1
linux/drivers/ata/sata_sx4.c
David Howells 7d12e780e0 IRQ: Maintain regs pointer globally rather than passing to IRQ handlers
Maintain a per-CPU global "struct pt_regs *" variable which can be used instead
of passing regs around manually through all ~1800 interrupt handlers in the
Linux kernel.

The regs pointer is used in few places, but it potentially costs both stack
space and code to pass it around.  On the FRV arch, removing the regs parameter
from all the genirq function results in a 20% speed up of the IRQ exit path
(ie: from leaving timer_interrupt() to leaving do_IRQ()).

Where appropriate, an arch may override the generic storage facility and do
something different with the variable.  On FRV, for instance, the address is
maintained in GR28 at all times inside the kernel as part of general exception
handling.

Having looked over the code, it appears that the parameter may be handed down
through up to twenty or so layers of functions.  Consider a USB character
device attached to a USB hub, attached to a USB controller that posts its
interrupts through a cascaded auxiliary interrupt controller.  A character
device driver may want to pass regs to the sysrq handler through the input
layer which adds another few layers of parameter passing.

I've build this code with allyesconfig for x86_64 and i386.  I've runtested the
main part of the code on FRV and i386, though I can't test most of the drivers.
I've also done partial conversion for powerpc and MIPS - these at least compile
with minimal configurations.

This will affect all archs.  Mostly the changes should be relatively easy.
Take do_IRQ(), store the regs pointer at the beginning, saving the old one:

	struct pt_regs *old_regs = set_irq_regs(regs);

And put the old one back at the end:

	set_irq_regs(old_regs);

Don't pass regs through to generic_handle_irq() or __do_IRQ().

In timer_interrupt(), this sort of change will be necessary:

	-	update_process_times(user_mode(regs));
	-	profile_tick(CPU_PROFILING, regs);
	+	update_process_times(user_mode(get_irq_regs()));
	+	profile_tick(CPU_PROFILING);

I'd like to move update_process_times()'s use of get_irq_regs() into itself,
except that i386, alone of the archs, uses something other than user_mode().

Some notes on the interrupt handling in the drivers:

 (*) input_dev() is now gone entirely.  The regs pointer is no longer stored in
     the input_dev struct.

 (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking.  It does
     something different depending on whether it's been supplied with a regs
     pointer or not.

 (*) Various IRQ handler function pointers have been moved to type
     irq_handler_t.

Signed-Off-By: David Howells <dhowells@redhat.com>
(cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 15:10:12 +01:00

