause_filter_count, old);
|
|
}
|
|
}
|
|
|
|
static void svm_hardware_unsetup(void)
|
|
{
|
|
int cpu;
|
|
|
|
sev_hardware_unsetup();
|
|
|
|
for_each_possible_cpu(cpu)
|
|
svm_cpu_uninit(cpu);
|
|
|
|
__free_pages(__sme_pa_to_page(iopm_base), get_order(IOPM_SIZE));
|
|
iopm_base = 0;
|
|
}
|
|
|
|
static void init_seg(struct vmcb_seg *seg)
|
|
{
|
|
seg->selector = 0;
|
|
seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
|
|
SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
|
|
seg->limit = 0xffff;
|
|
seg->base = 0;
|
|
}
|
|
|
|
static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
|
|
{
|
|
seg->selector = 0;
|
|
seg->attrib = SVM_SELECTOR_P_MASK | type;
|
|
seg->limit = 0xffff;
|
|
seg->base = 0;
|
|
}
|
|
|
|
static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
return svm->nested.ctl.tsc_offset;
|
|
}
|
|
|
|
static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
return svm->tsc_ratio_msr;
|
|
}
|
|
|
|
static void svm_write_tsc_offset(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
|
|
svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset;
|
|
vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
|
|
}
|
|
|
|
void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu)
|
|
{
|
|
preempt_disable();
|
|
if (to_svm(vcpu)->guest_state_loaded)
|
|
__svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
|
|
preempt_enable();
|
|
}
|
|
|
|
/* Evaluate instruction intercepts that depend on guest CPUID features. */
|
|
static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu,
|
|
struct vcpu_svm *svm)
|
|
{
|
|
/*
|
|
* Intercept INVPCID if shadow paging is enabled to sync/free shadow
|
|
* roots, or if INVPCID is disabled in the guest to inject #UD.
|
|
*/
|
|
if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
|
|
if (!npt_enabled ||
|
|
!guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
|
|
svm_set_intercept(svm, INTERCEPT_INVPCID);
|
|
else
|
|
svm_clr_intercept(svm, INTERCEPT_INVPCID);
|
|
}
|
|
|
|
if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
|
|
if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
|
|
svm_clr_intercept(svm, INTERCEPT_RDTSCP);
|
|
else
|
|
svm_set_intercept(svm, INTERCEPT_RDTSCP);
|
|
}
|
|
}
|
|
|
|
static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if (guest_cpuid_is_intel_compatible(vcpu)) {
|
|
/*
|
|
* We must intercept SYSENTER_EIP and SYSENTER_ESP
|
|
* accesses because the processor only stores 32 bits.
|
|
* For the same reason we cannot use virtual VMLOAD/VMSAVE.
|
|
*/
|
|
svm_set_intercept(svm, INTERCEPT_VMLOAD);
|
|
svm_set_intercept(svm, INTERCEPT_VMSAVE);
|
|
svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
|
|
|
|
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0);
|
|
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0);
|
|
} else {
|
|
/*
|
|
* If hardware supports Virtual VMLOAD VMSAVE then enable it
|
|
* in VMCB and clear intercepts to avoid #VMEXIT.
|
|
*/
|
|
if (vls) {
|
|
svm_clr_intercept(svm, INTERCEPT_VMLOAD);
|
|
svm_clr_intercept(svm, INTERCEPT_VMSAVE);
|
|
svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
|
|
}
|
|
/* No need to intercept these MSRs */
|
|
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
|
|
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
|
|
}
|
|
}
|
|
|
|
static void init_vmcb(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct vmcb *vmcb = svm->vmcb01.ptr;
|
|
struct vmcb_control_area *control = &vmcb->control;
|
|
struct vmcb_save_area *save = &vmcb->save;
|
|
|
|
svm_set_intercept(svm, INTERCEPT_CR0_READ);
|
|
svm_set_intercept(svm, INTERCEPT_CR3_READ);
|
|
svm_set_intercept(svm, INTERCEPT_CR4_READ);
|
|
svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
|
|
svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
|
|
svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
|
|
if (!kvm_vcpu_apicv_active(vcpu))
|
|
svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
|
|
|
|
set_dr_intercepts(svm);
|
|
|
|
set_exception_intercept(svm, PF_VECTOR);
|
|
set_exception_intercept(svm, UD_VECTOR);
|
|
set_exception_intercept(svm, MC_VECTOR);
|
|
set_exception_intercept(svm, AC_VECTOR);
|
|
set_exception_intercept(svm, DB_VECTOR);
|
|
/*
|
|
* Guest access to VMware backdoor ports could legitimately
|
|
* trigger #GP because of TSS I/O permission bitmap.
|
|
* We intercept those #GP and allow access to them anyway
|
|
* as VMware does.
|
|
*/
|
|
if (enable_vmware_backdoor)
|
|
set_exception_intercept(svm, GP_VECTOR);
|
|
|
|
svm_set_intercept(svm, INTERCEPT_INTR);
|
|
svm_set_intercept(svm, INTERCEPT_NMI);
|
|
|
|
if (intercept_smi)
|
|
svm_set_intercept(svm, INTERCEPT_SMI);
|
|
|
|
svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
|
|
svm_set_intercept(svm, INTERCEPT_RDPMC);
|
|
svm_set_intercept(svm, INTERCEPT_CPUID);
|
|
svm_set_intercept(svm, INTERCEPT_INVD);
|
|
svm_set_intercept(svm, INTERCEPT_INVLPG);
|
|
svm_set_intercept(svm, INTERCEPT_INVLPGA);
|
|
svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
|
|
svm_set_intercept(svm, INTERCEPT_MSR_PROT);
|
|
svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
|
|
svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
|
|
svm_set_intercept(svm, INTERCEPT_VMRUN);
|
|
svm_set_intercept(svm, INTERCEPT_VMMCALL);
|
|
svm_set_intercept(svm, INTERCEPT_VMLOAD);
|
|
svm_set_intercept(svm, INTERCEPT_VMSAVE);
|
|
svm_set_intercept(svm, INTERCEPT_STGI);
|
|
svm_set_intercept(svm, INTERCEPT_CLGI);
|
|
svm_set_intercept(svm, INTERCEPT_SKINIT);
|
|
svm_set_intercept(svm, INTERCEPT_WBINVD);
|
|
svm_set_intercept(svm, INTERCEPT_XSETBV);
|
|
svm_set_intercept(svm, INTERCEPT_RDPRU);
|
|
svm_set_intercept(svm, INTERCEPT_RSM);
|
|
|
|
if (!kvm_mwait_in_guest(vcpu->kvm)) {
|
|
svm_set_intercept(svm, INTERCEPT_MONITOR);
|
|
svm_set_intercept(svm, INTERCEPT_MWAIT);
|
|
}
|
|
|
|
if (!kvm_hlt_in_guest(vcpu->kvm))
|
|
svm_set_intercept(svm, INTERCEPT_HLT);
|
|
|
|
control->iopm_base_pa = iopm_base;
|
|
control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
|
|
control->int_ctl = V_INTR_MASKING_MASK;
|
|
|
|
init_seg(&save->es);
|
|
init_seg(&save->ss);
|
|
init_seg(&save->ds);
|
|
init_seg(&save->fs);
|
|
init_seg(&save->gs);
|
|
|
|
save->cs.selector = 0xf000;
|
|
save->cs.base = 0xffff0000;
|
|
/* Executable/Readable Code Segment */
|
|
save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
|
|
SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
|
|
save->cs.limit = 0xffff;
|
|
|
|
save->gdtr.base = 0;
|
|
save->gdtr.limit = 0xffff;
|
|
save->idtr.base = 0;
|
|
save->idtr.limit = 0xffff;
|
|
|
|
init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
|
|
init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
|
|
|
|
if (npt_enabled) {
|
|
/* Setup VMCB for Nested Paging */
|
|
control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
|
|
svm_clr_intercept(svm, INTERCEPT_INVLPG);
|
|
clr_exception_intercept(svm, PF_VECTOR);
|
|
svm_clr_intercept(svm, INTERCEPT_CR3_READ);
|
|
svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
|
|
save->g_pat = vcpu->arch.pat;
|
|
save->cr3 = 0;
|
|
}
|
|
svm->current_vmcb->asid_generation = 0;
|
|
svm->asid = 0;
|
|
|
|
svm->nested.vmcb12_gpa = INVALID_GPA;
|
|
svm->nested.last_vmcb12_gpa = INVALID_GPA;
|
|
|
|
if (!kvm_pause_in_guest(vcpu->kvm)) {
|
|
control->pause_filter_count = pause_filter_count;
|
|
if (pause_filter_thresh)
|
|
control->pause_filter_thresh = pause_filter_thresh;
|
|
svm_set_intercept(svm, INTERCEPT_PAUSE);
|
|
} else {
|
|
svm_clr_intercept(svm, INTERCEPT_PAUSE);
|
|
}
|
|
|
|
svm_recalc_instruction_intercepts(vcpu, svm);
|
|
|
|
/*
|
|
* If the host supports V_SPEC_CTRL then disable the interception
|
|
* of MSR_IA32_SPEC_CTRL.
|
|
*/
|
|
if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
|
|
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
|
|
|
|
if (kvm_vcpu_apicv_active(vcpu))
|
|
avic_init_vmcb(svm, vmcb);
|
|
|
|
if (vnmi)
|
|
svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK;
|
|
|
|
if (vgif) {
|
|
svm_clr_intercept(svm, INTERCEPT_STGI);
|
|
svm_clr_intercept(svm, INTERCEPT_CLGI);
|
|
svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
|
|
}
|
|
|
|
if (sev_guest(vcpu->kvm))
|
|
sev_init_vmcb(svm);
|
|
|
|
svm_hv_init_vmcb(vmcb);
|
|
init_vmcb_after_set_cpuid(vcpu);
|
|
|
|
vmcb_mark_all_dirty(vmcb);
|
|
|
|
enable_gif(svm);
|
|
}
|
|
|
|
static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
svm_vcpu_init_msrpm(vcpu, svm->msrpm);
|
|
|
|
svm_init_osvw(vcpu);
|
|
vcpu->arch.microcode_version = 0x01000065;
|
|
svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio;
|
|
|
|
svm->nmi_masked = false;
|
|
svm->awaiting_iret_completion = false;
|
|
|
|
if (sev_es_guest(vcpu->kvm))
|
|
sev_es_vcpu_reset(svm);
|
|
}
|
|
|
|
static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
svm->spec_ctrl = 0;
|
|
svm->virt_spec_ctrl = 0;
|
|
|
|
if (init_event)
|
|
sev_snp_init_protected_guest_state(vcpu);
|
|
|
|
init_vmcb(vcpu);
|
|
|
|
if (!init_event)
|
|
__svm_vcpu_reset(vcpu);
|
|
}
|
|
|
|
void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
|
|
{
|
|
svm->current_vmcb = target_vmcb;
|
|
svm->vmcb = target_vmcb->ptr;
|
|
}
|
|
|
|
static int svm_vcpu_create(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm;
|
|
struct page *vmcb01_page;
|
|
struct page *vmsa_page = NULL;
|
|
int err;
|
|
|
|
BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
|
|
svm = to_svm(vcpu);
|
|
|
|
err = -ENOMEM;
|
|
vmcb01_page = snp_safe_alloc_page();
|
|
if (!vmcb01_page)
|
|
goto out;
|
|
|
|
if (sev_es_guest(vcpu->kvm)) {
|
|
/*
|
|
* SEV-ES guests require a separate VMSA page used to contain
|
|
* the encrypted register state of the guest.
|
|
*/
|
|
vmsa_page = snp_safe_alloc_page();
|
|
if (!vmsa_page)
|
|
goto error_free_vmcb_page;
|
|
}
|
|
|
|
err = avic_init_vcpu(svm);
|
|
if (err)
|
|
goto error_free_vmsa_page;
|
|
|
|
svm->msrpm = svm_vcpu_alloc_msrpm();
|
|
if (!svm->msrpm) {
|
|
err = -ENOMEM;
|
|
goto error_free_vmsa_page;
|
|
}
|
|
|
|
svm->x2avic_msrs_intercepted = true;
|
|
|
|
svm->vmcb01.ptr = page_address(vmcb01_page);
|
|
svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
|
|
svm_switch_vmcb(svm, &svm->vmcb01);
|
|
|
|
if (vmsa_page)
|
|
svm->sev_es.vmsa = page_address(vmsa_page);
|
|
|
|
svm->guest_state_loaded = false;
|
|
|
|
return 0;
|
|
|
|
error_free_vmsa_page:
|
|
if (vmsa_page)
|
|
__free_page(vmsa_page);
|
|
error_free_vmcb_page:
|
|
__free_page(vmcb01_page);
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
static void svm_clear_current_vmcb(struct vmcb *vmcb)
|
|
{
|
|
int i;
|
|
|
|
for_each_online_cpu(i)
|
|
cmpxchg(per_cpu_ptr(&svm_data.current_vmcb, i), vmcb, NULL);
|
|
}
|
|
|
|
static void svm_vcpu_free(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
/*
|
|
* The vmcb page can be recycled, causing a false negative in
|
|
* svm_vcpu_load(). So, ensure that no logical CPU has this
|
|
* vmcb page recorded as its current vmcb.
|
|
*/
|
|
svm_clear_current_vmcb(svm->vmcb);
|
|
|
|
svm_leave_nested(vcpu);
|
|
svm_free_nested(svm);
|
|
|
|
sev_free_vcpu(vcpu);
|
|
|
|
__free_page(__sme_pa_to_page(svm->vmcb01.pa));
|
|
__free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
|
|
}
|
|
|
|
static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
|
|
|
|
if (sev_es_guest(vcpu->kvm))
|
|
sev_es_unmap_ghcb(svm);
|
|
|
|
if (svm->guest_state_loaded)
|
|
return;
|
|
|
|
/*
|
|
* Save additional host state that will be restored on VMEXIT (sev-es)
|
|
* or subsequent vmload of host save area.
|
|
*/
|
|
vmsave(sd->save_area_pa);
|
|
if (sev_es_guest(vcpu->kvm))
|
|
sev_es_prepare_switch_to_guest(svm, sev_es_host_save_area(sd));
|
|
|
|
if (tsc_scaling)
|
|
__svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
|
|
|
|
/*
|
|
* TSC_AUX is always virtualized for SEV-ES guests when the feature is
|
|
* available. The user return MSR support is not required in this case
|
|
* because TSC_AUX is restored on #VMEXIT from the host save area
|
|
* (which has been initialized in svm_enable_virtualization_cpu()).
|
|
*/
|
|
if (likely(tsc_aux_uret_slot >= 0) &&
|
|
(!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm)))
|
|
kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
|
|
|
|
svm->guest_state_loaded = true;
|
|
}
|
|
|
|
static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
|
|
{
|
|
to_svm(vcpu)->guest_state_loaded = false;
|
|
}
|
|
|
|
static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
|
|
|
|
if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm))
|
|
shrink_ple_window(vcpu);
|
|
|
|
if (sd->current_vmcb != svm->vmcb) {
|
|
sd->current_vmcb = svm->vmcb;
|
|
|
|
if (!cpu_feature_enabled(X86_FEATURE_IBPB_ON_VMEXIT))
|
|
indirect_branch_prediction_barrier();
|
|
}
|
|
if (kvm_vcpu_apicv_active(vcpu))
|
|
avic_vcpu_load(vcpu, cpu);
|
|
}
|
|
|
|
static void svm_vcpu_put(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (kvm_vcpu_apicv_active(vcpu))
|
|
avic_vcpu_put(vcpu);
|
|
|
|
svm_prepare_host_switch(vcpu);
|
|
|
|
++vcpu->stat.host_state_reload;
|
|
}
|
|
|
|
static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
unsigned long rflags = svm->vmcb->save.rflags;
|
|
|
|
if (svm->nmi_singlestep) {
|
|
/* Hide our flags if they were not set by the guest */
|
|
if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
|
|
rflags &= ~X86_EFLAGS_TF;
|
|
if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
|
|
rflags &= ~X86_EFLAGS_RF;
|
|
}
|
|
return rflags;
|
|
}
|
|
|
|
static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
|
|
{
|
|
if (to_svm(vcpu)->nmi_singlestep)
|
|
rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
|
|
|
|
/*
|
|
* Any change of EFLAGS.VM is accompanied by a reload of SS
|
|
* (caused by either a task switch or an inter-privilege IRET),
|
|
* so we do not need to update the CPL here.
|
|
*/
|
|
to_svm(vcpu)->vmcb->save.rflags = rflags;
|
|
}
|
|
|
|
static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vmcb *vmcb = to_svm(vcpu)->vmcb;
|
|
|
|
return sev_es_guest(vcpu->kvm)
|
|
? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
|
|
: kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
|
|
}
|
|
|
|
static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
|
|
{
|
|
kvm_register_mark_available(vcpu, reg);
|
|
|
|
switch (reg) {
|
|
case VCPU_EXREG_PDPTR:
|
|
/*
|
|
* When !npt_enabled, mmu->pdptrs[] is already available since
|
|
* it is always updated per SDM when moving to CRs.
|
|
*/
|
|
if (npt_enabled)
|
|
load_pdptrs(vcpu, kvm_read_cr3(vcpu));
|
|
break;
|
|
default:
|
|
KVM_BUG_ON(1, vcpu->kvm);
|
|
}
|
|
}
|
|
|
|
static void svm_set_vintr(struct vcpu_svm *svm)
|
|
{
|
|
struct vmcb_control_area *control;
|
|
|
|
/*
|
|
* The following fields are ignored when AVIC is enabled
|
|
*/
|
|
WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu));
|
|
|
|
svm_set_intercept(svm, INTERCEPT_VINTR);
|
|
|
|
/*
|
|
* Recalculating intercepts may have cleared the VINTR intercept. If
|
|
* V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF
|
|
* for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN.
|
|
* Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as
|
|
* interrupts will never be unblocked while L2 is running.
|
|
*/
|
|
if (!svm_is_intercept(svm, INTERCEPT_VINTR))
|
|
return;
|
|
|
|
/*
|
|
* This is just a dummy VINTR to actually cause a vmexit to happen.