1502 lines
39 KiB
C

/*
* sata_sx4.c - Promise SATA
*
* Maintained by: Jeff Garzik <jgarzik@pobox.com>
* Please ALWAYS copy linux-ide@vger.kernel.org
* on emails.
*
* Copyright 2003-2004 Red Hat, Inc.
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*
*
* libata documentation is available via 'make {ps|pdf}docs',
* as Documentation/DocBook/libata.*
*
* Hardware documentation available under NDA.
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <linux/device.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_cmnd.h>
#include <linux/libata.h>
#include <asm/io.h>
#include "sata_promise.h"
#define DRV_NAME "sata_sx4"
#define DRV_VERSION "0.9"
enum {
PDC_PRD_TBL = 0x44, /* Direct command DMA table addr */
PDC_PKT_SUBMIT = 0x40, /* Command packet pointer addr */
PDC_HDMA_PKT_SUBMIT = 0x100, /* Host DMA packet pointer addr */
PDC_INT_SEQMASK = 0x40, /* Mask of asserted SEQ INTs */
PDC_HDMA_CTLSTAT = 0x12C, /* Host DMA control / status */
PDC_20621_SEQCTL = 0x400,
PDC_20621_SEQMASK = 0x480,
PDC_20621_GENERAL_CTL = 0x484,
PDC_20621_PAGE_SIZE = (32 * 1024),
/* chosen, not constant, values; we design our own DIMM mem map */
PDC_20621_DIMM_WINDOW = 0x0C, /* page# for 32K DIMM window */
PDC_20621_DIMM_BASE = 0x00200000,
PDC_20621_DIMM_DATA = (64 * 1024),
PDC_DIMM_DATA_STEP = (256 * 1024),
PDC_DIMM_WINDOW_STEP = (8 * 1024),
PDC_DIMM_HOST_PRD = (6 * 1024),
PDC_DIMM_HOST_PKT = (128 * 0),
PDC_DIMM_HPKT_PRD = (128 * 1),
PDC_DIMM_ATA_PKT = (128 * 2),
PDC_DIMM_APKT_PRD = (128 * 3),
PDC_DIMM_HEADER_SZ = PDC_DIMM_APKT_PRD + 128,
PDC_PAGE_WINDOW = 0x40,
PDC_PAGE_DATA = PDC_PAGE_WINDOW +
(PDC_20621_DIMM_DATA / PDC_20621_PAGE_SIZE),
PDC_PAGE_SET = PDC_DIMM_DATA_STEP / PDC_20621_PAGE_SIZE,
PDC_CHIP0_OFS = 0xC0000, /* offset of chip #0 */
PDC_20621_ERR_MASK = (1<<19) | (1<<20) | (1<<21) | (1<<22) |
(1<<23),
board_20621 = 0, /* FastTrak S150 SX4 */
PDC_RESET = (1 << 11), /* HDMA reset */
PDC_MAX_HDMA = 32,
PDC_HDMA_Q_MASK = (PDC_MAX_HDMA - 1),
PDC_DIMM0_SPD_DEV_ADDRESS = 0x50,
PDC_DIMM1_SPD_DEV_ADDRESS = 0x51,
PDC_MAX_DIMM_MODULE = 0x02,
PDC_I2C_CONTROL_OFFSET = 0x48,
PDC_I2C_ADDR_DATA_OFFSET = 0x4C,
PDC_DIMM0_CONTROL_OFFSET = 0x80,
PDC_DIMM1_CONTROL_OFFSET = 0x84,
PDC_SDRAM_CONTROL_OFFSET = 0x88,
PDC_I2C_WRITE = 0x00000000,
PDC_I2C_READ = 0x00000040,
PDC_I2C_START = 0x00000080,
PDC_I2C_MASK_INT = 0x00000020,
PDC_I2C_COMPLETE = 0x00010000,
PDC_I2C_NO_ACK = 0x00100000,
PDC_DIMM_SPD_SUBADDRESS_START = 0x00,
PDC_DIMM_SPD_SUBADDRESS_END = 0x7F,
PDC_DIMM_SPD_ROW_NUM = 3,
PDC_DIMM_SPD_COLUMN_NUM = 4,
PDC_DIMM_SPD_MODULE_ROW = 5,
PDC_DIMM_SPD_TYPE = 11,
PDC_DIMM_SPD_FRESH_RATE = 12,
PDC_DIMM_SPD_BANK_NUM = 17,
PDC_DIMM_SPD_CAS_LATENCY = 18,
PDC_DIMM_SPD_ATTRIBUTE = 21,
PDC_DIMM_SPD_ROW_PRE_CHARGE = 27,
PDC_DIMM_SPD_ROW_ACTIVE_DELAY = 28,
PDC_DIMM_SPD_RAS_CAS_DELAY = 29,
PDC_DIMM_SPD_ACTIVE_PRECHARGE = 30,
PDC_DIMM_SPD_SYSTEM_FREQ = 126,
PDC_CTL_STATUS = 0x08,
PDC_DIMM_WINDOW_CTLR = 0x0C,
PDC_TIME_CONTROL = 0x3C,
PDC_TIME_PERIOD = 0x40,
PDC_TIME_COUNTER = 0x44,
PDC_GENERAL_CTLR = 0x484,
PCI_PLL_INIT = 0x8A531824,
PCI_X_TCOUNT = 0xEE1E5CFF
};
struct pdc_port_priv {
u8 dimm_buf[(ATA_PRD_SZ * ATA_MAX_PRD) + 512];
u8 *pkt;
dma_addr_t pkt_dma;
};
struct pdc_host_priv {
void __iomem *dimm_mmio;
unsigned int doing_hdma;