|
|
* Actual injection of virtual interrupts happens through EVENTINJ.
|
|
*/
|
|
control = &svm->vmcb->control;
|
|
control->int_vector = 0x0;
|
|
control->int_ctl &= ~V_INTR_PRIO_MASK;
|
|
control->int_ctl |= V_IRQ_MASK |
|
|
((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
|
|
vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
|
|
}
|
|
|
|
static void svm_clear_vintr(struct vcpu_svm *svm)
|
|
{
|
|
svm_clr_intercept(svm, INTERCEPT_VINTR);
|
|
|
|
/* Drop int_ctl fields related to VINTR injection. */
|
|
svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
|
|
if (is_guest_mode(&svm->vcpu)) {
|
|
svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
|
|
|
|
WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
|
|
(svm->nested.ctl.int_ctl & V_TPR_MASK));
|
|
|
|
svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
|
|
V_IRQ_INJECTION_BITS_MASK;
|
|
|
|
svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
|
|
}
|
|
|
|
vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
|
|
}
|
|
|
|
static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
|
|
{
|
|
struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
|
|
struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
|
|
|
|
switch (seg) {
|
|
case VCPU_SREG_CS: return &save->cs;
|
|
case VCPU_SREG_DS: return &save->ds;
|
|
case VCPU_SREG_ES: return &save->es;
|
|
case VCPU_SREG_FS: return &save01->fs;
|
|
case VCPU_SREG_GS: return &save01->gs;
|
|
case VCPU_SREG_SS: return &save->ss;
|
|
case VCPU_SREG_TR: return &save01->tr;
|
|
case VCPU_SREG_LDTR: return &save01->ldtr;
|
|
}
|
|
BUG();
|
|
return NULL;
|
|
}
|
|
|
|
static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
|
|
{
|
|
struct vmcb_seg *s = svm_seg(vcpu, seg);
|
|
|
|
return s->base;
|
|
}
|
|
|
|
static void svm_get_segment(struct kvm_vcpu *vcpu,
|
|
struct kvm_segment *var, int seg)
|
|
{
|
|
struct vmcb_seg *s = svm_seg(vcpu, seg);
|
|
|
|
var->base = s->base;
|
|
var->limit = s->limit;
|
|
var->selector = s->selector;
|
|
var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
|
|
var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
|
|
var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
|
|
var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
|
|
var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
|
|
var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
|
|
var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
|
|
|
|
/*
|
|
* AMD CPUs circa 2014 track the G bit for all segments except CS.
|
|
* However, the SVM spec states that the G bit is not observed by the
|
|
* CPU, and some VMware virtual CPUs drop the G bit for all segments.
|
|
* So let's synthesize a legal G bit for all segments, this helps
|
|
* running KVM nested. It also helps cross-vendor migration, because
|
|
* Intel's vmentry has a check on the 'G' bit.
|
|
*/
|
|
var->g = s->limit > 0xfffff;
|
|
|
|
/*
|
|
* AMD's VMCB does not have an explicit unusable field, so emulate it
|
|
* for cross vendor migration purposes by "not present"
|
|
*/
|
|
var->unusable = !var->present;
|
|
|
|
switch (seg) {
|
|
case VCPU_SREG_TR:
|
|
/*
|
|
* Work around a bug where the busy flag in the tr selector
|
|
* isn't exposed
|
|
*/
|
|
var->type |= 0x2;
|
|
break;
|
|
case VCPU_SREG_DS:
|
|
case VCPU_SREG_ES:
|
|
case VCPU_SREG_FS:
|
|
case VCPU_SREG_GS:
|
|
/*
|
|
* The accessed bit must always be set in the segment
|
|
* descriptor cache, although it can be cleared in the
|
|
* descriptor, the cached bit always remains at 1. Since
|
|
* Intel has a check on this, set it here to support
|
|
* cross-vendor migration.
|
|
*/
|
|
if (!var->unusable)
|
|
var->type |= 0x1;
|
|
break;
|
|
case VCPU_SREG_SS:
|
|
/*
|
|
* On AMD CPUs sometimes the DB bit in the segment
|
|
* descriptor is left as 1, although the whole segment has
|
|
* been made unusable. Clear it here to pass an Intel VMX
|
|
* entry check when cross vendor migrating.
|
|
*/
|
|
if (var->unusable)
|
|
var->db = 0;
|
|
/* This is symmetric with svm_set_segment() */
|
|
var->dpl = to_svm(vcpu)->vmcb->save.cpl;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int svm_get_cpl(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
|
|
|
|
return save->cpl;
|
|
}
|
|
|
|
static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
|
|
{
|
|
struct kvm_segment cs;
|
|
|
|
svm_get_segment(vcpu, &cs, VCPU_SREG_CS);
|
|
*db = cs.db;
|
|
*l = cs.l;
|
|
}
|
|
|
|
static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
dt->size = svm->vmcb->save.idtr.limit;
|
|
dt->address = svm->vmcb->save.idtr.base;
|
|
}
|
|
|
|
static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
svm->vmcb->save.idtr.limit = dt->size;
|
|
svm->vmcb->save.idtr.base = dt->address ;
|
|
vmcb_mark_dirty(svm->vmcb, VMCB_DT);
|
|
}
|
|
|
|
static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
dt->size = svm->vmcb->save.gdtr.limit;
|
|
dt->address = svm->vmcb->save.gdtr.base;
|
|
}
|
|
|
|
static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
svm->vmcb->save.gdtr.limit = dt->size;
|
|
svm->vmcb->save.gdtr.base = dt->address ;
|
|
vmcb_mark_dirty(svm->vmcb, VMCB_DT);
|
|
}
|
|
|
|
static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
/*
|
|
* For guests that don't set guest_state_protected, the cr3 update is
|
|
* handled via kvm_mmu_load() while entering the guest. For guests
|
|
* that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to
|
|
* VMCB save area now, since the save area will become the initial
|
|
* contents of the VMSA, and future VMCB save area updates won't be
|
|
* seen.
|
|
*/
|
|
if (sev_es_guest(vcpu->kvm)) {
|
|
svm->vmcb->save.cr3 = cr3;
|
|
vmcb_mark_dirty(svm->vmcb, VMCB_CR);
|
|
}
|
|
}
|
|
|
|
static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
u64 hcr0 = cr0;
|
|
bool old_paging = is_paging(vcpu);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
if (vcpu->arch.efer & EFER_LME) {
|
|
if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
|
|
vcpu->arch.efer |= EFER_LMA;
|
|
if (!vcpu->arch.guest_state_protected)
|
|
svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
|
|
}
|
|
|
|
if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
|
|
vcpu->arch.efer &= ~EFER_LMA;
|
|
if (!vcpu->arch.guest_state_protected)
|
|
svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
|
|
}
|
|
}
|
|
#endif
|
|
vcpu->arch.cr0 = cr0;
|
|
|
|
if (!npt_enabled) {
|
|
hcr0 |= X86_CR0_PG | X86_CR0_WP;
|
|
if (old_paging != is_paging(vcpu))
|
|
svm_set_cr4(vcpu, kvm_read_cr4(vcpu));
|
|
}
|
|
|
|
/*
|
|
* re-enable caching here because the QEMU bios
|
|
* does not do it - this results in some delay at
|
|
* reboot
|
|
*/
|
|
if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
|
|
hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
|
|
|
|
svm->vmcb->save.cr0 = hcr0;
|
|
vmcb_mark_dirty(svm->vmcb, VMCB_CR);
|
|
|
|
/*
|
|
* SEV-ES guests must always keep the CR intercepts cleared. CR
|
|
* tracking is done using the CR write traps.
|
|
*/
|
|
if (sev_es_guest(vcpu->kvm))
|
|
return;
|
|
|
|
if (hcr0 == cr0) {
|
|
/* Selective CR0 write remains on. */
|
|
svm_clr_intercept(svm, INTERCEPT_CR0_READ);
|
|
svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
|
|
} else {
|
|
svm_set_intercept(svm, INTERCEPT_CR0_READ);
|
|
svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
|
|
}
|
|
}
|
|
|
|
static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
|
|
{
|
|
unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
|
|
unsigned long old_cr4 = vcpu->arch.cr4;
|
|
|
|
if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
|
|
svm_flush_tlb_current(vcpu);
|
|
|
|
vcpu->arch.cr4 = cr4;
|
|
if (!npt_enabled) {
|
|
cr4 |= X86_CR4_PAE;
|
|
|
|
if (!is_paging(vcpu))
|
|
cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
|
|
}
|
|
cr4 |= host_cr4_mce;
|
|
to_svm(vcpu)->vmcb->save.cr4 = cr4;
|
|
vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
|
|
|
|
if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
|
|
kvm_update_cpuid_runtime(vcpu);
|
|
}
|
|
|
|
static void svm_set_segment(struct kvm_vcpu *vcpu,
|
|
struct kvm_segment *var, int seg)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct vmcb_seg *s = svm_seg(vcpu, seg);
|
|
|
|
s->base = var->base;
|
|
s->limit = var->limit;
|
|
s->selector = var->selector;
|
|
s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
|
|
s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
|
|
s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
|
|
s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
|
|
s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
|
|
s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
|
|
s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
|
|
s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
|
|
|
|
/*
|
|
* This is always accurate, except if SYSRET returned to a segment
|
|
* with SS.DPL != 3. Intel does not have this quirk, and always
|
|
* forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
|
|
* would entail passing the CPL to userspace and back.
|
|
*/
|
|
if (seg == VCPU_SREG_SS)
|
|
/* This is symmetric with svm_get_segment() */
|
|
svm->vmcb->save.cpl = (var->dpl & 3);
|
|
|
|
vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
|
|
}
|
|
|
|
static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
clr_exception_intercept(svm, BP_VECTOR);
|
|
|
|
if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
|
|
if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
|
|
set_exception_intercept(svm, BP_VECTOR);
|
|
}
|
|
}
|
|
|
|
static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
|
|
{
|
|
if (sd->next_asid > sd->max_asid) {
|
|
++sd->asid_generation;
|
|
sd->next_asid = sd->min_asid;
|
|
svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
|
|
vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
|
|
}
|
|
|
|
svm->current_vmcb->asid_generation = sd->asid_generation;
|
|
svm->asid = sd->next_asid++;
|
|
}
|
|
|
|
static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
|
|
{
|
|
struct vmcb *vmcb = svm->vmcb;
|
|
|
|
if (svm->vcpu.arch.guest_state_protected)
|
|
return;
|
|
|
|
if (unlikely(value != vmcb->save.dr6)) {
|
|
vmcb->save.dr6 = value;
|
|
vmcb_mark_dirty(vmcb, VMCB_DR);
|
|
}
|
|
}
|
|
|
|
static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm)))
|
|
return;
|
|
|
|
get_debugreg(vcpu->arch.db[0], 0);
|
|
get_debugreg(vcpu->arch.db[1], 1);
|
|
get_debugreg(vcpu->arch.db[2], 2);
|
|
get_debugreg(vcpu->arch.db[3], 3);
|
|
/*
|
|
* We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
|
|
* because db_interception might need it. We can do it before vmentry.
|
|
*/
|
|
vcpu->arch.dr6 = svm->vmcb->save.dr6;
|
|
vcpu->arch.dr7 = svm->vmcb->save.dr7;
|
|
vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
|
|
set_dr_intercepts(svm);
|
|
}
|
|
|
|
static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if (vcpu->arch.guest_state_protected)
|
|
return;
|
|
|
|
svm->vmcb->save.dr7 = value;
|
|
vmcb_mark_dirty(svm->vmcb, VMCB_DR);
|
|
}
|
|
|
|
static int pf_interception(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
u64 fault_address = svm->vmcb->control.exit_info_2;
|
|
u64 error_code = svm->vmcb->control.exit_info_1;
|
|
|
|
return kvm_handle_page_fault(vcpu, error_code, fault_address,
|
|
static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
|
|
svm->vmcb->control.insn_bytes : NULL,
|
|
svm->vmcb->control.insn_len);
|
|
}
|
|
|
|
static int npf_interception(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
int rc;
|
|
|
|
u64 fault_address = svm->vmcb->control.exit_info_2;
|
|
u64 error_code = svm->vmcb->control.exit_info_1;
|
|
|
|
/*
|
|
* WARN if hardware generates a fault with an error code that collides
|
|
* with KVM-defined sythentic flags. Clear the flags and continue on,
|
|
* i.e. don't terminate the VM, as KVM can't possibly be relying on a
|
|
* flag that KVM doesn't know about.
|
|
*/
|
|
if (WARN_ON_ONCE(error_code & PFERR_SYNTHETIC_MASK))
|
|
error_code &= ~PFERR_SYNTHETIC_MASK;
|
|
|
|
if (sev_snp_guest(vcpu->kvm) && (error_code & PFERR_GUEST_ENC_MASK))
|
|
error_code |= PFERR_PRIVATE_ACCESS;
|
|
|
|
trace_kvm_page_fault(vcpu, fault_address, error_code);
|
|
rc = kvm_mmu_page_fault(vcpu, fault_address, error_code,
|
|
static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
|
|
svm->vmcb->control.insn_bytes : NULL,
|
|
svm->vmcb->control.insn_len);
|
|
|
|
if (rc > 0 && error_code & PFERR_GUEST_RMP_MASK)
|
|
sev_handle_rmp_fault(vcpu, fault_address, error_code);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int db_interception(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_run *kvm_run = vcpu->run;
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if (!(vcpu->guest_debug &
|
|
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
|
|
!svm->nmi_singlestep) {
|
|
u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
|
|
kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
|
|
return 1;
|
|
}
|
|
|
|
if (svm->nmi_singlestep) {
|
|
disable_nmi_singlestep(svm);
|
|
/* Make sure we check for pending NMIs upon entry */
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
}
|
|
|
|
if (vcpu->guest_debug &
|
|
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
|
|
kvm_run->exit_reason = KVM_EXIT_DEBUG;
|
|
kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
|
|
kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
|
|
kvm_run->debug.arch.pc =
|
|
svm->vmcb->save.cs.base + svm->vmcb->save.rip;
|
|
kvm_run->debug.arch.exception = DB_VECTOR;
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int bp_interception(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct kvm_run *kvm_run = vcpu->run;
|
|
|
|
kvm_run->exit_reason = KVM_EXIT_DEBUG;
|
|
kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
|
|
kvm_run->debug.arch.exception = BP_VECTOR;
|
|
return 0;
|
|
}
|
|
|
|
static int ud_interception(struct kvm_vcpu *vcpu)
|
|
{
|
|
return handle_ud(vcpu);
|
|
}
|
|
|
|
static int ac_interception(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
|
|
return 1;
|
|
}
|
|
|
|
static bool is_erratum_383(void)
|
|
{
|
|
int err, i;
|
|
u64 value;
|
|
|
|
if (!erratum_383_found)
|
|
return false;
|
|
|
|
value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
|
|
if (err)
|
|
return false;
|
|
|
|
/* Bit 62 may or may not be set for this mce */
|
|
value &= ~(1ULL << 62);
|
|
|
|
if (value != 0xb600000000010015ULL)
|
|
return false;
|
|
|
|
/* Clear MCi_STATUS registers */
|
|
for (i = 0; i < 6; ++i)
|
|
native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
|
|
|
|
value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
|
|
if (!err) {
|
|
u32 low, high;
|
|
|
|
value &= ~(1ULL << 2);
|
|
low = lower_32_bits(value);
|
|
high = upper_32_bits(value);
|
|
|
|
native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
|
|
}
|
|
|
|
/* Flush tlb to evict multi-match entries */
|
|
__flush_tlb_all();
|
|
|
|
return true;
|
|
}
|
|
|
|
static void svm_handle_mce(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (is_erratum_383()) {
|
|
/*
|
|
* Erratum 383 triggered. Guest state is corrupt so kill the
|
|
* guest.
|
|
*/
|
|
pr_err("Guest triggered AMD Erratum 383\n");
|
|
|
|
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* On an #MC intercept the MCE handler is not called automatically in
|
|
* the host. So do it by hand here.
|
|
*/
|
|
kvm_machine_check();
|
|
}
|
|
|
|
static int mc_interception(struct kvm_vcpu *vcpu)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static int shutdown_interception(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_run *kvm_run = vcpu->run;
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
|
|
/*
|
|
* VMCB is undefined after a SHUTDOWN intercept. INIT the vCPU to put
|
|
* the VMCB in a known good state. Unfortuately, KVM doesn't have
|
|
* KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
|
|
* userspace. At a platform view, INIT is acceptable behavior as
|
|
* there exist bare metal platforms that automatically INIT the CPU
|
|
* in response to shutdown.
|
|
*
|
|
* The VM save area for SEV-ES guests has already been encrypted so it
|
|
* cannot be reinitialized, i.e. synthesizing INIT is futile.