unsigned int hdma_prod;
unsigned int hdma_cons;
struct {
struct ata_queued_cmd *qc;
unsigned int seq;
unsigned long pkt_ofs;
} hdma[32];
};
static int pdc_sata_init_one (struct pci_dev *pdev, const struct pci_device_id *ent);
static irqreturn_t pdc20621_interrupt (int irq, void *dev_instance);
static void pdc_eng_timeout(struct ata_port *ap);
static void pdc_20621_phy_reset (struct ata_port *ap);
static int pdc_port_start(struct ata_port *ap);
static void pdc_port_stop(struct ata_port *ap);
static void pdc20621_qc_prep(struct ata_queued_cmd *qc);
static void pdc_tf_load_mmio(struct ata_port *ap, const struct ata_taskfile *tf);
static void pdc_exec_command_mmio(struct ata_port *ap, const struct ata_taskfile *tf);
static void pdc20621_host_stop(struct ata_host *host);
static unsigned int pdc20621_dimm_init(struct ata_probe_ent *pe);
static int pdc20621_detect_dimm(struct ata_probe_ent *pe);
static unsigned int pdc20621_i2c_read(struct ata_probe_ent *pe,
u32 device, u32 subaddr, u32 *pdata);
static int pdc20621_prog_dimm0(struct ata_probe_ent *pe);
static unsigned int pdc20621_prog_dimm_global(struct ata_probe_ent *pe);
#ifdef ATA_VERBOSE_DEBUG
static void pdc20621_get_from_dimm(struct ata_probe_ent *pe,
void *psource, u32 offset, u32 size);
#endif
static void pdc20621_put_to_dimm(struct ata_probe_ent *pe,
void *psource, u32 offset, u32 size);
static void pdc20621_irq_clear(struct ata_port *ap);
static unsigned int pdc20621_qc_issue_prot(struct ata_queued_cmd *qc);
static struct scsi_host_template pdc_sata_sht = {
.module = THIS_MODULE,
.name = DRV_NAME,
.ioctl = ata_scsi_ioctl,
.queuecommand = ata_scsi_queuecmd,
.can_queue = ATA_DEF_QUEUE,
.this_id = ATA_SHT_THIS_ID,
.sg_tablesize = LIBATA_MAX_PRD,
.cmd_per_lun = ATA_SHT_CMD_PER_LUN,
.emulated = ATA_SHT_EMULATED,
.use_clustering = ATA_SHT_USE_CLUSTERING,
.proc_name = DRV_NAME,
.dma_boundary = ATA_DMA_BOUNDARY,
.slave_configure = ata_scsi_slave_config,
.slave_destroy = ata_scsi_slave_destroy,
.bios_param = ata_std_bios_param,
};
static const struct ata_port_operations pdc_20621_ops = {
.port_disable = ata_port_disable,
.tf_load = pdc_tf_load_mmio,
.tf_read = ata_tf_read,
.check_status = ata_check_status,
.exec_command = pdc_exec_command_mmio,
.dev_select = ata_std_dev_select,
.phy_reset = pdc_20621_phy_reset,
.qc_prep = pdc20621_qc_prep,
.qc_issue = pdc20621_qc_issue_prot,
.data_xfer = ata_mmio_data_xfer,
.eng_timeout = pdc_eng_timeout,
.irq_handler = pdc20621_interrupt,
.irq_clear = pdc20621_irq_clear,
.port_start = pdc_port_start,
.port_stop = pdc_port_stop,
.host_stop = pdc20621_host_stop,
};
static const struct ata_port_info pdc_port_info[] = {
/* board_20621 */
{
.sht = &pdc_sata_sht,
.flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
ATA_FLAG_SRST | ATA_FLAG_MMIO |
ATA_FLAG_NO_ATAPI | ATA_FLAG_PIO_POLLING,
.pio_mask = 0x1f, /* pio0-4 */
.mwdma_mask = 0x07, /* mwdma0-2 */
.udma_mask = 0x7f, /* udma0-6 ; FIXME */
.port_ops = &pdc_20621_ops,
},
};
static const struct pci_device_id pdc_sata_pci_tbl[] = {
{ PCI_VDEVICE(PROMISE, 0x6622), board_20621 },
{ } /* terminate list */
};
static struct pci_driver pdc_sata_pci_driver = {
.name = DRV_NAME,
.id_table = pdc_sata_pci_tbl,
.probe = pdc_sata_init_one,
.remove = ata_pci_remove_one,
};