|
|
*/
|
|
if (!sev_es_guest(vcpu->kvm)) {
|
|
clear_page(svm->vmcb);
|
|
kvm_vcpu_reset(vcpu, true);
|
|
}
|
|
|
|
kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
|
|
return 0;
|
|
}
|
|
|
|
static int io_interception(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
|
|
int size, in, string;
|
|
unsigned port;
|
|
|
|
++vcpu->stat.io_exits;
|
|
string = (io_info & SVM_IOIO_STR_MASK) != 0;
|
|
in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
|
|
port = io_info >> 16;
|
|
size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
|
|
|
|
if (string) {
|
|
if (sev_es_guest(vcpu->kvm))
|
|
return sev_es_string_io(svm, size, port, in);
|
|
else
|
|
return kvm_emulate_instruction(vcpu, 0);
|
|
}
|
|
|
|
svm->next_rip = svm->vmcb->control.exit_info_2;
|
|
|
|
return kvm_fast_pio(vcpu, size, port, in);
|
|
}
|
|
|
|
static int nmi_interception(struct kvm_vcpu *vcpu)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static int smi_interception(struct kvm_vcpu *vcpu)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static int intr_interception(struct kvm_vcpu *vcpu)
|
|
{
|
|
++vcpu->stat.irq_exits;
|
|
return 1;
|
|
}
|
|
|
|
static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct vmcb *vmcb12;
|
|
struct kvm_host_map map;
|
|
int ret;
|
|
|
|
if (nested_svm_check_permissions(vcpu))
|
|
return 1;
|
|
|
|
ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
|
|
if (ret) {
|
|
if (ret == -EINVAL)
|
|
kvm_inject_gp(vcpu, 0);
|
|
return 1;
|
|
}
|
|
|
|
vmcb12 = map.hva;
|
|
|
|
ret = kvm_skip_emulated_instruction(vcpu);
|
|
|
|
if (vmload) {
|
|
svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
|
|
svm->sysenter_eip_hi = 0;
|
|
svm->sysenter_esp_hi = 0;
|
|
} else {
|
|
svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
|
|
}
|
|
|
|
kvm_vcpu_unmap(vcpu, &map, true);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int vmload_interception(struct kvm_vcpu *vcpu)
|
|
{
|
|
return vmload_vmsave_interception(vcpu, true);
|
|
}
|
|
|
|
static int vmsave_interception(struct kvm_vcpu *vcpu)
|
|
{
|
|
return vmload_vmsave_interception(vcpu, false);
|
|
}
|
|
|
|
static int vmrun_interception(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (nested_svm_check_permissions(vcpu))
|
|
return 1;
|
|
|
|
return nested_svm_vmrun(vcpu);
|
|
}
|
|
|
|
enum {
|
|
NONE_SVM_INSTR,
|
|
SVM_INSTR_VMRUN,
|
|
SVM_INSTR_VMLOAD,
|
|
SVM_INSTR_VMSAVE,
|
|
};
|
|
|
|
/* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
|
|
static int svm_instr_opcode(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
|
|
|
|
if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
|
|
return NONE_SVM_INSTR;
|
|
|
|
switch (ctxt->modrm) {
|
|
case 0xd8: /* VMRUN */
|
|
return SVM_INSTR_VMRUN;
|
|
case 0xda: /* VMLOAD */
|
|
return SVM_INSTR_VMLOAD;
|
|
case 0xdb: /* VMSAVE */
|
|
return SVM_INSTR_VMSAVE;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return NONE_SVM_INSTR;
|
|
}
|
|
|
|
static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
|
|
{
|
|
const int guest_mode_exit_codes[] = {
|
|
[SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
|
|
[SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
|
|
[SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
|
|
};
|
|
int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
|
|
[SVM_INSTR_VMRUN] = vmrun_interception,
|
|
[SVM_INSTR_VMLOAD] = vmload_interception,
|
|
[SVM_INSTR_VMSAVE] = vmsave_interception,
|
|
};
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
int ret;
|
|
|
|
if (is_guest_mode(vcpu)) {
|
|
/* Returns '1' or -errno on failure, '0' on success. */
|
|
ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
|
|
if (ret)
|
|
return ret;
|
|
return 1;
|
|
}
|
|
return svm_instr_handlers[opcode](vcpu);
|
|
}
|
|
|
|
/*
|
|
* #GP handling code. Note that #GP can be triggered under the following two
|
|
* cases:
|
|
* 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
|
|
* some AMD CPUs when EAX of these instructions are in the reserved memory
|
|
* regions (e.g. SMM memory on host).
|
|
* 2) VMware backdoor
|
|
*/
|
|
static int gp_interception(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
u32 error_code = svm->vmcb->control.exit_info_1;
|
|
int opcode;
|
|
|
|
/* Both #GP cases have zero error_code */
|
|
if (error_code)
|
|
goto reinject;
|
|
|
|
/* Decode the instruction for usage later */
|
|
if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
|
|
goto reinject;
|
|
|
|
opcode = svm_instr_opcode(vcpu);
|
|
|
|
if (opcode == NONE_SVM_INSTR) {
|
|
if (!enable_vmware_backdoor)
|
|
goto reinject;
|
|
|
|
/*
|
|
* VMware backdoor emulation on #GP interception only handles
|
|
* IN{S}, OUT{S}, and RDPMC.
|
|
*/
|
|
if (!is_guest_mode(vcpu))
|
|
return kvm_emulate_instruction(vcpu,
|
|
EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
|
|
} else {
|
|
/* All SVM instructions expect page aligned RAX */
|
|
if (svm->vmcb->save.rax & ~PAGE_MASK)
|
|
goto reinject;
|
|
|
|
return emulate_svm_instr(vcpu, opcode);
|
|
}
|
|
|
|
reinject:
|
|
kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
|
|
return 1;
|
|
}
|
|
|
|
void svm_set_gif(struct vcpu_svm *svm, bool value)
|
|
{
|
|
if (value) {
|
|
/*
|
|
* If VGIF is enabled, the STGI intercept is only added to
|
|
* detect the opening of the SMI/NMI window; remove it now.
|
|
* Likewise, clear the VINTR intercept, we will set it
|
|
* again while processing KVM_REQ_EVENT if needed.
|
|
*/
|
|
if (vgif)
|
|
svm_clr_intercept(svm, INTERCEPT_STGI);
|
|
if (svm_is_intercept(svm, INTERCEPT_VINTR))
|
|
svm_clear_vintr(svm);
|
|
|
|
enable_gif(svm);
|
|
if (svm->vcpu.arch.smi_pending ||
|
|
svm->vcpu.arch.nmi_pending ||
|
|
kvm_cpu_has_injectable_intr(&svm->vcpu) ||
|
|
kvm_apic_has_pending_init_or_sipi(&svm->vcpu))
|
|
kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
|
|
} else {
|
|
disable_gif(svm);
|
|
|
|
/*
|
|
* After a CLGI no interrupts should come. But if vGIF is
|
|
* in use, we still rely on the VINTR intercept (rather than
|
|
* STGI) to detect an open interrupt window.
|
|
*/
|
|
if (!vgif)
|
|
svm_clear_vintr(svm);
|
|
}
|
|
}
|
|
|
|
static int stgi_interception(struct kvm_vcpu *vcpu)
|
|
{
|
|
int ret;
|
|
|
|
if (nested_svm_check_permissions(vcpu))
|
|
return 1;
|
|
|
|
ret = kvm_skip_emulated_instruction(vcpu);
|
|
svm_set_gif(to_svm(vcpu), true);
|
|
return ret;
|
|
}
|
|
|
|
static int clgi_interception(struct kvm_vcpu *vcpu)
|
|
{
|
|
int ret;
|
|
|
|
if (nested_svm_check_permissions(vcpu))
|
|
return 1;
|
|
|
|
ret = kvm_skip_emulated_instruction(vcpu);
|
|
svm_set_gif(to_svm(vcpu), false);
|
|
return ret;
|
|
}
|
|
|
|
static int invlpga_interception(struct kvm_vcpu *vcpu)
|
|
{
|
|
gva_t gva = kvm_rax_read(vcpu);
|
|
u32 asid = kvm_rcx_read(vcpu);
|
|
|
|
/* FIXME: Handle an address size prefix. */
|
|
if (!is_long_mode(vcpu))
|
|
gva = (u32)gva;
|
|
|
|
trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
|
|
|
|
/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
|
|
kvm_mmu_invlpg(vcpu, gva);
|
|
|
|
return kvm_skip_emulated_instruction(vcpu);
|
|
}
|
|
|
|
static int skinit_interception(struct kvm_vcpu *vcpu)
|
|
{
|
|
trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
|
|
|
|
kvm_queue_exception(vcpu, UD_VECTOR);
|
|
return 1;
|
|
}
|
|
|
|
static int task_switch_interception(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
u16 tss_selector;
|
|
int reason;
|
|
int int_type = svm->vmcb->control.exit_int_info &
|
|
SVM_EXITINTINFO_TYPE_MASK;
|
|
int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
|
|
uint32_t type =
|
|
svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
|
|
uint32_t idt_v =
|
|
svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
|
|
bool has_error_code = false;
|
|
u32 error_code = 0;
|
|
|
|
tss_selector = (u16)svm->vmcb->control.exit_info_1;
|
|
|
|
if (svm->vmcb->control.exit_info_2 &
|
|
(1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
|
|
reason = TASK_SWITCH_IRET;
|
|
else if (svm->vmcb->control.exit_info_2 &
|
|
(1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
|
|
reason = TASK_SWITCH_JMP;
|
|
else if (idt_v)
|
|
reason = TASK_SWITCH_GATE;
|
|
else
|
|
reason = TASK_SWITCH_CALL;
|
|
|
|
if (reason == TASK_SWITCH_GATE) {
|
|
switch (type) {
|
|
case SVM_EXITINTINFO_TYPE_NMI:
|
|
vcpu->arch.nmi_injected = false;
|
|
break;
|
|
case SVM_EXITINTINFO_TYPE_EXEPT:
|
|
if (svm->vmcb->control.exit_info_2 &
|
|
(1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
|
|
has_error_code = true;
|
|
error_code =
|
|
(u32)svm->vmcb->control.exit_info_2;
|
|
}
|
|
kvm_clear_exception_queue(vcpu);
|
|
break;
|
|
case SVM_EXITINTINFO_TYPE_INTR:
|
|
case SVM_EXITINTINFO_TYPE_SOFT:
|
|
kvm_clear_interrupt_queue(vcpu);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (reason != TASK_SWITCH_GATE ||
|
|
int_type == SVM_EXITINTINFO_TYPE_SOFT ||
|
|
(int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
|
|
(int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
|
|
if (!svm_skip_emulated_instruction(vcpu))
|
|
return 0;
|
|
}
|
|
|
|
if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
|
|
int_vec = -1;
|
|
|
|
return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
|
|
has_error_code, error_code);
|
|
}
|
|
|
|
static void svm_clr_iret_intercept(struct vcpu_svm *svm)
|
|
{
|
|
if (!sev_es_guest(svm->vcpu.kvm))
|
|
svm_clr_intercept(svm, INTERCEPT_IRET);
|
|
}
|
|
|
|
static void svm_set_iret_intercept(struct vcpu_svm *svm)
|
|
{
|
|
if (!sev_es_guest(svm->vcpu.kvm))
|
|
svm_set_intercept(svm, INTERCEPT_IRET);
|
|
}
|
|
|
|
static int iret_interception(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
WARN_ON_ONCE(sev_es_guest(vcpu->kvm));
|
|
|
|
++vcpu->stat.nmi_window_exits;
|
|
svm->awaiting_iret_completion = true;
|
|
|
|
svm_clr_iret_intercept(svm);
|
|
svm->nmi_iret_rip = kvm_rip_read(vcpu);
|
|
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
return 1;
|
|
}
|
|
|
|
static int invlpg_interception(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
|
|
return kvm_emulate_instruction(vcpu, 0);
|
|
|
|
kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
|
|
return kvm_skip_emulated_instruction(vcpu);
|
|
}
|
|
|
|
static int emulate_on_interception(struct kvm_vcpu *vcpu)
|
|
{
|
|
return kvm_emulate_instruction(vcpu, 0);
|
|
}
|
|
|
|
static int rsm_interception(struct kvm_vcpu *vcpu)
|
|
{
|
|
return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
|
|
}
|
|
|
|
static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
|
|
unsigned long val)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
unsigned long cr0 = vcpu->arch.cr0;
|
|
bool ret = false;
|
|
|
|
if (!is_guest_mode(vcpu) ||
|
|
(!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
|
|
return false;
|
|
|
|
cr0 &= ~SVM_CR0_SELECTIVE_MASK;
|
|
val &= ~SVM_CR0_SELECTIVE_MASK;
|
|
|
|
if (cr0 ^ val) {
|
|
svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
|
|
ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define CR_VALID (1ULL << 63)
|
|
|
|
static int cr_interception(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
int reg, cr;
|
|
unsigned long val;
|
|
int err;
|
|
|
|
if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
|
|
return emulate_on_interception(vcpu);
|
|
|
|
if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
|
|
return emulate_on_interception(vcpu);
|
|
|
|
reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
|
|
if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
|
|
cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
|
|
else
|
|
cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
|
|
|
|
err = 0;
|
|
if (cr >= 16) { /* mov to cr */
|
|
cr -= 16;
|
|
val = kvm_register_read(vcpu, reg);
|
|
trace_kvm_cr_write(cr, val);
|
|
switch (cr) {
|
|
case 0:
|
|
if (!check_selective_cr0_intercepted(vcpu, val))
|
|
err = kvm_set_cr0(vcpu, val);
|
|
else
|
|
return 1;
|
|
|
|
break;
|
|
case 3:
|
|
err = kvm_set_cr3(vcpu, val);
|
|
break;
|
|
case 4:
|
|
err = kvm_set_cr4(vcpu, val);
|
|
break;
|
|
case 8:
|
|
err = kvm_set_cr8(vcpu, val);
|
|
break;
|
|
default:
|
|
WARN(1, "unhandled write to CR%d", cr);
|
|
kvm_queue_exception(vcpu, UD_VECTOR);
|
|
return 1;
|
|
}
|
|
} else { /* mov from cr */
|
|
switch (cr) {
|
|
case 0:
|
|
val = kvm_read_cr0(vcpu);
|
|
break;
|
|
case 2:
|
|
val = vcpu->arch.cr2;
|
|
break;
|
|
case 3:
|
|
val = kvm_read_cr3(vcpu);
|
|
break;
|
|
case 4:
|
|
val = kvm_read_cr4(vcpu);
|
|
break;
|
|
case 8:
|
|
val = kvm_get_cr8(vcpu);
|
|
break;
|
|
default:
|
|
WARN(1, "unhandled read from CR%d", cr);
|
|
kvm_queue_exception(vcpu, UD_VECTOR);
|
|
return 1;
|
|
}
|
|
kvm_register_write(vcpu, reg, val);
|
|
trace_kvm_cr_read(cr, val);
|
|
}
|
|
return kvm_complete_insn_gp(vcpu, err);
|
|
}
|
|
|
|
static int cr_trap(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
unsigned long old_value, new_value;
|
|
unsigned int cr;
|
|
int ret = 0;
|
|
|
|
new_value = (unsigned long)svm->vmcb->control.exit_info_1;
|
|
|
|
cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
|
|
switch (cr) {
|
|
case 0:
|
|
old_value = kvm_read_cr0(vcpu);
|
|
svm_set_cr0(vcpu, new_value);
|
|
|
|
kvm_post_set_cr0(vcpu, old_value, new_value);
|
|
break;
|
|
case 4:
|
|
old_value = kvm_read_cr4(vcpu);
|
|
svm_set_cr4(vcpu, new_value);
|
|
|
|
kvm_post_set_cr4(vcpu, old_value, new_value);
|
|
break;
|
|
case 8:
|
|
ret = kvm_set_cr8(vcpu, new_value);
|
|
break;
|
|
default:
|
|
WARN(1, "unhandled CR%d write trap", cr);
|
|
kvm_queue_exception(vcpu, UD_VECTOR);
|
|
return 1;
|
|
}
|
|
|
|
return kvm_complete_insn_gp(vcpu, ret);
|
|
}
|
|
|
|
static int dr_interception(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
int reg, dr;
|
|
int err = 0;
|
|
|
|
/*
|
|
* SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT
|
|
* for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early.
|
|
*/
|
|
if (sev_es_guest(vcpu->kvm))
|
|
return 1;
|
|
|
|
if (vcpu->guest_debug == 0) {
|
|
/*
|
|
* No more DR vmexits; force a reload of the debug registers
|
|
* and reenter on this instruction. The next vmexit will
|
|
* retrieve the full state of the debug registers.
|
|
*/
|
|
clr_dr_intercepts(svm);
|
|
vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
|
|
return 1;
|
|
}
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
|
|
return emulate_on_interception(vcpu);
|
|
|
|
reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
|
|
dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
|
|
if (dr >= 16) { /* mov to DRn */
|
|
dr -= 16;
|
|
err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
|
|
} else {
|
|
kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr));
|
|
}
|
|
|
|
return kvm_complete_insn_gp(vcpu, err);
|
|
}
|
|
|
|
static int cr8_write_interception(struct kvm_vcpu *vcpu)
|
|
{
|
|
int r;
|
|
|
|
u8 cr8_prev = kvm_get_cr8(vcpu);
|
|
/* instruction emulation calls kvm_set_cr8() */
|
|
r = cr_interception(vcpu);
|
|
if (lapic_in_kernel(vcpu))
|
|
return r;
|
|
if (cr8_prev <= kvm_get_cr8(vcpu))
|
|
return r;
|
|
vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
|
|
return 0;
|
|
}
|
|
|
|
static int efer_trap(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct msr_data msr_info;
|
|
int ret;
|
|
|
|
/*
|
|
* Clear the EFER_SVME bit from EFER. The SVM code always sets this
|
|
* bit in svm_set_efer(), but __kvm_valid_efer() checks it against
|
|
* whether the guest has X86_FEATURE_SVM - this avoids a failure if
|
|
* the guest doesn't have X86_FEATURE_SVM.
|
|
*/
|
|
msr_info.host_initiated = false;
|
|
msr_info.index = MSR_EFER;
|
|
msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
|
|
ret = kvm_set_msr_common(vcpu, &msr_info);
|
|
|
|
return kvm_complete_insn_gp(vcpu, ret);
|
|
}
|
|
|
|
static int svm_get_feature_msr(u32 msr, u64 *data)
|
|
{
|
|
*data = 0;
|
|
|
|
switch (msr) {
|
|
case MSR_AMD64_DE_CFG:
|
|
if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
|
|
*data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE;
|
|
break;
|
|
default:
|
|
return KVM_MSR_RET_UNSUPPORTED;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool
|
|
sev_es_prevent_msr_access(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
|
|
{
|
|
return sev_es_guest(vcpu->kvm) &&
|
|
vcpu->arch.guest_state_protected &&
|
|
svm_msrpm_offset(msr_info->index) != MSR_INVALID &&
|
|
!msr_write_intercepted(vcpu, msr_info->index);
|
|
}
|
|
|
|
static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if (sev_es_prevent_msr_access(vcpu, msr_info)) {
|
|
msr_info->data = 0;
|
|
return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
|
|
}
|
|
|
|
switch (msr_info->index) {
|
|
case MSR_AMD64_TSC_RATIO:
|
|
if (!msr_info->host_initiated &&
|
|
!guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR))
|
|
return 1;
|
|
msr_info->data = svm->tsc_ratio_msr;
|
|
break;
|
|
case MSR_STAR:
|
|
msr_info->data = svm->vmcb01.ptr->save.star;
|
|
break;
|
|
#ifdef CONFIG_X86_64
|
|
case MSR_LSTAR:
|
|
msr_info->data = svm->vmcb01.ptr->save.lstar;
|
|
break;
|
|
case MSR_CSTAR:
|
|
msr_info->data = svm->vmcb01.ptr->save.cstar;
|
|
break;
|
|
case MSR_GS_BASE:
|
|
msr_info->data = svm->vmcb01.ptr->save.gs.base;
|
|
break;
|
|
case MSR_FS_BASE:
|
|
msr_info->data = svm->vmcb01.ptr->save.fs.base;
|
|
break;
|
|
case MSR_KERNEL_GS_BASE:
|
|
msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
|
|
break;
|
|
case MSR_SYSCALL_MASK:
|
|
msr_info->data = svm->vmcb01.ptr->save.sfmask;
|
|
break;
|
|
#endif
|
|
case MSR_IA32_SYSENTER_CS:
|
|
msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
|
|
break;
|
|
case MSR_IA32_SYSENTER_EIP:
|
|
msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
|
|
if (guest_cpuid_is_intel_compatible(vcpu))
|
|
msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
|
|
break;
|
|
case MSR_IA32_SYSENTER_ESP:
|
|
msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
|
|
if (guest_cpuid_is_intel_compatible(vcpu))
|
|
msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
|
|
break;
|
|
case MSR_TSC_AUX:
|
|
msr_info->data = svm->tsc_aux;
|
|
break;
|
|
case MSR_IA32_DEBUGCTLMSR:
|
|
msr_info->data = svm_get_lbr_vmcb(svm)->save.dbgctl;
|
|
break;
|
|
case MSR_IA32_LASTBRANCHFROMIP:
|
|
msr_info->data = svm_get_lbr_vmcb(svm)->save.br_from;
|
|
break;
|
|
case MSR_IA32_LASTBRANCHTOIP:
|
|
msr_info->data = svm_get_lbr_vmcb(svm)->save.br_to;
|
|
break;
|
|
case MSR_IA32_LASTINTFROMIP:
|
|
msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_from;
|
|
break;
|
|
case MSR_IA32_LASTINTTOIP:
|
|
msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_to;
|
|
break;
|
|
case MSR_VM_HSAVE_PA:
|
|
msr_info->data = svm->nested.hsave_msr;
|
|
break;
|
|
case MSR_VM_CR:
|
|
msr_info->data = svm->nested.vm_cr_msr;
|
|
break;
|
|
case MSR_IA32_SPEC_CTRL:
|
|
if (!msr_info->host_initiated &&
|
|
!guest_has_spec_ctrl_msr(vcpu))
|
|
return 1;
|
|
|
|
if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
|
|
msr_info->data = svm->vmcb->save.spec_ctrl;
|
|
else
|
|
msr_info->data = svm->spec_ctrl;
|
|
break;
|
|
case MSR_AMD64_VIRT_SPEC_CTRL:
|
|
if (!msr_info->host_initiated &&
|
|
!guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
|
|
return 1;
|
|
|
|
msr_info->data = svm->virt_spec_ctrl;
|
|
break;
|
|
case MSR_F15H_IC_CFG: {
|
|
|
|
int family, model;
|
|
|
|
family = guest_cpuid_family(vcpu);
|
|
model = guest_cpuid_model(vcpu);
|
|
|
|
if (family < 0 || model < 0)
|
|
return kvm_get_msr_common(vcpu, msr_info);
|
|
|
|
msr_info->data = 0;
|
|
|
|
if (family == 0x15 &&
|
|
(model >= 0x2 && model < 0x20))
|
|
msr_info->data = 0x1E;
|
|
}
|
|
break;
|
|
case MSR_AMD64_DE_CFG:
|
|
msr_info->data = svm->msr_decfg;
|
|
break;
|
|
default:
|
|
return kvm_get_msr_common(vcpu, msr_info);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
|
|
return kvm_complete_insn_gp(vcpu, err);
|
|
|
|
ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1);
|
|
ghcb_set_sw_exit_info_2(svm->sev_es.ghcb,
|
|
X86_TRAP_GP |
|
|
SVM_EVTINJ_TYPE_EXEPT |
|
|
SVM_EVTINJ_VALID);
|
|
return 1;
|
|
}
|
|
|
|
static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
int svm_dis, chg_mask;
|
|
|
|
if (data & ~SVM_VM_CR_VALID_MASK)
|
|
return 1;
|
|
|
|
chg_mask = SVM_VM_CR_VALID_MASK;
|
|
|
|
if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
|
|
chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
|
|
|
|
svm->nested.vm_cr_msr &= ~chg_mask;
|
|
svm->nested.vm_cr_msr |= (data & chg_mask);
|
|
|
|
svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
|
|
|
|
/* check for svm_disable while efer.svme is set */
|
|
if (svm_dis && (vcpu->arch.efer & EFER_SVME))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
int ret = 0;
|
|
|
|
u32 ecx = msr->index;
|
|
u64 data = msr->data;
|
|
|
|
if (sev_es_prevent_msr_access(vcpu, msr))
|
|
return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
|
|
|
|
switch (ecx) {
|
|
case MSR_AMD64_TSC_RATIO:
|
|
|
|
if (!guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR)) {
|
|
|
|
if (!msr->host_initiated)
|
|
return 1;
|
|
/*
|
|
* In case TSC scaling is not enabled, always
|
|
* leave this MSR at the default value.
|
|
*
|
|
* Due to bug in qemu 6.2.0, it would try to set
|
|
* this msr to 0 if tsc scaling is not enabled.
|
|
* Ignore this value as well.
|
|
*/
|
|
if (data != 0 && data != svm->tsc_ratio_msr)
|
|
return 1;
|
|
break;
|
|
}
|
|
|
|
if (data & SVM_TSC_RATIO_RSVD)
|
|
return 1;
|
|
|
|
svm->tsc_ratio_msr = data;
|
|
|
|
if (guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR) &&
|
|
is_guest_mode(vcpu))
|
|
nested_svm_update_tsc_ratio_msr(vcpu);
|
|
|
|
break;
|
|
case MSR_IA32_CR_PAT:
|
|
ret = kvm_set_msr_common(vcpu, msr);
|
|
if (ret)
|
|
break;
|
|
|
|
svm->vmcb01.ptr->save.g_pat = data;
|
|
if (is_guest_mode(vcpu))
|
|
nested_vmcb02_compute_g_pat(svm);
|
|
vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
|
|
break;
|
|
case MSR_IA32_SPEC_CTRL:
|
|
if (!msr->host_initiated &&
|
|
!guest_has_spec_ctrl_msr(vcpu))
|
|
return 1;
|
|
|
|
if (kvm_spec_ctrl_test_value(data))
|
|
return 1;
|
|
|
|
if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
|
|
svm->vmcb->save.spec_ctrl = data;
|
|
else
|
|
svm->spec_ctrl = data;
|
|
if (!data)
|
|
break;
|
|
|
|
/*
|
|
* For non-nested:
|
|
* When it's written (to non-zero) for the first time, pass
|
|
* it through.
|
|
*
|
|
* For nested:
|
|
* The handling of the MSR bitmap for L2 guests is done in
|
|
* nested_svm_vmrun_msrpm.
|
|
* We update the L1 MSR bit as well since it will end up
|
|
* touching the MSR anyway now.
|
|
*/
|
|
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
|
|
break;
|
|
case MSR_AMD64_VIRT_SPEC_CTRL:
|
|
if (!msr->host_initiated &&
|
|
!guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
|
|
return 1;
|
|
|
|
if (data & ~SPEC_CTRL_SSBD)
|
|
return 1;
|
|
|
|
svm->virt_spec_ctrl = data;
|
|
break;
|
|
case MSR_STAR:
|
|
svm->vmcb01.ptr->save.star = data;
|
|
break;
|
|
#ifdef CONFIG_X86_64
|
|
case MSR_LSTAR:
|
|
svm->vmcb01.ptr->save.lstar = data;
|
|
break;
|
|
case MSR_CSTAR:
|
|
svm->vmcb01.ptr->save.cstar = data;
|
|
break;
|
|
case MSR_GS_BASE:
|
|
svm->vmcb01.ptr->save.gs.base = data;
|
|
break;
|
|
case MSR_FS_BASE:
|
|
svm->vmcb01.ptr->save.fs.base = data;
|
|
break;
|
|
case MSR_KERNEL_GS_BASE:
|
|
svm->vmcb01.ptr->save.kernel_gs_base = data;
|
|
break;
|
|
case MSR_SYSCALL_MASK:
|
|
svm->vmcb01.ptr->save.sfmask = data;
|
|
break;
|
|
#endif
|
|
case MSR_IA32_SYSENTER_CS:
|
|
svm->vmcb01.ptr->save.sysenter_cs = data;
|
|
break;
|
|
case MSR_IA32_SYSENTER_EIP:
|
|
svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
|
|
/*
|
|
* We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
|
|
* when we spoof an Intel vendor ID (for cross vendor migration).
|
|
* In this case we use this intercept to track the high
|
|
* 32 bit part of these msrs to support Intel's
|
|
* implementation of SYSENTER/SYSEXIT.
|
|
*/
|
|
svm->sysenter_eip_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0;
|
|
break;
|
|
case MSR_IA32_SYSENTER_ESP:
|
|
svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
|
|
svm->sysenter_esp_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0;
|
|
break;
|
|
case MSR_TSC_AUX:
|
|
/*
|
|
* TSC_AUX is always virtualized for SEV-ES guests when the
|
|
* feature is available. The user return MSR support is not
|
|
* required in this case because TSC_AUX is restored on #VMEXIT
|
|
* from the host save area (which has been initialized in
|
|
* svm_enable_virtualization_cpu()).
|
|
*/
|
|
if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm))
|
|
break;
|
|
|
|
/*
|
|
* TSC_AUX is usually changed only during boot and never read
|
|
* directly. Intercept TSC_AUX instead of exposing it to the
|
|
* guest via direct_access_msrs, and switch it via user return.
|
|
*/
|
|
preempt_disable();
|
|
ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
|
|
preempt_enable();
|
|
if (ret)
|
|
break;
|
|
|
|
svm->tsc_aux = data;
|
|
break;
|
|
case MSR_IA32_DEBUGCTLMSR:
|
|
if (!lbrv) {
|
|
kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
|
|
break;
|
|
}
|
|
if (data & DEBUGCTL_RESERVED_BITS)
|
|
return 1;
|
|
|
|
svm_get_lbr_vmcb(svm)->save.dbgctl = data;
|
|
svm_update_lbrv(vcpu);
|
|
break;
|
|
case MSR_VM_HSAVE_PA:
|
|
/*
|
|
* Old kernels did not validate the value written to
|
|
* MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid
|
|
* value to allow live migrating buggy or malicious guests
|
|
* originating from those kernels.
|
|
*/
|
|
if (!msr->host_initiated && !page_address_valid(vcpu, data))
|
|
return 1;
|
|
|
|
svm->nested.hsave_msr = data & PAGE_MASK;
|
|
break;
|
|
case MSR_VM_CR:
|
|
return svm_set_vm_cr(vcpu, data);
|
|
case MSR_VM_IGNNE:
|
|
kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
|
|
break;
|
|
case MSR_AMD64_DE_CFG: {
|
|
u64 supported_de_cfg;
|
|
|
|
if (svm_get_feature_msr(ecx, &supported_de_cfg))
|
|
return 1;
|
|
|
|
if (data & ~supported_de_cfg)
|
|
return 1;
|
|
|
|
/*
|
|
* Don't let the guest change the host-programmed value. The
|
|
* MSR is very model specific, i.e. contains multiple bits that
|
|
* are completely unknown to KVM, and the one bit known to KVM
|
|
* is simply a reflection of hardware capabilities.
|
|
*/
|
|
if (!msr->host_initiated && data != svm->msr_decfg)
|
|
return 1;
|
|
|
|
svm->msr_decfg = data;
|
|
break;
|
|
}
|
|
default:
|
|
return kvm_set_msr_common(vcpu, msr);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int msr_interception(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (to_svm(vcpu)->vmcb->control.exit_info_1)
|
|
return kvm_emulate_wrmsr(vcpu);
|
|
else
|
|
return kvm_emulate_rdmsr(vcpu);
|
|
}
|
|
|
|
static int interrupt_window_interception(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
svm_clear_vintr(to_svm(vcpu));
|
|
|
|
/*
|
|
* If not running nested, for AVIC, the only reason to end up here is ExtINTs.
|
|
* In this case AVIC was temporarily disabled for
|
|
* requesting the IRQ window and we have to re-enable it.
|
|
*
|
|
* If running nested, still remove the VM wide AVIC inhibit to
|
|
* support case in which the interrupt window was requested when the
|
|
* vCPU was not running nested.
|
|
|
|
* All vCPUs which run still run nested, will remain to have their
|
|
* AVIC still inhibited due to per-cpu AVIC inhibition.
|
|
*/
|
|
kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
|
|
|
|
++vcpu->stat.irq_window_exits;
|
|
return 1;
|
|
}
|
|
|
|
static int pause_interception(struct kvm_vcpu *vcpu)
|
|
{
|
|
bool in_kernel;
|
|
/*
|
|
* CPL is not made available for an SEV-ES guest, therefore
|
|
* vcpu->arch.preempted_in_kernel can never be true. Just
|
|
* set in_kernel to false as well.
|
|
*/
|
|
in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
|
|
|
|
grow_ple_window(vcpu);
|
|
|
|
kvm_vcpu_on_spin(vcpu, in_kernel);
|
|
return kvm_skip_emulated_instruction(vcpu);
|
|
}
|
|
|
|
static int invpcid_interception(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
unsigned long type;
|
|
gva_t gva;
|
|
|
|
if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
|
|
kvm_queue_exception(vcpu, UD_VECTOR);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* For an INVPCID intercept:
|
|
* EXITINFO1 provides the linear address of the memory operand.
|
|
* EXITINFO2 provides the contents of the register operand.