static void pdc20621_host_stop(struct ata_host *host)
{
struct pci_dev *pdev = to_pci_dev(host->dev);
struct pdc_host_priv *hpriv = host->private_data;
void __iomem *dimm_mmio = hpriv->dimm_mmio;
pci_iounmap(pdev, dimm_mmio);
kfree(hpriv);
pci_iounmap(pdev, host->mmio_base);
}
static int pdc_port_start(struct ata_port *ap)
{
struct device *dev = ap->host->dev;
struct pdc_port_priv *pp;
int rc;
rc = ata_port_start(ap);
if (rc)
return rc;
pp = kmalloc(sizeof(*pp), GFP_KERNEL);
if (!pp) {
rc = -ENOMEM;
goto err_out;
}
memset(pp, 0, sizeof(*pp));
pp->pkt = dma_alloc_coherent(dev, 128, &pp->pkt_dma, GFP_KERNEL);
if (!pp->pkt) {
rc = -ENOMEM;
goto err_out_kfree;
}
ap->private_data = pp;
return 0;
err_out_kfree:
kfree(pp);
err_out:
ata_port_stop(ap);
return rc;
}
static void pdc_port_stop(struct ata_port *ap)
{
struct device *dev = ap->host->dev;
struct pdc_port_priv *pp = ap->private_data;
ap->private_data = NULL;
dma_free_coherent(dev, 128, pp->pkt, pp->pkt_dma);
kfree(pp);
ata_port_stop(ap);
}
static void pdc_20621_phy_reset (struct ata_port *ap)
{
VPRINTK("ENTER\n");
ap->cbl = ATA_CBL_SATA;
ata_port_probe(ap);
ata_bus_reset(ap);
}
static inline void pdc20621_ata_sg(struct ata_taskfile *tf, u8 *buf,
unsigned int portno,
unsigned int total_len)
{
u32 addr;
unsigned int dw = PDC_DIMM_APKT_PRD >> 2;
u32 *buf32 = (u32 *) buf;
/* output ATA packet S/G table */
addr = PDC_20621_DIMM_BASE + PDC_20621_DIMM_DATA +
(PDC_DIMM_DATA_STEP * portno);
VPRINTK("ATA sg addr 0x%x, %d\n", addr, addr);
buf32[dw] = cpu_to_le32(addr);
buf32[dw + 1] = cpu_to_le32(total_len | ATA_PRD_EOT);
VPRINTK("ATA PSG @ %x == (0x%x, 0x%x)\n",
PDC_20621_DIMM_BASE +
(PDC_DIMM_WINDOW_STEP * portno) +
PDC_DIMM_APKT_PRD,
buf32[dw], buf32[dw + 1]);
}
static inline void pdc20621_host_sg(struct ata_taskfile *tf, u8 *buf,
unsigned int portno,
unsigned int total_len)
{
u32 addr;
unsigned int dw = PDC_DIMM_HPKT_PRD >> 2;
u32 *buf32 = (u32 *) buf;
/* output Host DMA packet S/G table */
addr = PDC_20621_DIMM_BASE + PDC_20621_DIMM_DATA +
(PDC_DIMM_DATA_STEP * portno);
buf32[dw] = cpu_to_le32(addr);
buf32[dw + 1] = cpu_to_le32(total_len | ATA_PRD_EOT);
VPRINTK("HOST PSG @ %x == (0x%x, 0x%x)\n",
PDC_20621_DIMM_BASE +
(PDC_DIMM_WINDOW_STEP * portno) +
PDC_DIMM_HPKT_PRD,
buf32[dw], buf32[dw + 1]);
}
static inline unsigned int pdc20621_ata_pkt(struct ata_taskfile *tf,
unsigned int devno, u8 *buf,
unsigned int portno)
{
unsigned int i, dw;
u32 *buf32 = (u32 *) buf;
u8 dev_reg;
unsigned int dimm_sg = PDC_20621_DIMM_BASE +
(PDC_DIMM_WINDOW_STEP * portno) +
PDC_DIMM_APKT_PRD;
VPRINTK("ENTER, dimm_sg == 0x%x, %d\n", dimm_sg, dimm_sg);
i = PDC_DIMM_ATA_PKT;
/*
* Set up ATA packet
*/
if ((tf->protocol == ATA_PROT_DMA) && (!(tf->flags & ATA_TFLAG_WRITE)))
buf[i++] = PDC_PKT_READ;
else if (tf->protocol == ATA_PROT_NODATA)
buf[i++] = PDC_PKT_NODATA;
else
buf[i++] = 0;
buf[i++] = 0; /* reserved */
buf[i++] = portno + 1; /* seq. id */
buf[i++] = 0xff; /* delay seq. id */
/* dimm dma S/G, and next-pkt */
dw = i >> 2;
if (tf->protocol == ATA_PROT_NODATA)
buf32[dw] = 0;
else
buf32[dw] = cpu_to_le32(dimm_sg);
buf32[dw + 1] = 0;
i += 8;
if (devno == 0)
dev_reg = ATA_DEVICE_OBS;
else
dev_reg = ATA_DEVICE_OBS | ATA_DEV1;
/* select device */