|
|
*/
|
|
type = svm->vmcb->control.exit_info_2;
|
|
gva = svm->vmcb->control.exit_info_1;
|
|
|
|
return kvm_handle_invpcid(vcpu, type, gva);
|
|
}
|
|
|
|
static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
|
|
[SVM_EXIT_READ_CR0] = cr_interception,
|
|
[SVM_EXIT_READ_CR3] = cr_interception,
|
|
[SVM_EXIT_READ_CR4] = cr_interception,
|
|
[SVM_EXIT_READ_CR8] = cr_interception,
|
|
[SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
|
|
[SVM_EXIT_WRITE_CR0] = cr_interception,
|
|
[SVM_EXIT_WRITE_CR3] = cr_interception,
|
|
[SVM_EXIT_WRITE_CR4] = cr_interception,
|
|
[SVM_EXIT_WRITE_CR8] = cr8_write_interception,
|
|
[SVM_EXIT_READ_DR0] = dr_interception,
|
|
[SVM_EXIT_READ_DR1] = dr_interception,
|
|
[SVM_EXIT_READ_DR2] = dr_interception,
|
|
[SVM_EXIT_READ_DR3] = dr_interception,
|
|
[SVM_EXIT_READ_DR4] = dr_interception,
|
|
[SVM_EXIT_READ_DR5] = dr_interception,
|
|
[SVM_EXIT_READ_DR6] = dr_interception,
|
|
[SVM_EXIT_READ_DR7] = dr_interception,
|
|
[SVM_EXIT_WRITE_DR0] = dr_interception,
|
|
[SVM_EXIT_WRITE_DR1] = dr_interception,
|
|
[SVM_EXIT_WRITE_DR2] = dr_interception,
|
|
[SVM_EXIT_WRITE_DR3] = dr_interception,
|
|
[SVM_EXIT_WRITE_DR4] = dr_interception,
|
|
[SVM_EXIT_WRITE_DR5] = dr_interception,
|
|
[SVM_EXIT_WRITE_DR6] = dr_interception,
|
|
[SVM_EXIT_WRITE_DR7] = dr_interception,
|
|
[SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
|
|
[SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
|
|
[SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
|
|
[SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
|
|
[SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
|
|
[SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
|
|
[SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception,
|
|
[SVM_EXIT_INTR] = intr_interception,
|
|
[SVM_EXIT_NMI] = nmi_interception,
|
|
[SVM_EXIT_SMI] = smi_interception,
|
|
[SVM_EXIT_VINTR] = interrupt_window_interception,
|
|
[SVM_EXIT_RDPMC] = kvm_emulate_rdpmc,
|
|
[SVM_EXIT_CPUID] = kvm_emulate_cpuid,
|
|
[SVM_EXIT_IRET] = iret_interception,
|
|
[SVM_EXIT_INVD] = kvm_emulate_invd,
|
|
[SVM_EXIT_PAUSE] = pause_interception,
|
|
[SVM_EXIT_HLT] = kvm_emulate_halt,
|
|
[SVM_EXIT_INVLPG] = invlpg_interception,
|
|
[SVM_EXIT_INVLPGA] = invlpga_interception,
|
|
[SVM_EXIT_IOIO] = io_interception,
|
|
[SVM_EXIT_MSR] = msr_interception,
|
|
[SVM_EXIT_TASK_SWITCH] = task_switch_interception,
|
|
[SVM_EXIT_SHUTDOWN] = shutdown_interception,
|
|
[SVM_EXIT_VMRUN] = vmrun_interception,
|
|
[SVM_EXIT_VMMCALL] = kvm_emulate_hypercall,
|
|
[SVM_EXIT_VMLOAD] = vmload_interception,
|
|
[SVM_EXIT_VMSAVE] = vmsave_interception,
|
|
[SVM_EXIT_STGI] = stgi_interception,
|
|
[SVM_EXIT_CLGI] = clgi_interception,
|
|
[SVM_EXIT_SKINIT] = skinit_interception,
|
|
[SVM_EXIT_RDTSCP] = kvm_handle_invalid_op,
|
|
[SVM_EXIT_WBINVD] = kvm_emulate_wbinvd,
|
|
[SVM_EXIT_MONITOR] = kvm_emulate_monitor,
|
|
[SVM_EXIT_MWAIT] = kvm_emulate_mwait,
|
|
[SVM_EXIT_XSETBV] = kvm_emulate_xsetbv,
|
|
[SVM_EXIT_RDPRU] = kvm_handle_invalid_op,
|
|
[SVM_EXIT_EFER_WRITE_TRAP] = efer_trap,
|
|
[SVM_EXIT_CR0_WRITE_TRAP] = cr_trap,
|
|
[SVM_EXIT_CR4_WRITE_TRAP] = cr_trap,
|
|
[SVM_EXIT_CR8_WRITE_TRAP] = cr_trap,
|
|
[SVM_EXIT_INVPCID] = invpcid_interception,
|
|
[SVM_EXIT_NPF] = npf_interception,
|
|
[SVM_EXIT_RSM] = rsm_interception,
|
|
[SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
|
|
[SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
|
|
#ifdef CONFIG_KVM_AMD_SEV
|
|
[SVM_EXIT_VMGEXIT] = sev_handle_vmgexit,
|
|
#endif
|
|
};
|
|
|
|
static void dump_vmcb(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct vmcb_control_area *control = &svm->vmcb->control;
|
|
struct vmcb_save_area *save = &svm->vmcb->save;
|
|
struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
|
|
|
|
if (!dump_invalid_vmcb) {
|
|
pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
|
|
return;
|
|
}
|
|
|
|
pr_err("VMCB %p, last attempted VMRUN on CPU %d\n",
|
|
svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
|
|
pr_err("VMCB Control Area:\n");
|
|
pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
|
|
pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
|
|
pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
|
|
pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
|
|
pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
|
|
pr_err("%-20s%08x %08x\n", "intercepts:",
|
|
control->intercepts[INTERCEPT_WORD3],
|
|
control->intercepts[INTERCEPT_WORD4]);
|
|
pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
|
|
pr_err("%-20s%d\n", "pause filter threshold:",
|
|
control->pause_filter_thresh);
|
|
pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
|
|
pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
|
|
pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
|
|
pr_err("%-20s%d\n", "asid:", control->asid);
|
|
pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
|
|
pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
|
|
pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
|
|
pr_err("%-20s%08x\n", "int_state:", control->int_state);
|
|
pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
|
|
pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
|
|
pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
|
|
pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
|
|
pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
|
|
pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
|
|
pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
|
|
pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
|
|
pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
|
|
pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
|
|
pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
|
|
pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
|
|
pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
|
|
pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
|
|
pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
|
|
pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
|
|
pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
|
|
pr_err("VMCB State Save Area:\n");
|
|
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
|
|
"es:",
|
|
save->es.selector, save->es.attrib,
|
|
save->es.limit, save->es.base);
|
|
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
|
|
"cs:",
|
|
save->cs.selector, save->cs.attrib,
|
|
save->cs.limit, save->cs.base);
|
|
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
|
|
"ss:",
|
|
save->ss.selector, save->ss.attrib,
|
|
save->ss.limit, save->ss.base);
|
|
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
|
|
"ds:",
|
|
save->ds.selector, save->ds.attrib,
|
|
save->ds.limit, save->ds.base);
|
|
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
|
|
"fs:",
|
|
save01->fs.selector, save01->fs.attrib,
|
|
save01->fs.limit, save01->fs.base);
|
|
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
|
|
"gs:",
|
|
save01->gs.selector, save01->gs.attrib,
|
|
save01->gs.limit, save01->gs.base);
|
|
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
|
|
"gdtr:",
|
|
save->gdtr.selector, save->gdtr.attrib,
|
|
save->gdtr.limit, save->gdtr.base);
|
|
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
|
|
"ldtr:",
|
|
save01->ldtr.selector, save01->ldtr.attrib,
|
|
save01->ldtr.limit, save01->ldtr.base);
|
|
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
|
|
"idtr:",
|
|
save->idtr.selector, save->idtr.attrib,
|
|
save->idtr.limit, save->idtr.base);
|
|
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
|
|
"tr:",
|
|
save01->tr.selector, save01->tr.attrib,
|
|
save01->tr.limit, save01->tr.base);
|
|
pr_err("vmpl: %d cpl: %d efer: %016llx\n",
|
|
save->vmpl, save->cpl, save->efer);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"cr0:", save->cr0, "cr2:", save->cr2);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"cr3:", save->cr3, "cr4:", save->cr4);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"dr6:", save->dr6, "dr7:", save->dr7);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"rip:", save->rip, "rflags:", save->rflags);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"rsp:", save->rsp, "rax:", save->rax);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"star:", save01->star, "lstar:", save01->lstar);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"cstar:", save01->cstar, "sfmask:", save01->sfmask);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"kernel_gs_base:", save01->kernel_gs_base,
|
|
"sysenter_cs:", save01->sysenter_cs);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"sysenter_esp:", save01->sysenter_esp,
|
|
"sysenter_eip:", save01->sysenter_eip);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"gpat:", save->g_pat, "dbgctl:", save->dbgctl);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"br_from:", save->br_from, "br_to:", save->br_to);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"excp_from:", save->last_excp_from,
|
|
"excp_to:", save->last_excp_to);
|
|
}
|
|
|
|
static bool svm_check_exit_valid(u64 exit_code)
|
|
{
|
|
return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
|
|
svm_exit_handlers[exit_code]);
|
|
}
|
|
|
|
static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
|
|
{
|
|
vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
|
|
dump_vmcb(vcpu);
|
|
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
|
|
vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
|
|
vcpu->run->internal.ndata = 2;
|
|
vcpu->run->internal.data[0] = exit_code;
|
|
vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
|
|
return 0;
|
|
}
|
|
|
|
int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
|
|
{
|
|
if (!svm_check_exit_valid(exit_code))
|
|
return svm_handle_invalid_exit(vcpu, exit_code);
|
|
|
|
#ifdef CONFIG_MITIGATION_RETPOLINE
|
|
if (exit_code == SVM_EXIT_MSR)
|
|
return msr_interception(vcpu);
|
|
else if (exit_code == SVM_EXIT_VINTR)
|
|
return interrupt_window_interception(vcpu);
|
|
else if (exit_code == SVM_EXIT_INTR)
|
|
return intr_interception(vcpu);
|
|
else if (exit_code == SVM_EXIT_HLT)
|
|
return kvm_emulate_halt(vcpu);
|
|
else if (exit_code == SVM_EXIT_NPF)
|
|
return npf_interception(vcpu);
|
|
#endif
|
|
return svm_exit_handlers[exit_code](vcpu);
|
|
}
|
|
|
|
static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
|
|
u64 *info1, u64 *info2,
|
|
u32 *intr_info, u32 *error_code)
|
|
{
|
|
struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
|
|
|
|
*reason = control->exit_code;
|
|
*info1 = control->exit_info_1;
|
|
*info2 = control->exit_info_2;
|
|
*intr_info = control->exit_int_info;
|
|
if ((*intr_info & SVM_EXITINTINFO_VALID) &&
|
|
(*intr_info & SVM_EXITINTINFO_VALID_ERR))
|
|
*error_code = control->exit_int_info_err;
|
|
else
|
|
*error_code = 0;
|
|
}
|
|
|
|
static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct kvm_run *kvm_run = vcpu->run;
|
|
u32 exit_code = svm->vmcb->control.exit_code;
|
|
|
|
/* SEV-ES guests must use the CR write traps to track CR registers. */
|
|
if (!sev_es_guest(vcpu->kvm)) {
|
|
if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
|
|
vcpu->arch.cr0 = svm->vmcb->save.cr0;
|
|
if (npt_enabled)
|
|
vcpu->arch.cr3 = svm->vmcb->save.cr3;
|
|
}
|
|
|
|
if (is_guest_mode(vcpu)) {
|
|
int vmexit;
|
|
|
|
trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);
|
|
|
|
vmexit = nested_svm_exit_special(svm);
|
|
|
|
if (vmexit == NESTED_EXIT_CONTINUE)
|
|
vmexit = nested_svm_exit_handled(svm);
|
|
|
|
if (vmexit == NESTED_EXIT_DONE)
|
|
return 1;
|
|
}
|
|
|
|
if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
|
|
kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
|
|
kvm_run->fail_entry.hardware_entry_failure_reason
|
|
= svm->vmcb->control.exit_code;
|
|
kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
|
|
dump_vmcb(vcpu);
|
|
return 0;
|
|
}
|
|
|
|
if (exit_fastpath != EXIT_FASTPATH_NONE)
|
|
return 1;
|
|
|
|
return svm_invoke_exit_handler(vcpu, exit_code);
|
|
}
|
|
|
|
static void pre_svm_run(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
/*
|
|
* If the previous vmrun of the vmcb occurred on a different physical
|
|
* cpu, then mark the vmcb dirty and assign a new asid. Hardware's
|
|
* vmcb clean bits are per logical CPU, as are KVM's asid assignments.
|
|
*/
|
|
if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
|
|
svm->current_vmcb->asid_generation = 0;
|
|
vmcb_mark_all_dirty(svm->vmcb);
|
|
svm->current_vmcb->cpu = vcpu->cpu;
|
|
}
|
|
|
|
if (sev_guest(vcpu->kvm))
|
|
return pre_sev_run(svm, vcpu->cpu);
|
|
|
|
/* FIXME: handle wraparound of asid_generation */
|
|
if (svm->current_vmcb->asid_generation != sd->asid_generation)
|
|
new_asid(svm, sd);
|
|
}
|
|
|
|
static void svm_inject_nmi(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
|
|
|
|
if (svm->nmi_l1_to_l2)
|
|
return;
|
|
|
|
/*
|
|
* No need to manually track NMI masking when vNMI is enabled, hardware
|
|
* automatically sets V_NMI_BLOCKING_MASK as appropriate, including the
|
|
* case where software directly injects an NMI.
|
|
*/
|
|
if (!is_vnmi_enabled(svm)) {
|
|
svm->nmi_masked = true;
|
|
svm_set_iret_intercept(svm);
|
|
}
|
|
++vcpu->stat.nmi_injections;
|
|
}
|
|
|
|
static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if (!is_vnmi_enabled(svm))
|
|
return false;
|
|
|
|
return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK);
|
|
}
|
|
|
|
static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if (!is_vnmi_enabled(svm))
|
|
return false;
|
|
|
|
if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK)
|
|
return false;
|
|
|
|
svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK;
|
|
vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
|
|
|
|
/*
|
|
* Because the pending NMI is serviced by hardware, KVM can't know when
|
|
* the NMI is "injected", but for all intents and purposes, passing the
|
|
* NMI off to hardware counts as injection.
|
|
*/
|
|
++vcpu->stat.nmi_injections;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
u32 type;
|
|
|
|
if (vcpu->arch.interrupt.soft) {
|
|
if (svm_update_soft_interrupt_rip(vcpu))
|
|
return;
|
|
|
|
type = SVM_EVTINJ_TYPE_SOFT;
|
|
} else {
|
|
type = SVM_EVTINJ_TYPE_INTR;
|
|
}
|
|
|
|
trace_kvm_inj_virq(vcpu->arch.interrupt.nr,
|
|
vcpu->arch.interrupt.soft, reinjected);
|
|
++vcpu->stat.irq_injections;
|
|
|
|
svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
|
|
SVM_EVTINJ_VALID | type;
|
|
}
|
|
|
|
void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
|
|
int trig_mode, int vector)
|
|
{
|
|
/*
|
|
* apic->apicv_active must be read after vcpu->mode.
|
|
* Pairs with smp_store_release in vcpu_enter_guest.
|
|
*/
|
|
bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE);
|
|
|
|
/* Note, this is called iff the local APIC is in-kernel. */
|
|
if (!READ_ONCE(vcpu->arch.apic->apicv_active)) {
|
|
/* Process the interrupt via kvm_check_and_inject_events(). */
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
kvm_vcpu_kick(vcpu);
|
|
return;
|
|
}
|
|
|
|
trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
|
|
if (in_guest_mode) {
|
|
/*
|
|
* Signal the doorbell to tell hardware to inject the IRQ. If
|
|
* the vCPU exits the guest before the doorbell chimes, hardware
|
|
* will automatically process AVIC interrupts at the next VMRUN.
|
|
*/
|
|
avic_ring_doorbell(vcpu);
|
|
} else {
|
|
/*
|
|
* Wake the vCPU if it was blocking. KVM will then detect the
|
|
* pending IRQ when checking if the vCPU has a wake event.
|
|
*/
|
|
kvm_vcpu_wake_up(vcpu);
|
|
}
|
|
}
|
|
|
|
static void svm_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
|
|
int trig_mode, int vector)
|
|
{
|
|
kvm_lapic_set_irr(vector, apic);
|
|
|
|
/*
|
|
* Pairs with the smp_mb_*() after setting vcpu->guest_mode in
|
|
* vcpu_enter_guest() to ensure the write to the vIRR is ordered before
|
|
* the read of guest_mode. This guarantees that either VMRUN will see
|
|
* and process the new vIRR entry, or that svm_complete_interrupt_delivery
|
|
* will signal the doorbell if the CPU has already entered the guest.
|
|
*/
|
|
smp_mb__after_atomic();
|
|
svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector);
|
|
}
|
|
|
|
static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
/*
|
|
* SEV-ES guests must always keep the CR intercepts cleared. CR
|
|
* tracking is done using the CR write traps.
|
|
*/
|
|
if (sev_es_guest(vcpu->kvm))
|
|
return;
|
|
|
|
if (nested_svm_virtualize_tpr(vcpu))
|
|
return;
|
|
|
|
svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
|
|
|
|
if (irr == -1)
|
|
return;
|
|
|
|
if (tpr >= irr)
|
|
svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
|
|
}
|
|
|
|
static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if (is_vnmi_enabled(svm))
|
|
return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK;
|
|
else
|
|
return svm->nmi_masked;
|
|
}
|
|
|
|
static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if (is_vnmi_enabled(svm)) {
|
|
if (masked)
|
|
svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK;
|
|
else
|
|
svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK;
|
|
|
|
} else {
|
|
svm->nmi_masked = masked;
|
|
if (masked)
|
|
svm_set_iret_intercept(svm);
|
|
else
|
|
svm_clr_iret_intercept(svm);
|
|
}
|
|
}
|
|
|
|
bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct vmcb *vmcb = svm->vmcb;
|
|
|
|
if (!gif_set(svm))
|
|
return true;
|
|
|
|
if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
|
|
return false;
|
|
|
|
if (svm_get_nmi_mask(vcpu))
|
|
return true;
|
|
|
|
return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK;
|
|
}
|
|
|
|
static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
if (svm->nested.nested_run_pending)
|
|
return -EBUSY;
|
|
|
|
if (svm_nmi_blocked(vcpu))
|
|
return 0;
|
|
|
|
/* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
|
|
if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
|
|
return -EBUSY;
|
|
return 1;
|
|
}
|
|
|
|
bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct vmcb *vmcb = svm->vmcb;
|
|
|
|
if (!gif_set(svm))
|
|
return true;
|
|
|
|
if (is_guest_mode(vcpu)) {
|
|
/* As long as interrupts are being delivered... */
|
|
if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
|
|
? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
|
|
: !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
|
|
return true;
|
|
|
|
/* ... vmexits aren't blocked by the interrupt shadow */
|
|
if (nested_exit_on_intr(svm))
|
|
return false;
|
|
} else {
|
|
if (!svm_get_if_flag(vcpu))
|
|
return true;
|
|
}
|
|
|
|
return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
|
|
}
|
|
|
|
static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if (svm->nested.nested_run_pending)
|
|
return -EBUSY;
|
|
|
|
if (svm_interrupt_blocked(vcpu))
|
|
return 0;
|
|
|
|
/*
|
|
* An IRQ must not be injected into L2 if it's supposed to VM-Exit,
|
|
* e.g. if the IRQ arrived asynchronously after checking nested events.
|
|
*/
|
|
if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
|
|
return -EBUSY;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
/*
|
|
* In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
|
|
* 1, because that's a separate STGI/VMRUN intercept. The next time we
|
|
* get that intercept, this function will be called again though and
|
|
* we'll get the vintr intercept. However, if the vGIF feature is
|
|
* enabled, the STGI interception will not occur. Enable the irq
|
|
* window under the assumption that the hardware will set the GIF.
|
|
*/
|
|
if (vgif || gif_set(svm)) {
|
|
/*
|
|
* IRQ window is not needed when AVIC is enabled,
|
|
* unless we have pending ExtINT since it cannot be injected
|
|
* via AVIC. In such case, KVM needs to temporarily disable AVIC,
|
|
* and fallback to injecting IRQ via V_IRQ.
|
|
*
|
|
* If running nested, AVIC is already locally inhibited
|
|
* on this vCPU, therefore there is no need to request
|
|
* the VM wide AVIC inhibition.
|
|
*/
|
|
if (!is_guest_mode(vcpu))
|
|
kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
|
|
|
|
svm_set_vintr(svm);
|
|
}
|
|
}
|
|
|
|
static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
/*
|
|
* If NMIs are outright masked, i.e. the vCPU is already handling an
|
|
* NMI, and KVM has not yet intercepted an IRET, then there is nothing
|
|
* more to do at this time as KVM has already enabled IRET intercepts.
|
|
* If KVM has already intercepted IRET, then single-step over the IRET,
|
|
* as NMIs aren't architecturally unmasked until the IRET completes.
|
|
*
|
|
* If vNMI is enabled, KVM should never request an NMI window if NMIs
|
|
* are masked, as KVM allows at most one to-be-injected NMI and one
|
|
* pending NMI. If two NMIs arrive simultaneously, KVM will inject one
|
|
* NMI and set V_NMI_PENDING for the other, but if and only if NMIs are
|
|
* unmasked. KVM _will_ request an NMI window in some situations, e.g.
|
|
* if the vCPU is in an STI shadow or if GIF=0, KVM can't immediately
|
|
* inject the NMI. In those situations, KVM needs to single-step over
|
|
* the STI shadow or intercept STGI.
|
|
*/
|
|
if (svm_get_nmi_mask(vcpu)) {
|
|
WARN_ON_ONCE(is_vnmi_enabled(svm));
|
|
|
|
if (!svm->awaiting_iret_completion)
|
|
return; /* IRET will cause a vm exit */
|
|
}
|
|
|
|
/*
|
|
* SEV-ES guests are responsible for signaling when a vCPU is ready to
|
|
* receive a new NMI, as SEV-ES guests can't be single-stepped, i.e.
|
|
* KVM can't intercept and single-step IRET to detect when NMIs are
|
|
* unblocked (architecturally speaking). See SVM_VMGEXIT_NMI_COMPLETE.
|
|
*
|
|
* Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware
|
|
* ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not
|
|
* supported NAEs in the GHCB protocol.
|
|
*/
|
|
if (sev_es_guest(vcpu->kvm))
|
|
return;
|
|
|
|
if (!gif_set(svm)) {
|
|
if (vgif)
|
|
svm_set_intercept(svm, INTERCEPT_STGI);
|
|
return; /* STGI will cause a vm exit */
|
|
}
|
|
|
|
/*
|
|
* Something prevents NMI from been injected. Single step over possible
|
|
* problem (IRET or exception injection or interrupt shadow)
|
|
*/
|
|
svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
|
|
svm->nmi_singlestep = true;
|
|
svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
|
|
}
|
|
|
|
static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
/*
|
|
* Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries.
|
|
* A TLB flush for the current ASID flushes both "host" and "guest" TLB
|
|
* entries, and thus is a superset of Hyper-V's fine grained flushing.
|
|
*/
|
|
kvm_hv_vcpu_purge_flush_tlb(vcpu);
|
|
|
|
/*
|
|
* Flush only the current ASID even if the TLB flush was invoked via
|
|
* kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all
|
|
* ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
|
|
* unconditionally does a TLB flush on both nested VM-Enter and nested
|
|
* VM-Exit (via kvm_mmu_reset_context()).
|
|
*/
|
|
if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
|
|
svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
|
|
else
|
|
svm->current_vmcb->asid_generation--;
|
|
}
|
|
|
|
static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
|
|
{
|
|
hpa_t root_tdp = vcpu->arch.mmu->root.hpa;
|
|
|
|
/*
|
|
* When running on Hyper-V with EnlightenedNptTlb enabled, explicitly
|
|
* flush the NPT mappings via hypercall as flushing the ASID only
|
|
* affects virtual to physical mappings, it does not invalidate guest
|
|
* physical to host physical mappings.
|
|
*/
|
|
if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp))
|
|
hyperv_flush_guest_mapping(root_tdp);
|
|
|
|
svm_flush_tlb_asid(vcpu);
|
|
}
|
|
|
|
static void svm_flush_tlb_all(struct kvm_vcpu *vcpu)
|
|
{
|
|
/*
|
|
* When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB
|
|
* flushes should be routed to hv_flush_remote_tlbs() without requesting
|
|
* a "regular" remote flush. Reaching this point means either there's
|
|
* a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of
|
|
* which might be fatal to the guest. Yell, but try to recover.
|
|
*/
|
|
if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu)))
|
|
hv_flush_remote_tlbs(vcpu->kvm);
|
|
|
|
svm_flush_tlb_asid(vcpu);
|
|
}
|
|
|
|
static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
invlpga(gva, svm->vmcb->control.asid);
|
|
}
|
|
|
|
static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if (nested_svm_virtualize_tpr(vcpu))
|
|
return;
|
|
|
|
if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
|
|
int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
|
|
kvm_set_cr8(vcpu, cr8);
|
|
}
|
|
}
|
|
|
|
static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
u64 cr8;
|
|
|
|
if (nested_svm_virtualize_tpr(vcpu) ||
|
|
kvm_vcpu_apicv_active(vcpu))
|
|
return;
|
|
|
|
cr8 = kvm_get_cr8(vcpu);
|
|
svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
|
|
svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
|
|
}
|
|
|
|
static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector,
|
|
int type)
|
|
{
|
|
bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT);
|
|
bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT);
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
/*
|
|
* If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's
|
|
* associated with the original soft exception/interrupt. next_rip is
|
|
* cleared on all exits that can occur while vectoring an event, so KVM
|
|
* needs to manually set next_rip for re-injection. Unlike the !nrips
|
|
* case below, this needs to be done if and only if KVM is re-injecting
|
|
* the same event, i.e. if the event is a soft exception/interrupt,
|
|
* otherwise next_rip is unused on VMRUN.
|
|
*/
|
|
if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) &&
|
|
kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase))
|
|
svm->vmcb->control.next_rip = svm->soft_int_next_rip;
|
|
/*
|
|
* If NRIPS isn't enabled, KVM must manually advance RIP prior to
|
|
* injecting the soft exception/interrupt. That advancement needs to
|
|
* be unwound if vectoring didn't complete. Note, the new event may
|
|
* not be the injected event, e.g. if KVM injected an INTn, the INTn
|
|
* hit a #NP in the guest, and the #NP encountered a #PF, the #NP will
|
|
* be the reported vectored event, but RIP still needs to be unwound.
|
|
*/
|
|
else if (!nrips && (is_soft || is_exception) &&
|
|
kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase))
|
|
kvm_rip_write(vcpu, svm->soft_int_old_rip);
|
|
}
|
|
|
|
static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
u8 vector;
|
|
int type;
|
|
u32 exitintinfo = svm->vmcb->control.exit_int_info;
|
|
bool nmi_l1_to_l2 = svm->nmi_l1_to_l2;
|
|
bool soft_int_injected = svm->soft_int_injected;
|
|
|
|
svm->nmi_l1_to_l2 = false;
|
|
svm->soft_int_injected = false;
|
|
|
|
/*
|
|
* If we've made progress since setting awaiting_iret_completion, we've
|
|
* executed an IRET and can allow NMI injection.
|
|
*/
|
|
if (svm->awaiting_iret_completion &&
|
|
kvm_rip_read(vcpu) != svm->nmi_iret_rip) {
|
|
svm->awaiting_iret_completion = false;
|
|
svm->nmi_masked = false;
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
}
|
|
|
|
vcpu->arch.nmi_injected = false;
|
|
kvm_clear_exception_queue(vcpu);
|
|
kvm_clear_interrupt_queue(vcpu);
|
|
|
|
if (!(exitintinfo & SVM_EXITINTINFO_VALID))
|
|
return;
|
|
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
|
|
vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
|
|
type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
|
|
|
|
if (soft_int_injected)
|
|
svm_complete_soft_interrupt(vcpu, vector, type);
|
|
|
|
switch (type) {
|
|
case SVM_EXITINTINFO_TYPE_NMI:
|
|
vcpu->arch.nmi_injected = true;
|
|
svm->nmi_l1_to_l2 = nmi_l1_to_l2;
|
|
break;
|
|
case SVM_EXITINTINFO_TYPE_EXEPT:
|
|
/*
|
|
* Never re-inject a #VC exception.
|
|
*/
|
|
if (vector == X86_TRAP_VC)
|
|
break;
|
|
|
|
if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
|
|
u32 err = svm->vmcb->control.exit_int_info_err;
|
|
kvm_requeue_exception_e(vcpu, vector, err);
|
|
|
|
} else
|
|
kvm_requeue_exception(vcpu, vector);
|
|
break;
|
|
case SVM_EXITINTINFO_TYPE_INTR:
|
|
kvm_queue_interrupt(vcpu, vector, false);
|
|
break;
|
|
case SVM_EXITINTINFO_TYPE_SOFT:
|
|
kvm_queue_interrupt(vcpu, vector, true);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
static void svm_cancel_injection(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct vmcb_control_area *control = &svm->vmcb->control;
|
|
|
|
control->exit_int_info = control->event_inj;
|
|
control->exit_int_info_err = control->event_inj_err;
|
|
control->event_inj = 0;
|
|
svm_complete_interrupts(vcpu);
|
|
}
|
|
|
|
static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (to_kvm_sev_info(vcpu->kvm)->need_init)
|
|
return -EINVAL;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if (is_guest_mode(vcpu))
|
|
return EXIT_FASTPATH_NONE;
|
|
|
|
switch (svm->vmcb->control.exit_code) {
|
|
case SVM_EXIT_MSR:
|
|
if (!svm->vmcb->control.exit_info_1)
|
|
break;
|
|
return handle_fastpath_set_msr_irqoff(vcpu);
|
|
case SVM_EXIT_HLT:
|
|
return handle_fastpath_hlt(vcpu);
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return EXIT_FASTPATH_NONE;
|
|
}
|
|
|
|
static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted)
|
|
{
|
|
struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
guest_state_enter_irqoff();
|
|
|
|
amd_clear_divider();
|
|
|
|
if (sev_es_guest(vcpu->kvm))
|
|
__svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted,
|
|
sev_es_host_save_area(sd));
|
|
else
|
|
__svm_vcpu_run(svm, spec_ctrl_intercepted);
|
|
|
|
guest_state_exit_irqoff();
|
|
}
|
|
|
|
static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu,
|
|
bool force_immediate_exit)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL);
|
|
|
|
trace_kvm_entry(vcpu, force_immediate_exit);
|
|
|
|
svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
|
|
svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
|
|
svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
|
|
|
|
/*
|
|
* Disable singlestep if we're injecting an interrupt/exception.
|
|
* We don't want our modified rflags to be pushed on the stack where
|
|
* we might not be able to easily reset them if we disabled NMI
|
|
* singlestep later.
|
|
*/
|
|
if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
|
|
/*
|
|
* Event injection happens before external interrupts cause a
|
|
* vmexit and interrupts are disabled here, so smp_send_reschedule
|
|
* is enough to force an immediate vmexit.
|
|
*/
|
|
disable_nmi_singlestep(svm);
|
|
force_immediate_exit = true;
|
|
}
|
|
|
|
if (force_immediate_exit)
|
|
smp_send_reschedule(vcpu->cpu);
|
|
|
|
pre_svm_run(vcpu);
|
|
|
|
sync_lapic_to_cr8(vcpu);
|
|
|
|
if (unlikely(svm->asid != svm->vmcb->control.asid)) {
|
|
svm->vmcb->control.asid = svm->asid;
|
|
vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
|
|
}
|
|
svm->vmcb->save.cr2 = vcpu->arch.cr2;
|
|
|
|
svm_hv_update_vp_id(svm->vmcb, vcpu);
|
|
|
|
/*
|
|
* Run with all-zero DR6 unless needed, so that we can get the exact cause
|
|
* of a #DB.
|
|
*/
|
|
if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
|
|
svm_set_dr6(svm, vcpu->arch.dr6);
|
|
else
|
|
svm_set_dr6(svm, DR6_ACTIVE_LOW);
|
|
|
|
clgi();
|
|
kvm_load_guest_xsave_state(vcpu);
|
|
|
|
kvm_wait_lapic_expire(vcpu);
|
|
|
|
/*
|
|
* If this vCPU has touched SPEC_CTRL, restore the guest's value if
|
|
* it's non-zero. Since vmentry is serialising on affected CPUs, there
|
|
* is no need to worry about the conditional branch over the wrmsr
|
|
* being speculatively taken.
|
|
*/
|
|
if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
|
|
x86_spec_ctrl_set_guest(svm->virt_spec_ctrl);
|
|
|
|
svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted);
|
|
|
|
if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
|
|
x86_spec_ctrl_restore_host(svm->virt_spec_ctrl);
|
|
|
|
if (!sev_es_guest(vcpu->kvm)) {
|
|
vcpu->arch.cr2 = svm->vmcb->save.cr2;
|
|
vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
|
|
vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
|
|
vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
|
|
}
|
|
vcpu->arch.regs_dirty = 0;
|
|
|
|
if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
|
|
kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
|
|
|
|
kvm_load_host_xsave_state(vcpu);
|
|
stgi();
|
|
|
|
/* Any pending NMI will happen here */
|
|
|
|
if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
|
|
kvm_after_interrupt(vcpu);
|
|
|
|
sync_cr8_to_lapic(vcpu);
|
|
|
|
svm->next_rip = 0;
|
|
if (is_guest_mode(vcpu)) {
|
|
nested_sync_control_from_vmcb02(svm);
|
|
|
|
/* Track VMRUNs that have made past consistency checking */
|
|
if (svm->nested.nested_run_pending &&
|
|
svm->vmcb->control.exit_code != SVM_EXIT_ERR)
|
|
++vcpu->stat.nested_run;
|
|
|
|
svm->nested.nested_run_pending = 0;
|
|
}
|
|
|
|
svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
|
|
vmcb_mark_all_clean(svm->vmcb);
|
|
|
|
/* if exit due to PF check for async PF */
|
|
if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
|
|
vcpu->arch.apf.host_apf_flags =
|
|
kvm_read_and_reset_apf_flags();
|
|
|
|
vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;
|
|
|
|
/*
|
|
* We need to handle MC intercepts here before the vcpu has a chance to
|
|
* change the physical cpu
|
|
*/
|
|
if (unlikely(svm->vmcb->control.exit_code ==
|
|
SVM_EXIT_EXCP_BASE + MC_VECTOR))
|
|
svm_handle_mce(vcpu);
|
|
|
|
trace_kvm_exit(vcpu, KVM_ISA_SVM);
|
|
|
|
svm_complete_interrupts(vcpu);
|
|
|
|
return svm_exit_handlers_fastpath(vcpu);
|
|
}
|
|
|
|
static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
|
|
int root_level)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
unsigned long cr3;
|
|
|
|
if (npt_enabled) {
|
|
svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
|
|
vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
|
|
|
|
hv_track_root_tdp(vcpu, root_hpa);
|
|
|
|
cr3 = vcpu->arch.cr3;
|
|
} else if (root_level >= PT64_ROOT_4LEVEL) {
|
|
cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
|
|
} else {
|
|
/* PCID in the guest should be impossible with a 32-bit MMU. */
|
|
WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
|
|
cr3 = root_hpa;
|
|
}
|
|
|
|
svm->vmcb->save.cr3 = cr3;
|
|
vmcb_mark_dirty(svm->vmcb, VMCB_CR);
|
|
}
|
|
|
|
static void
|
|
svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
|
|
{
|
|
/*
|
|
* Patch in the VMMCALL instruction:
|
|
*/
|
|
hypercall[0] = 0x0f;
|
|
hypercall[1] = 0x01;
|
|
hypercall[2] = 0xd9;
|
|
}
|
|
|
|
/*
|
|
* The kvm parameter can be NULL (module initialization, or invocation before
|
|
* VM creation). Be sure to check the kvm parameter before using it.
|
|
*/
|
|
static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
|
|
{
|
|
switch (index) {
|
|
case MSR_IA32_MCG_EXT_CTL:
|
|
case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
|
|
return false;
|
|
case MSR_IA32_SMBASE:
|
|
if (!IS_ENABLED(CONFIG_KVM_SMM))
|
|
return false;
|
|
/* SEV-ES guests do not support SMM, so report false */
|
|
if (kvm && sev_es_guest(kvm))
|
|
return false;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
/*
|
|
* SVM doesn't provide a way to disable just XSAVES in the guest, KVM
|
|
* can only disable all variants of by disallowing CR4.OSXSAVE from
|
|
* being set. As a result, if the host has XSAVE and XSAVES, and the
|
|
* guest has XSAVE enabled, the guest can execute XSAVES without
|
|
* faulting. Treat XSAVES as enabled in this case regardless of
|
|
* whether it's advertised to the guest so that KVM context switches
|
|
* XSS on VM-Enter/VM-Exit. Failure to do so would effectively give
|
|
* the guest read/write access to the host's XSS.
|
|
*/
|
|
if (boot_cpu_has(X86_FEATURE_XSAVE) &&
|
|
boot_cpu_has(X86_FEATURE_XSAVES) &&
|
|
guest_cpuid_has(vcpu, X86_FEATURE_XSAVE))
|
|
kvm_governed_feature_set(vcpu, X86_FEATURE_XSAVES);
|
|
|
|
kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_NRIPS);
|
|
kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_TSCRATEMSR);
|
|
kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LBRV);
|
|
|
|
/*
|
|
* Intercept VMLOAD if the vCPU model is Intel in order to emulate that
|
|
* VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing
|
|
* SVM on Intel is bonkers and extremely unlikely to work).