buf[i++] = (1 << 5) | PDC_PKT_CLEAR_BSY | ATA_REG_DEVICE;
buf[i++] = dev_reg;
/* device control register */
buf[i++] = (1 << 5) | PDC_REG_DEVCTL;
buf[i++] = tf->ctl;
return i;
}
static inline void pdc20621_host_pkt(struct ata_taskfile *tf, u8 *buf,
unsigned int portno)
{
unsigned int dw;
u32 tmp, *buf32 = (u32 *) buf;
unsigned int host_sg = PDC_20621_DIMM_BASE +
(PDC_DIMM_WINDOW_STEP * portno) +
PDC_DIMM_HOST_PRD;
unsigned int dimm_sg = PDC_20621_DIMM_BASE +
(PDC_DIMM_WINDOW_STEP * portno) +
PDC_DIMM_HPKT_PRD;
VPRINTK("ENTER, dimm_sg == 0x%x, %d\n", dimm_sg, dimm_sg);
VPRINTK("host_sg == 0x%x, %d\n", host_sg, host_sg);
dw = PDC_DIMM_HOST_PKT >> 2;
/*
* Set up Host DMA packet
*/
if ((tf->protocol == ATA_PROT_DMA) && (!(tf->flags & ATA_TFLAG_WRITE)))
tmp = PDC_PKT_READ;
else
tmp = 0;
tmp |= ((portno + 1 + 4) << 16); /* seq. id */
tmp |= (0xff << 24); /* delay seq. id */
buf32[dw + 0] = cpu_to_le32(tmp);
buf32[dw + 1] = cpu_to_le32(host_sg);
buf32[dw + 2] = cpu_to_le32(dimm_sg);
buf32[dw + 3] = 0;
VPRINTK("HOST PKT @ %x == (0x%x 0x%x 0x%x 0x%x)\n",
PDC_20621_DIMM_BASE + (PDC_DIMM_WINDOW_STEP * portno) +
PDC_DIMM_HOST_PKT,
buf32[dw + 0],
buf32[dw + 1],
buf32[dw + 2],
buf32[dw + 3]);
}
static void pdc20621_dma_prep(struct ata_queued_cmd *qc)
{
struct scatterlist *sg;
struct ata_port *ap = qc->ap;
struct pdc_port_priv *pp = ap->private_data;
void __iomem *mmio = ap->host->mmio_base;
struct pdc_host_priv *hpriv = ap->host->private_data;
void __iomem *dimm_mmio = hpriv->dimm_mmio;
unsigned int portno = ap->port_no;
unsigned int i, idx, total_len = 0, sgt_len;
u32 *buf = (u32 *) &pp->dimm_buf[PDC_DIMM_HEADER_SZ];
WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
VPRINTK("ata%u: ENTER\n", ap->id);
/* hard-code chip #0 */
mmio += PDC_CHIP0_OFS;
/*
* Build S/G table
*/
idx = 0;
ata_for_each_sg(sg, qc) {
buf[idx++] = cpu_to_le32(sg_dma_address(sg));
buf[idx++] = cpu_to_le32(sg_dma_len(sg));
total_len += sg_dma_len(sg);
}
buf[idx - 1] |= cpu_to_le32(ATA_PRD_EOT);
sgt_len = idx * 4;
/*
* Build ATA, host DMA packets
*/
pdc20621_host_sg(&qc->tf, &pp->dimm_buf[0], portno, total_len);
pdc20621_host_pkt(&qc->tf, &pp->dimm_buf[0], portno);
pdc20621_ata_sg(&qc->tf, &pp->dimm_buf[0], portno, total_len);
i = pdc20621_ata_pkt(&qc->tf, qc->dev->devno, &pp->dimm_buf[0], portno);
if (qc->tf.flags & ATA_TFLAG_LBA48)
i = pdc_prep_lba48(&qc->tf, &pp->dimm_buf[0], i);
else
i = pdc_prep_lba28(&qc->tf, &pp->dimm_buf[0], i);
pdc_pkt_footer(&qc->tf, &pp->dimm_buf[0], i);
/* copy three S/G tables and two packets to DIMM MMIO window */
memcpy_toio(dimm_mmio + (portno * PDC_DIMM_WINDOW_STEP),
&pp->dimm_buf, PDC_DIMM_HEADER_SZ);
memcpy_toio(dimm_mmio + (portno * PDC_DIMM_WINDOW_STEP) +
PDC_DIMM_HOST_PRD,
&pp->dimm_buf[PDC_DIMM_HEADER_SZ], sgt_len);
/* force host FIFO dump */
writel(0x00000001, mmio + PDC_20621_GENERAL_CTL);
readl(dimm_mmio); /* MMIO PCI posting flush */
VPRINTK("ata pkt buf ofs %u, prd size %u, mmio copied\n", i, sgt_len);
}
static void pdc20621_nodata_prep(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct pdc_port_priv *pp = ap->private_data;
void __iomem *mmio = ap->host->mmio_base;
struct pdc_host_priv *hpriv = ap->host->private_data;
void __iomem *dimm_mmio = hpriv->dimm_mmio;
unsigned int portno = ap->port_no;
unsigned int i;
VPRINTK("ata%u: ENTER\n", ap->id);
/* hard-code chip #0 */
mmio += PDC_CHIP0_OFS;
i = pdc20621_ata_pkt(&qc->tf, qc->dev->devno, &pp->dimm_buf[0], portno);
if (qc->tf.flags & ATA_TFLAG_LBA48)
i = pdc_prep_lba48(&qc->tf, &pp->dimm_buf[0], i);
else
i = pdc_prep_lba28(&qc->tf, &pp->dimm_buf[0], i);
pdc_pkt_footer(&qc->tf, &pp->dimm_buf[0], i);
/* copy three S/G tables and two packets to DIMM MMIO window */
memcpy_toio(dimm_mmio + (portno * PDC_DIMM_WINDOW_STEP),
&pp->dimm_buf, PDC_DIMM_HEADER_SZ);
/* force host FIFO dump */
writel(0x00000001, mmio + PDC_20621_GENERAL_CTL);
readl(dimm_mmio); /* MMIO PCI posting flush */
VPRINTK("ata pkt buf ofs %u, mmio copied\n", i);
}
static void pdc20621_qc_prep(struct ata_queued_cmd *qc)
{
switch (qc->tf.protocol) {
case ATA_PROT_DMA:
pdc20621_dma_prep(qc);
break;
case ATA_PROT_NODATA:
pdc20621_nodata_prep(qc);
break;
default:
break;
}
}
static void __pdc20621_push_hdma(struct ata_queued_cmd *qc,
unsigned int seq,
u32 pkt_ofs)
{
struct ata_port *ap = qc->ap;
struct ata_host *host = ap->host;
void __iomem *mmio = host->mmio_base;
/* hard-code chip #0 */
mmio += PDC_CHIP0_OFS;
writel(0x00000001, mmio + PDC_20621_SEQCTL + (seq * 4));
readl(mmio + PDC_20621_SEQCTL + (seq * 4)); /* flush */
writel(pkt_ofs, mmio + PDC_HDMA_PKT_SUBMIT);
readl(mmio + PDC_HDMA_PKT_SUBMIT); /* flush */
}
static void pdc20621_push_hdma(struct ata_queued_cmd *qc,
unsigned int seq,
u32 pkt_ofs)
{
struct ata_port *ap = qc->ap;
struct pdc_host_priv *pp = ap->host->private_data;
unsigned int idx = pp->hdma_prod & PDC_HDMA_Q_MASK;
if (!pp->doing_hdma) {
__pdc20621_push_hdma(qc, seq, pkt_ofs);
pp->doing_hdma = 1;
return;
}
pp->hdma[idx].qc = qc;
pp->hdma[idx].seq = seq;
pp->hdma[idx].pkt_ofs = pkt_ofs;
pp->hdma_prod++;
}
static void pdc20621_pop_hdma(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct pdc_host_priv *pp = ap->host->private_data;
unsigned int idx = pp->hdma_cons & PDC_HDMA_Q_MASK;
/* if nothing on queue, we're done */
if (pp->hdma_prod == pp->hdma_cons) {
pp->doing_hdma = 0;
return;
}
__pdc20621_push_hdma(pp->hdma[idx].qc, pp->hdma[idx].seq,
pp->hdma[idx].pkt_ofs);
pp->hdma_cons++;
}
#ifdef ATA_VERBOSE_DEBUG
static void pdc20621_dump_hdma(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
unsigned int port_no = ap->port_no;
struct pdc_host_priv *hpriv = ap->host->private_data;
void *dimm_mmio = hpriv->dimm_mmio;
dimm_mmio += (port_no * PDC_DIMM_WINDOW_STEP);
dimm_mmio += PDC_DIMM_HOST_PKT;
printk(KERN_ERR "HDMA[0] == 0x%08X\n", readl(dimm_mmio));
printk(KERN_ERR "HDMA[1] == 0x%08X\n", readl(dimm_mmio + 4));
printk(KERN_ERR "HDMA[2] == 0x%08X\n", readl(dimm_mmio + 8));
printk(KERN_ERR "HDMA[3] == 0x%08X\n", readl(dimm_mmio + 12));
}
#else
static inline void pdc20621_dump_hdma(struct ata_queued_cmd *qc) { }
#endif /* ATA_VERBOSE_DEBUG */
static void pdc20621_packet_start(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct ata_host *host = ap->host;
unsigned int port_no = ap->port_no;
void __iomem *mmio = host->mmio_base;
unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
u8 seq = (u8) (port_no + 1);
unsigned int port_ofs;
/* hard-code chip #0 */
mmio += PDC_CHIP0_OFS;
VPRINTK("ata%u: ENTER\n", ap->id);
wmb(); /* flush PRD, pkt writes */