|
|
*/
|
|
if (!guest_cpuid_is_intel_compatible(vcpu))
|
|
kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD);
|
|
|
|
kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PAUSEFILTER);
|
|
kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PFTHRESHOLD);
|
|
kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VGIF);
|
|
kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VNMI);
|
|
|
|
svm_recalc_instruction_intercepts(vcpu, svm);
|
|
|
|
if (boot_cpu_has(X86_FEATURE_IBPB))
|
|
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0,
|
|
!!guest_has_pred_cmd_msr(vcpu));
|
|
|
|
if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
|
|
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_FLUSH_CMD, 0,
|
|
!!guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
|
|
|
|
if (sev_guest(vcpu->kvm))
|
|
sev_vcpu_after_set_cpuid(svm);
|
|
|
|
init_vmcb_after_set_cpuid(vcpu);
|
|
}
|
|
|
|
static bool svm_has_wbinvd_exit(void)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
#define PRE_EX(exit) { .exit_code = (exit), \
|
|
.stage = X86_ICPT_PRE_EXCEPT, }
|
|
#define POST_EX(exit) { .exit_code = (exit), \
|
|
.stage = X86_ICPT_POST_EXCEPT, }
|
|
#define POST_MEM(exit) { .exit_code = (exit), \
|
|
.stage = X86_ICPT_POST_MEMACCESS, }
|
|
|
|
static const struct __x86_intercept {
|
|
u32 exit_code;
|
|
enum x86_intercept_stage stage;
|
|
} x86_intercept_map[] = {
|
|
[x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
|
|
[x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
|
|
[x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
|
|
[x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
|
|
[x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
|
|
[x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
|
|
[x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
|
|
[x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
|
|
[x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
|
|
[x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
|
|
[x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
|
|
[x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
|
|
[x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
|
|
[x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
|
|
[x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
|
|
[x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
|
|
[x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
|
|
[x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
|
|
[x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
|
|
[x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
|
|
[x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
|
|
[x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
|
|
[x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
|
|
[x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
|
|
[x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
|
|
[x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
|
|
[x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
|
|
[x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
|
|
[x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
|
|
[x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
|
|
[x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
|
|
[x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
|
|
[x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
|
|
[x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
|
|
[x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
|
|
[x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
|
|
[x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
|
|
[x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
|
|
[x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
|
|
[x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
|
|
[x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
|
|
[x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
|
|
[x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
|
|
[x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
|
|
[x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
|
|
[x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
|
|
[x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV),
|
|
};
|
|
|
|
#undef PRE_EX
|
|
#undef POST_EX
|
|
#undef POST_MEM
|
|
|
|
static int svm_check_intercept(struct kvm_vcpu *vcpu,
|
|
struct x86_instruction_info *info,
|
|
enum x86_intercept_stage stage,
|
|
struct x86_exception *exception)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
int vmexit, ret = X86EMUL_CONTINUE;
|
|
struct __x86_intercept icpt_info;
|
|
struct vmcb *vmcb = svm->vmcb;
|
|
|
|
if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
|
|
goto out;
|
|
|
|
icpt_info = x86_intercept_map[info->intercept];
|
|
|
|
if (stage != icpt_info.stage)
|
|
goto out;
|
|
|
|
switch (icpt_info.exit_code) {
|
|
case SVM_EXIT_READ_CR0:
|
|
if (info->intercept == x86_intercept_cr_read)
|
|
icpt_info.exit_code += info->modrm_reg;
|
|
break;
|
|
case SVM_EXIT_WRITE_CR0: {
|
|
unsigned long cr0, val;
|
|
|
|
if (info->intercept == x86_intercept_cr_write)
|
|
icpt_info.exit_code += info->modrm_reg;
|
|
|
|
if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
|
|
info->intercept == x86_intercept_clts)
|
|
break;
|
|
|
|
if (!(vmcb12_is_intercept(&svm->nested.ctl,
|
|
INTERCEPT_SELECTIVE_CR0)))
|
|
break;
|
|
|
|
cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
|
|
val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
|
|
|
|
if (info->intercept == x86_intercept_lmsw) {
|
|
cr0 &= 0xfUL;
|
|
val &= 0xfUL;
|
|
/* lmsw can't clear PE - catch this here */
|
|
if (cr0 & X86_CR0_PE)
|
|
val |= X86_CR0_PE;
|
|
}
|
|
|
|
if (cr0 ^ val)
|
|
icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
|
|
|
|
break;
|
|
}
|
|
case SVM_EXIT_READ_DR0:
|
|
case SVM_EXIT_WRITE_DR0:
|
|
icpt_info.exit_code += info->modrm_reg;
|
|
break;
|
|
case SVM_EXIT_MSR:
|
|
if (info->intercept == x86_intercept_wrmsr)
|
|
vmcb->control.exit_info_1 = 1;
|
|
else
|
|
vmcb->control.exit_info_1 = 0;
|
|
break;
|
|
case SVM_EXIT_PAUSE:
|
|
/*
|
|
* We get this for NOP only, but pause
|
|
* is rep not, check this here
|
|
*/
|
|
if (info->rep_prefix != REPE_PREFIX)
|
|
goto out;
|
|
break;
|
|
case SVM_EXIT_IOIO: {
|
|
u64 exit_info;
|
|
u32 bytes;
|
|
|
|
if (info->intercept == x86_intercept_in ||
|
|
info->intercept == x86_intercept_ins) {
|
|
exit_info = ((info->src_val & 0xffff) << 16) |
|
|
SVM_IOIO_TYPE_MASK;
|
|
bytes = info->dst_bytes;
|
|
} else {
|
|
exit_info = (info->dst_val & 0xffff) << 16;
|
|
bytes = info->src_bytes;
|
|
}
|
|
|
|
if (info->intercept == x86_intercept_outs ||
|
|
info->intercept == x86_intercept_ins)
|
|
exit_info |= SVM_IOIO_STR_MASK;
|
|
|
|
if (info->rep_prefix)
|
|
exit_info |= SVM_IOIO_REP_MASK;
|
|
|
|
bytes = min(bytes, 4u);
|
|
|
|
exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
|
|
|
|
exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
|
|
|
|
vmcb->control.exit_info_1 = exit_info;
|
|
vmcb->control.exit_info_2 = info->next_rip;
|
|
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
|
|
if (static_cpu_has(X86_FEATURE_NRIPS))
|
|
vmcb->control.next_rip = info->next_rip;
|
|
vmcb->control.exit_code = icpt_info.exit_code;
|
|
vmexit = nested_svm_exit_handled(svm);
|
|
|
|
ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
|
|
: X86EMUL_CONTINUE;
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR)
|
|
vcpu->arch.at_instruction_boundary = true;
|
|
}
|
|
|
|
static void svm_setup_mce(struct kvm_vcpu *vcpu)
|
|
{
|
|
/* [63:9] are reserved. */
|
|
vcpu->arch.mcg_cap &= 0x1ff;
|
|
}
|
|
|
|
#ifdef CONFIG_KVM_SMM
|
|
bool svm_smi_blocked(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
/* Per APM Vol.2 15.22.2 "Response to SMI" */
|
|
if (!gif_set(svm))
|
|
return true;
|
|
|
|
return is_smm(vcpu);
|
|
}
|
|
|
|
static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
if (svm->nested.nested_run_pending)
|
|
return -EBUSY;
|
|
|
|
if (svm_smi_blocked(vcpu))
|
|
return 0;
|
|
|
|
/* An SMI must not be injected into L2 if it's supposed to VM-Exit. */
|
|
if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
|
|
return -EBUSY;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct kvm_host_map map_save;
|
|
int ret;
|
|
|
|
if (!is_guest_mode(vcpu))
|
|
return 0;
|
|
|
|
/*
|
|
* 32-bit SMRAM format doesn't preserve EFER and SVM state. Userspace is
|
|
* responsible for ensuring nested SVM and SMIs are mutually exclusive.
|
|
*/
|
|
|
|
if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
|
|
return 1;
|
|
|
|
smram->smram64.svm_guest_flag = 1;
|
|
smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa;
|
|
|
|
svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
|
|
svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
|
|
svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
|
|
|
|
ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* KVM uses VMCB01 to store L1 host state while L2 runs but
|
|
* VMCB01 is going to be used during SMM and thus the state will
|
|
* be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
|
|
* area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
|
|
* format of the area is identical to guest save area offsetted
|
|
* by 0x400 (matches the offset of 'struct vmcb_save_area'
|
|
* within 'struct vmcb'). Note: HSAVE area may also be used by
|
|
* L1 hypervisor to save additional host context (e.g. KVM does
|
|
* that, see svm_prepare_switch_to_guest()) which must be
|
|
* preserved.
|
|
*/
|
|
if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
|
|
return 1;
|
|
|
|
BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
|
|
|
|
svm_copy_vmrun_state(map_save.hva + 0x400,
|
|
&svm->vmcb01.ptr->save);
|
|
|
|
kvm_vcpu_unmap(vcpu, &map_save, true);
|
|
return 0;
|
|
}
|
|
|
|
static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct kvm_host_map map, map_save;
|
|
struct vmcb *vmcb12;
|
|
int ret;
|
|
|
|
const struct kvm_smram_state_64 *smram64 = &smram->smram64;
|
|
|
|
if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
|
|
return 0;
|
|
|
|
/* Non-zero if SMI arrived while vCPU was in guest mode. */
|
|
if (!smram64->svm_guest_flag)
|
|
return 0;
|
|
|
|
if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
|
|
return 1;
|
|
|
|
if (!(smram64->efer & EFER_SVME))
|
|
return 1;
|
|
|
|
if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map))
|
|
return 1;
|
|
|
|
ret = 1;
|
|
if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
|
|
goto unmap_map;
|
|
|
|
if (svm_allocate_nested(svm))
|
|
goto unmap_save;
|
|
|
|
/*
|
|
* Restore L1 host state from L1 HSAVE area as VMCB01 was
|
|
* used during SMM (see svm_enter_smm())
|
|
*/
|
|
|
|
svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
|
|
|
|
/*
|
|
* Enter the nested guest now
|
|
*/
|
|
|
|
vmcb_mark_all_dirty(svm->vmcb01.ptr);
|
|
|
|
vmcb12 = map.hva;
|
|
nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
|
|
nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
|
|
ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false);
|
|
|
|
if (ret)
|
|
goto unmap_save;
|
|
|
|
svm->nested.nested_run_pending = 1;
|
|
|
|
unmap_save:
|
|
kvm_vcpu_unmap(vcpu, &map_save, true);
|
|
unmap_map:
|
|
kvm_vcpu_unmap(vcpu, &map, true);
|
|
return ret;
|
|
}
|
|
|
|
static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if (!gif_set(svm)) {
|
|
if (vgif)
|
|
svm_set_intercept(svm, INTERCEPT_STGI);
|
|
/* STGI will cause a vm exit */
|
|
} else {
|
|
/* We must be in SMM; RSM will cause a vmexit anyway. */
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static int svm_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
|
|
void *insn, int insn_len)
|
|
{
|
|
bool smep, smap, is_user;
|
|
u64 error_code;
|
|
|
|
/* Emulation is always possible when KVM has access to all guest state. */
|
|
if (!sev_guest(vcpu->kvm))
|
|
return X86EMUL_CONTINUE;
|
|
|
|
/* #UD and #GP should never be intercepted for SEV guests. */
|
|
WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
|
|
EMULTYPE_TRAP_UD_FORCED |
|
|
EMULTYPE_VMWARE_GP));
|
|
|
|
/*
|
|
* Emulation is impossible for SEV-ES guests as KVM doesn't have access
|
|
* to guest register state.
|
|
*/
|
|
if (sev_es_guest(vcpu->kvm))
|
|
return X86EMUL_RETRY_INSTR;
|
|
|
|
/*
|
|
* Emulation is possible if the instruction is already decoded, e.g.
|
|
* when completing I/O after returning from userspace.
|
|
*/
|
|
if (emul_type & EMULTYPE_NO_DECODE)
|
|
return X86EMUL_CONTINUE;
|
|
|
|
/*
|
|
* Emulation is possible for SEV guests if and only if a prefilled
|
|
* buffer containing the bytes of the intercepted instruction is
|
|
* available. SEV guest memory is encrypted with a guest specific key
|
|
* and cannot be decrypted by KVM, i.e. KVM would read ciphertext and
|
|
* decode garbage.
|
|
*
|
|
* If KVM is NOT trying to simply skip an instruction, inject #UD if
|
|
* KVM reached this point without an instruction buffer. In practice,
|
|
* this path should never be hit by a well-behaved guest, e.g. KVM
|
|
* doesn't intercept #UD or #GP for SEV guests, but this path is still
|
|
* theoretically reachable, e.g. via unaccelerated fault-like AVIC
|
|
* access, and needs to be handled by KVM to avoid putting the guest
|
|
* into an infinite loop. Injecting #UD is somewhat arbitrary, but
|
|
* its the least awful option given lack of insight into the guest.
|
|
*
|
|
* If KVM is trying to skip an instruction, simply resume the guest.
|
|
* If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM
|
|
* will attempt to re-inject the INT3/INTO and skip the instruction.
|
|
* In that scenario, retrying the INT3/INTO and hoping the guest will
|
|
* make forward progress is the only option that has a chance of
|
|
* success (and in practice it will work the vast majority of the time).
|
|
*/
|
|
if (unlikely(!insn)) {
|
|
if (emul_type & EMULTYPE_SKIP)
|
|
return X86EMUL_UNHANDLEABLE;
|
|
|
|
kvm_queue_exception(vcpu, UD_VECTOR);
|
|
return X86EMUL_PROPAGATE_FAULT;
|
|
}
|
|
|
|
/*
|
|
* Emulate for SEV guests if the insn buffer is not empty. The buffer
|
|
* will be empty if the DecodeAssist microcode cannot fetch bytes for
|
|
* the faulting instruction because the code fetch itself faulted, e.g.
|
|
* the guest attempted to fetch from emulated MMIO or a guest page
|
|
* table used to translate CS:RIP resides in emulated MMIO.
|
|
*/
|
|
if (likely(insn_len))
|
|
return X86EMUL_CONTINUE;
|
|
|
|
/*
|
|
* Detect and workaround Errata 1096 Fam_17h_00_0Fh.
|
|
*
|
|
* Errata:
|
|
* When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
|
|
* possible that CPU microcode implementing DecodeAssist will fail to
|
|
* read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
|
|
* be '0'. This happens because microcode reads CS:RIP using a _data_
|
|
* loap uop with CPL=0 privileges. If the load hits a SMAP #PF, ucode
|
|
* gives up and does not fill the instruction bytes buffer.
|
|
*
|
|
* As above, KVM reaches this point iff the VM is an SEV guest, the CPU
|
|
* supports DecodeAssist, a #NPF was raised, KVM's page fault handler
|
|
* triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
|
|
* GuestIntrBytes field of the VMCB.
|
|
*
|
|
* This does _not_ mean that the erratum has been encountered, as the
|
|
* DecodeAssist will also fail if the load for CS:RIP hits a legitimate
|
|
* #PF, e.g. if the guest attempt to execute from emulated MMIO and
|
|
* encountered a reserved/not-present #PF.
|
|
*
|
|
* To hit the erratum, the following conditions must be true:
|
|
* 1. CR4.SMAP=1 (obviously).
|
|
* 2. CR4.SMEP=0 || CPL=3. If SMEP=1 and CPL<3, the erratum cannot
|
|
* have been hit as the guest would have encountered a SMEP
|
|
* violation #PF, not a #NPF.
|
|
* 3. The #NPF is not due to a code fetch, in which case failure to
|
|
* retrieve the instruction bytes is legitimate (see abvoe).
|
|
*
|
|
* In addition, don't apply the erratum workaround if the #NPF occurred
|
|
* while translating guest page tables (see below).
|
|
*/
|
|
error_code = to_svm(vcpu)->vmcb->control.exit_info_1;
|
|
if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
|
|
goto resume_guest;
|
|
|
|
smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP);
|
|
smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP);
|
|
is_user = svm_get_cpl(vcpu) == 3;
|
|
if (smap && (!smep || is_user)) {
|
|
pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n");
|
|
|
|
/*
|
|
* If the fault occurred in userspace, arbitrarily inject #GP
|
|
* to avoid killing the guest and to hopefully avoid confusing
|
|
* the guest kernel too much, e.g. injecting #PF would not be
|
|
* coherent with respect to the guest's page tables. Request
|
|
* triple fault if the fault occurred in the kernel as there's
|
|
* no fault that KVM can inject without confusing the guest.
|
|
* In practice, the triple fault is moot as no sane SEV kernel
|
|
* will execute from user memory while also running with SMAP=1.
|
|
*/
|
|
if (is_user)
|
|
kvm_inject_gp(vcpu, 0);
|
|
else
|
|
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
|
|
return X86EMUL_PROPAGATE_FAULT;
|
|
}
|
|
|
|
resume_guest:
|
|
/*
|
|
* If the erratum was not hit, simply resume the guest and let it fault
|
|
* again. While awful, e.g. the vCPU may get stuck in an infinite loop
|
|
* if the fault is at CPL=0, it's the lesser of all evils. Exiting to
|
|
* userspace will kill the guest, and letting the emulator read garbage
|
|
* will yield random behavior and potentially corrupt the guest.
|
|
*
|
|
* Simply resuming the guest is technically not a violation of the SEV
|
|
* architecture. AMD's APM states that all code fetches and page table
|
|
* accesses for SEV guest are encrypted, regardless of the C-Bit. The
|
|
* APM also states that encrypted accesses to MMIO are "ignored", but
|
|
* doesn't explicitly define "ignored", i.e. doing nothing and letting
|
|
* the guest spin is technically "ignoring" the access.
|
|
*/
|
|
return X86EMUL_RETRY_INSTR;
|
|
}
|
|
|
|
static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
return !gif_set(svm);
|
|
}
|
|
|
|
static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
|
|
{
|
|
if (!sev_es_guest(vcpu->kvm))
|
|
return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
|
|
|
|
sev_vcpu_deliver_sipi_vector(vcpu, vector);
|
|
}
|
|
|
|
static void svm_vm_destroy(struct kvm *kvm)
|
|
{
|
|
avic_vm_destroy(kvm);
|
|
sev_vm_destroy(kvm);
|
|
}
|
|
|
|
static int svm_vm_init(struct kvm *kvm)
|
|
{
|
|
int type = kvm->arch.vm_type;
|
|
|
|
if (type != KVM_X86_DEFAULT_VM &&
|
|
type != KVM_X86_SW_PROTECTED_VM) {
|
|
kvm->arch.has_protected_state =
|
|
(type == KVM_X86_SEV_ES_VM || type == KVM_X86_SNP_VM);
|
|
to_kvm_sev_info(kvm)->need_init = true;
|
|
|
|
kvm->arch.has_private_mem = (type == KVM_X86_SNP_VM);
|
|
kvm->arch.pre_fault_allowed = !kvm->arch.has_private_mem;
|
|
}
|
|
|
|
if (!pause_filter_count || !pause_filter_thresh)
|
|
kvm->arch.pause_in_guest = true;
|
|
|
|
if (enable_apicv) {
|
|
int ret = avic_vm_init(kvm);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void *svm_alloc_apic_backing_page(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct page *page = snp_safe_alloc_page();
|
|
|
|
if (!page)
|
|
return NULL;
|
|
|
|
return page_address(page);
|
|
}
|
|
|
|
static struct kvm_x86_ops svm_x86_ops __initdata = {
|
|
.name = KBUILD_MODNAME,
|
|
|
|
.check_processor_compatibility = svm_check_processor_compat,
|
|
|
|
.hardware_unsetup = svm_hardware_unsetup,
|
|
.enable_virtualization_cpu = svm_enable_virtualization_cpu,
|
|
.disable_virtualization_cpu = svm_disable_virtualization_cpu,
|
|
.emergency_disable_virtualization_cpu = svm_emergency_disable_virtualization_cpu,
|
|
.has_emulated_msr = svm_has_emulated_msr,
|
|
|
|
.vcpu_create = svm_vcpu_create,
|
|
.vcpu_free = svm_vcpu_free,
|
|
.vcpu_reset = svm_vcpu_reset,
|
|
|
|
.vm_size = sizeof(struct kvm_svm),
|
|
.vm_init = svm_vm_init,
|
|
.vm_destroy = svm_vm_destroy,
|
|
|
|
.prepare_switch_to_guest = svm_prepare_switch_to_guest,
|
|
.vcpu_load = svm_vcpu_load,
|
|
.vcpu_put = svm_vcpu_put,
|
|
.vcpu_blocking = avic_vcpu_blocking,
|
|
.vcpu_unblocking = avic_vcpu_unblocking,
|
|
|
|
.update_exception_bitmap = svm_update_exception_bitmap,
|
|
.get_feature_msr = svm_get_feature_msr,
|
|
.get_msr = svm_get_msr,
|
|
.set_msr = svm_set_msr,
|
|
.get_segment_base = svm_get_segment_base,
|
|
.get_segment = svm_get_segment,
|
|
.set_segment = svm_set_segment,
|
|
.get_cpl = svm_get_cpl,
|
|
.get_cs_db_l_bits = svm_get_cs_db_l_bits,
|
|
.is_valid_cr0 = svm_is_valid_cr0,
|
|
.set_cr0 = svm_set_cr0,
|
|
.post_set_cr3 = sev_post_set_cr3,
|
|
.is_valid_cr4 = svm_is_valid_cr4,
|
|
.set_cr4 = svm_set_cr4,
|
|
.set_efer = svm_set_efer,
|
|
.get_idt = svm_get_idt,
|
|
.set_idt = svm_set_idt,
|
|
.get_gdt = svm_get_gdt,
|
|
.set_gdt = svm_set_gdt,
|
|
.set_dr7 = svm_set_dr7,
|
|
.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
|
|
.cache_reg = svm_cache_reg,
|
|
.get_rflags = svm_get_rflags,
|
|
.set_rflags = svm_set_rflags,
|
|
.get_if_flag = svm_get_if_flag,
|
|
|
|
.flush_tlb_all = svm_flush_tlb_all,
|
|
.flush_tlb_current = svm_flush_tlb_current,
|
|
.flush_tlb_gva = svm_flush_tlb_gva,
|
|
.flush_tlb_guest = svm_flush_tlb_asid,
|
|
|
|
.vcpu_pre_run = svm_vcpu_pre_run,
|
|
.vcpu_run = svm_vcpu_run,
|
|
.handle_exit = svm_handle_exit,
|
|
.skip_emulated_instruction = svm_skip_emulated_instruction,
|
|
.update_emulated_instruction = NULL,
|
|
.set_interrupt_shadow = svm_set_interrupt_shadow,
|
|
.get_interrupt_shadow = svm_get_interrupt_shadow,
|
|
.patch_hypercall = svm_patch_hypercall,
|
|
.inject_irq = svm_inject_irq,
|
|
.inject_nmi = svm_inject_nmi,
|
|
.is_vnmi_pending = svm_is_vnmi_pending,
|
|
.set_vnmi_pending = svm_set_vnmi_pending,
|
|
.inject_exception = svm_inject_exception,
|
|
.cancel_injection = svm_cancel_injection,
|
|
.interrupt_allowed = svm_interrupt_allowed,
|
|
.nmi_allowed = svm_nmi_allowed,
|
|
.get_nmi_mask = svm_get_nmi_mask,
|
|
.set_nmi_mask = svm_set_nmi_mask,
|
|
.enable_nmi_window = svm_enable_nmi_window,
|
|
.enable_irq_window = svm_enable_irq_window,
|
|
.update_cr8_intercept = svm_update_cr8_intercept,
|
|
|
|
.x2apic_icr_is_split = true,
|
|
.set_virtual_apic_mode = avic_refresh_virtual_apic_mode,
|
|
.refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl,
|
|
.apicv_post_state_restore = avic_apicv_post_state_restore,
|
|
.required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS,
|
|
|
|
.get_exit_info = svm_get_exit_info,
|
|
|
|
.vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
|
|
|
|
.has_wbinvd_exit = svm_has_wbinvd_exit,
|
|
|
|
.get_l2_tsc_offset = svm_get_l2_tsc_offset,
|
|
.get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
|
|
.write_tsc_offset = svm_write_tsc_offset,
|
|
.write_tsc_multiplier = svm_write_tsc_multiplier,
|
|
|
|
.load_mmu_pgd = svm_load_mmu_pgd,
|
|
|
|
.check_intercept = svm_check_intercept,
|
|
.handle_exit_irqoff = svm_handle_exit_irqoff,
|
|
|
|
.nested_ops = &svm_nested_ops,
|
|
|
|
.deliver_interrupt = svm_deliver_interrupt,
|
|
.pi_update_irte = avic_pi_update_irte,
|
|
.setup_mce = svm_setup_mce,
|
|
|
|
#ifdef CONFIG_KVM_SMM
|
|
.smi_allowed = svm_smi_allowed,
|
|
.enter_smm = svm_enter_smm,
|
|
.leave_smm = svm_leave_smm,
|
|
.enable_smi_window = svm_enable_smi_window,
|
|
#endif
|
|
|
|
#ifdef CONFIG_KVM_AMD_SEV
|
|
.dev_get_attr = sev_dev_get_attr,
|
|
.mem_enc_ioctl = sev_mem_enc_ioctl,
|
|
.mem_enc_register_region = sev_mem_enc_register_region,
|
|
.mem_enc_unregister_region = sev_mem_enc_unregister_region,
|
|
.guest_memory_reclaimed = sev_guest_memory_reclaimed,
|
|
|
|
.vm_copy_enc_context_from = sev_vm_copy_enc_context_from,
|
|
.vm_move_enc_context_from = sev_vm_move_enc_context_from,
|
|
#endif
|
|
.check_emulate_instruction = svm_check_emulate_instruction,
|
|
|
|
.apic_init_signal_blocked = svm_apic_init_signal_blocked,
|
|
|
|
.msr_filter_changed = svm_msr_filter_changed,
|
|
.complete_emulated_msr = svm_complete_emulated_msr,
|
|
|
|
.vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
|
|
.vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons,
|
|
.alloc_apic_backing_page = svm_alloc_apic_backing_page,
|
|
|
|
.gmem_prepare = sev_gmem_prepare,
|
|
.gmem_invalidate = sev_gmem_invalidate,
|
|
.private_max_mapping_level = sev_private_max_mapping_level,
|
|
};
|
|
|
|
/*
|
|
* The default MMIO mask is a single bit (excluding the present bit),
|
|
* which could conflict with the memory encryption bit. Check for
|
|
* memory encryption support and override the default MMIO mask if
|
|
* memory encryption is enabled.
|
|
*/
|
|
static __init void svm_adjust_mmio_mask(void)
|
|
{
|
|
unsigned int enc_bit, mask_bit;
|
|
u64 msr, mask;
|
|
|
|
/* If there is no memory encryption support, use existing mask */
|
|
if (cpuid_eax(0x80000000) < 0x8000001f)
|
|
return;
|
|
|
|
/* If memory encryption is not enabled, use existing mask */
|
|
rdmsrl(MSR_AMD64_SYSCFG, msr);
|
|
if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
|
|
return;
|
|
|
|
enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
|
|
mask_bit = boot_cpu_data.x86_phys_bits;
|
|
|
|
/* Increment the mask bit if it is the same as the encryption bit */
|
|
if (enc_bit == mask_bit)
|
|
mask_bit++;
|
|
|
|
/*
|
|
* If the mask bit location is below 52, then some bits above the
|
|
* physical addressing limit will always be reserved, so use the
|
|
* rsvd_bits() function to generate the mask. This mask, along with
|
|
* the present bit, will be used to generate a page fault with
|
|
* PFER.RSV = 1.
|
|
*
|
|
* If the mask bit location is 52 (or above), then clear the mask.
|
|
*/
|
|
mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
|
|
|
|
kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
|
|
}
|
|
|
|
static __init void svm_set_cpu_caps(void)
|
|
{
|
|
kvm_set_cpu_caps();
|
|
|
|
kvm_caps.supported_perf_cap = 0;
|
|
kvm_caps.supported_xss = 0;
|
|
|
|
/* CPUID 0x80000001 and 0x8000000A (SVM features) */
|
|
if (nested) {
|
|
kvm_cpu_cap_set(X86_FEATURE_SVM);
|
|
kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN);
|
|
|
|
/*
|
|
* KVM currently flushes TLBs on *every* nested SVM transition,
|
|
* and so for all intents and purposes KVM supports flushing by
|
|
* ASID, i.e. KVM is guaranteed to honor every L1 ASID flush.
|
|
*/
|
|
kvm_cpu_cap_set(X86_FEATURE_FLUSHBYASID);
|
|
|
|
if (nrips)
|
|
kvm_cpu_cap_set(X86_FEATURE_NRIPS);
|
|
|
|
if (npt_enabled)
|
|
kvm_cpu_cap_set(X86_FEATURE_NPT);
|
|
|
|
if (tsc_scaling)
|
|
kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);
|
|
|
|
if (vls)
|
|
kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD);
|
|
if (lbrv)
|
|
kvm_cpu_cap_set(X86_FEATURE_LBRV);
|
|
|
|
if (boot_cpu_has(X86_FEATURE_PAUSEFILTER))
|
|
kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER);
|
|
|
|
if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD))
|
|
kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD);
|
|
|
|
if (vgif)
|
|
kvm_cpu_cap_set(X86_FEATURE_VGIF);
|
|
|
|
if (vnmi)
|
|
kvm_cpu_cap_set(X86_FEATURE_VNMI);
|
|
|
|
/* Nested VM can receive #VMEXIT instead of triggering #GP */
|
|
kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
|
|
}
|
|
|
|
/* CPUID 0x80000008 */
|
|
if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
|
|
boot_cpu_has(X86_FEATURE_AMD_SSBD))
|
|
kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
|
|
|
|
if (enable_pmu) {
|
|
/*
|
|
* Enumerate support for PERFCTR_CORE if and only if KVM has
|
|
* access to enough counters to virtualize "core" support,
|
|
* otherwise limit vPMU support to the legacy number of counters.
|
|
*/
|
|
if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE)
|
|
kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS,
|
|
kvm_pmu_cap.num_counters_gp);
|
|
else
|
|
kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE);
|
|
|
|
if (kvm_pmu_cap.version != 2 ||
|
|
!kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
|
|
kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2);
|
|
}
|
|
|
|
/* CPUID 0x8000001F (SME/SEV features) */
|
|
sev_set_cpu_caps();
|
|
|
|
/* Don't advertise Bus Lock Detect to guest if SVM support is absent */
|
|
kvm_cpu_cap_clear(X86_FEATURE_BUS_LOCK_DETECT);
|
|
}
|
|
|
|
static __init int svm_hardware_setup(void)
|
|
{
|
|
int cpu;
|
|
struct page *iopm_pages;
|
|
void *iopm_va;
|
|
int r;
|
|
unsigned int order = get_order(IOPM_SIZE);
|
|
|
|
/*
|
|
* NX is required for shadow paging and for NPT if the NX huge pages
|
|
* mitigation is enabled.
|
|
*/
|
|
if (!boot_cpu_has(X86_FEATURE_NX)) {
|
|
pr_err_ratelimited("NX (Execute Disable) not supported\n");
|
|
return -EOPNOTSUPP;
|
|
}
|
|
kvm_enable_efer_bits(EFER_NX);
|
|
|
|
iopm_pages = alloc_pages(GFP_KERNEL, order);
|
|
|
|
if (!iopm_pages)
|
|
return -ENOMEM;
|
|
|
|
iopm_va = page_address(iopm_pages);
|
|
memset(iopm_va, 0xff, PAGE_SIZE * (1 << order));
|
|
iopm_base = __sme_page_pa(iopm_pages);
|
|
|
|
init_msrpm_offsets();
|
|
|
|
kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
|
|
XFEATURE_MASK_BNDCSR);
|
|
|
|
if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
|
|
kvm_enable_efer_bits(EFER_FFXSR);
|
|
|
|
if (tsc_scaling) {
|
|
if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
|
|
tsc_scaling = false;
|
|
} else {
|
|
pr_info("TSC scaling supported\n");
|
|
kvm_caps.has_tsc_control = true;
|
|
}
|
|
}
|
|
kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX;
|
|
kvm_caps.tsc_scaling_ratio_frac_bits = 32;
|
|
|
|
tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
|
|
|
|
if (boot_cpu_has(X86_FEATURE_AUTOIBRS))
|
|
kvm_enable_efer_bits(EFER_AUTOIBRS);
|
|
|
|
/* Check for pause filtering support */
|
|
if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
|
|
pause_filter_count = 0;
|
|
pause_filter_thresh = 0;
|
|
} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
|
|
pause_filter_thresh = 0;
|
|
}
|
|
|
|
if (nested) {
|
|
pr_info("Nested Virtualization enabled\n");
|
|
kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
|
|
}
|
|
|
|
/*
|
|
* KVM's MMU doesn't support using 2-level paging for itself, and thus
|
|
* NPT isn't supported if the host is using 2-level paging since host
|
|
* CR4 is unchanged on VMRUN.
|
|
*/
|
|
if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
|
|
npt_enabled = false;
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_NPT))
|
|
npt_enabled = false;
|
|
|
|
/* Force VM NPT level equal to the host's paging level */
|
|
kvm_configure_mmu(npt_enabled, get_npt_level(),
|
|
get_npt_level(), PG_LEVEL_1G);
|
|
pr_info("Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
|
|
|
|
/* Setup shadow_me_value and shadow_me_mask */
|
|
kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask);
|
|
|
|
svm_adjust_mmio_mask();
|
|
|
|
nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS);
|
|
|
|
if (lbrv) {
|
|
if (!boot_cpu_has(X86_FEATURE_LBRV))
|
|
lbrv = false;
|
|
else
|
|
pr_info("LBR virtualization supported\n");
|
|
}
|
|
/*
|
|
* Note, SEV setup consumes npt_enabled and enable_mmio_caching (which
|
|
* may be modified by svm_adjust_mmio_mask()), as well as nrips.
|
|
*/
|
|
sev_hardware_setup();
|
|
|
|
svm_hv_hardware_setup();
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
r = svm_cpu_init(cpu);
|
|
if (r)
|
|
goto err;
|
|
}
|
|
|
|
enable_apicv = avic = avic && avic_hardware_setup();
|
|
|
|
if (!enable_apicv) {
|
|
svm_x86_ops.vcpu_blocking = NULL;
|
|
svm_x86_ops.vcpu_unblocking = NULL;
|
|
svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL;
|
|
} else if (!x2avic_enabled) {
|
|
svm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization = true;
|
|
}
|
|
|
|
if (vls) {
|
|
if (!npt_enabled ||
|
|
!boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
|
|
!IS_ENABLED(CONFIG_X86_64)) {
|
|
vls = false;
|
|
} else {
|
|
pr_info("Virtual VMLOAD VMSAVE supported\n");
|
|
}
|
|
}
|
|
|
|
if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
|
|
svm_gp_erratum_intercept = false;
|
|
|
|
if (vgif) {
|
|
if (!boot_cpu_has(X86_FEATURE_VGIF))
|
|
vgif = false;
|
|
else
|
|
pr_info("Virtual GIF supported\n");
|
|
}
|
|
|
|
vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI);
|
|
if (vnmi)
|
|
pr_info("Virtual NMI enabled\n");
|
|
|
|
if (!vnmi) {
|
|
svm_x86_ops.is_vnmi_pending = NULL;
|
|
svm_x86_ops.set_vnmi_pending = NULL;
|
|
}
|
|
|
|
if (!enable_pmu)
|
|
pr_info("PMU virtualization is disabled\n");
|
|
|
|
svm_set_cpu_caps();
|
|
|
|
/*
|
|
* It seems that on AMD processors PTE's accessed bit is
|
|
* being set by the CPU hardware before the NPF vmexit.
|
|
* This is not expected behaviour and our tests fail because
|
|
* of it.
|
|
* A workaround here is to disable support for
|
|
* GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
|
|
* In this case userspace can know if there is support using
|
|
* KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
|
|
* it
|
|
* If future AMD CPU models change the behaviour described above,
|
|
* this variable can be changed accordingly
|
|
*/
|
|
allow_smaller_maxphyaddr = !npt_enabled;
|
|
|
|
return 0;
|
|
|
|
err:
|
|
svm_hardware_unsetup();
|
|
return r;
|
|
}
|
|
|
|
|
|
static struct kvm_x86_init_ops svm_init_ops __initdata = {
|
|
.hardware_setup = svm_hardware_setup,
|
|
|
|
.runtime_ops = &svm_x86_ops,
|
|
.pmu_ops = &amd_pmu_ops,
|
|
};
|
|
|
|
static void __svm_exit(void)
|
|
{
|
|
kvm_x86_vendor_exit();
|
|
}
|
|
|
|
static int __init svm_init(void)
|
|
{
|
|
int r;
|
|
|
|
__unused_size_checks();
|
|
|
|
if (!kvm_is_svm_supported())
|
|
return -EOPNOTSUPP;
|
|
|
|
r = kvm_x86_vendor_init(&svm_init_ops);
|
|
if (r)
|
|
return r;
|
|
|
|
/*
|
|
* Common KVM initialization _must_ come last, after this, /dev/kvm is
|
|
* exposed to userspace!
|
|
*/
|
|
r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm),
|
|
THIS_MODULE);
|
|
if (r)
|
|
goto err_kvm_init;
|
|
|
|
return 0;
|
|
|
|
err_kvm_init:
|
|
__svm_exit();
|
|
return r;
|
|
}
|
|
|
|
static void __exit svm_exit(void)
|
|
{
|
|
kvm_exit();
|
|
__svm_exit();
|
|
}
|
|
|
|
module_init(svm_init)
|
|
module_exit(svm_exit)
|