port_ofs = PDC_20621_DIMM_BASE + (PDC_DIMM_WINDOW_STEP * port_no);
/* if writing, we (1) DMA to DIMM, then (2) do ATA command */
if (rw && qc->tf.protocol == ATA_PROT_DMA) {
seq += 4;
pdc20621_dump_hdma(qc);
pdc20621_push_hdma(qc, seq, port_ofs + PDC_DIMM_HOST_PKT);
VPRINTK("queued ofs 0x%x (%u), seq %u\n",
port_ofs + PDC_DIMM_HOST_PKT,
port_ofs + PDC_DIMM_HOST_PKT,
seq);
} else {
writel(0x00000001, mmio + PDC_20621_SEQCTL + (seq * 4));
readl(mmio + PDC_20621_SEQCTL + (seq * 4)); /* flush */
writel(port_ofs + PDC_DIMM_ATA_PKT,
(void __iomem *) ap->ioaddr.cmd_addr + PDC_PKT_SUBMIT);
readl((void __iomem *) ap->ioaddr.cmd_addr + PDC_PKT_SUBMIT);
VPRINTK("submitted ofs 0x%x (%u), seq %u\n",
port_ofs + PDC_DIMM_ATA_PKT,
port_ofs + PDC_DIMM_ATA_PKT,
seq);
}
}
static unsigned int pdc20621_qc_issue_prot(struct ata_queued_cmd *qc)
{
switch (qc->tf.protocol) {
case ATA_PROT_DMA:
case ATA_PROT_NODATA:
pdc20621_packet_start(qc);
return 0;
case ATA_PROT_ATAPI_DMA:
BUG();
break;
default:
break;
}
return ata_qc_issue_prot(qc);
}
static inline unsigned int pdc20621_host_intr( struct ata_port *ap,
struct ata_queued_cmd *qc,
unsigned int doing_hdma,
void __iomem *mmio)
{
unsigned int port_no = ap->port_no;
unsigned int port_ofs =
PDC_20621_DIMM_BASE + (PDC_DIMM_WINDOW_STEP * port_no);
u8 status;
unsigned int handled = 0;
VPRINTK("ENTER\n");
if ((qc->tf.protocol == ATA_PROT_DMA) && /* read */
(!(qc->tf.flags & ATA_TFLAG_WRITE))) {
/* step two - DMA from DIMM to host */
if (doing_hdma) {
VPRINTK("ata%u: read hdma, 0x%x 0x%x\n", ap->id,
readl(mmio + 0x104), readl(mmio + PDC_HDMA_CTLSTAT));
/* get drive status; clear intr; complete txn */
qc->err_mask |= ac_err_mask(ata_wait_idle(ap));
ata_qc_complete(qc);
pdc20621_pop_hdma(qc);
}
/* step one - exec ATA command */
else {
u8 seq = (u8) (port_no + 1 + 4);
VPRINTK("ata%u: read ata, 0x%x 0x%x\n", ap->id,
readl(mmio + 0x104), readl(mmio + PDC_HDMA_CTLSTAT));
/* submit hdma pkt */
pdc20621_dump_hdma(qc);
pdc20621_push_hdma(qc, seq,
port_ofs + PDC_DIMM_HOST_PKT);
}
handled = 1;
} else if (qc->tf.protocol == ATA_PROT_DMA) { /* write */
/* step one - DMA from host to DIMM */
if (doing_hdma) {
u8 seq = (u8) (port_no + 1);
VPRINTK("ata%u: write hdma, 0x%x 0x%x\n", ap->id,
readl(mmio + 0x104), readl(mmio + PDC_HDMA_CTLSTAT));
/* submit ata pkt */
writel(0x00000001, mmio + PDC_20621_SEQCTL + (seq * 4));
readl(mmio + PDC_20621_SEQCTL + (seq * 4));
writel(port_ofs + PDC_DIMM_ATA_PKT,
(void __iomem *) ap->ioaddr.cmd_addr + PDC_PKT_SUBMIT);
readl((void __iomem *) ap->ioaddr.cmd_addr + PDC_PKT_SUBMIT);
}
/* step two - execute ATA command */
else {
VPRINTK("ata%u: write ata, 0x%x 0x%x\n", ap->id,
readl(mmio + 0x104), readl(mmio + PDC_HDMA_CTLSTAT));
/* get drive status; clear intr; complete txn */
qc->err_mask |= ac_err_mask(ata_wait_idle(ap));
ata_qc_complete(qc);
pdc20621_pop_hdma(qc);
}
handled = 1;
/* command completion, but no data xfer */
} else if (qc->tf.protocol == ATA_PROT_NODATA) {
status = ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 1000);
DPRINTK("BUS_NODATA (drv_stat 0x%X)\n", status);
qc->err_mask |= ac_err_mask(status);
ata_qc_complete(qc);
handled = 1;
} else {
ap->stats.idle_irq++;
}
return handled;
}
static void pdc20621_irq_clear(struct ata_port *ap)
{
struct ata_host *host = ap->host;
void __iomem *mmio = host->mmio_base;
mmio += PDC_CHIP0_OFS;
readl(mmio + PDC_20621_SEQMASK);
}
static irqreturn_t pdc20621_interrupt (int irq, void *dev_instance)
{
struct ata_host *host = dev_instance;
struct ata_port *ap;
u32 mask = 0;
unsigned int i, tmp, port_no;
unsigned int handled = 0;
void __iomem *mmio_base;
VPRINTK("ENTER\n");
if (!host || !host->mmio_base) {
VPRINTK("QUICK EXIT\n");
return IRQ_NONE;
}
mmio_base = host->mmio_base;
/* reading should also clear interrupts */
mmio_base += PDC_CHIP0_OFS;
mask = readl(mmio_base + PDC_20621_SEQMASK);
VPRINTK("mask == 0x%x\n", mask);
if (mask == 0xffffffff) {
VPRINTK("QUICK EXIT 2\n");
return IRQ_NONE;
}
mask &= 0xffff; /* only 16 tags possible */
if (!mask) {
VPRINTK("QUICK EXIT 3\n");
return IRQ_NONE;
}
spin_lock(&host->lock);
for (i = 1; i < 9; i++) {
port_no = i - 1;
if (port_no > 3)
port_no -= 4;
if (port_no >= host->n_ports)
ap = NULL;
else
ap = host->ports[port_no];
tmp = mask & (1 << i);
VPRINTK("seq %u, port_no %u, ap %p, tmp %x\n", i, port_no, ap, tmp);
if (tmp && ap &&
!(ap->flags & ATA_FLAG_DISABLED)) {
struct ata_queued_cmd *qc;
qc = ata_qc_from_tag(ap, ap->active_tag);
if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)))
handled += pdc20621_host_intr(ap, qc, (i > 4),
mmio_base);
}
}
spin_unlock(&host->lock);
VPRINTK("mask == 0x%x\n", mask);
VPRINTK("EXIT\n");
return IRQ_RETVAL(handled);
}
static void pdc_eng_timeout(struct ata_port *ap)
{
u8 drv_stat;
struct ata_host *host = ap->host;
struct ata_queued_cmd *qc;
unsigned long flags;
DPRINTK("ENTER\n");
spin_lock_irqsave(&host->lock, flags);
qc = ata_qc_from_tag(ap, ap->active_tag);
switch (qc->tf.protocol) {
case ATA_PROT_DMA:
case ATA_PROT_NODATA:
ata_port_printk(ap, KERN_ERR, "command timeout\n");
qc->err_mask |= __ac_err_mask(ata_wait_idle(ap));
break;
default:
drv_stat = ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 1000);
ata_port_printk(ap, KERN_ERR,
"unknown timeout, cmd 0x%x stat 0x%x\n",
qc->tf.command, drv_stat);
qc->err_mask |= ac_err_mask(drv_stat);
break;
}
spin_unlock_irqrestore(&host->lock, flags);
ata_eh_qc_complete(qc);
DPRINTK("EXIT\n");
}
static void pdc_tf_load_mmio(struct ata_port *ap, const struct ata_taskfile *tf)
{
WARN_ON (tf->protocol == ATA_PROT_DMA ||
tf->protocol == ATA_PROT_NODATA);
ata_tf_load(ap, tf);
}
static void pdc_exec_command_mmio(struct ata_port *ap, const struct ata_taskfile *tf)
{
WARN_ON (tf->protocol == ATA_PROT_DMA ||
tf->protocol == ATA_PROT_NODATA);
ata_exec_command(ap, tf);
}
static void pdc_sata_setup_port(struct ata_ioports *port, unsigned long base)
{
port->cmd_addr = base;
port->data_addr = base;
port->feature_addr =
port->error_addr = base + 0x4;
port->nsect_addr = base + 0x8;
port->lbal_addr = base + 0xc;
port->lbam_addr = base + 0x10;
port->lbah_addr = base + 0x14;
port->device_addr = base + 0x18;
port->command_addr =
port->status_addr = base + 0x1c;
port->altstatus_addr =
port->ctl_addr = base + 0x38;
}
#ifdef ATA_VERBOSE_DEBUG
static void pdc20621_get_from_dimm(struct ata_probe_ent *pe, void *psource,
u32 offset, u32 size)
{
u32 window_size;
u16 idx;
u8 page_mask;
long dist;
void __iomem *mmio = pe->mmio_base;
struct pdc_host_priv *hpriv = pe->private_data;
void __iomem *dimm_mmio = hpriv->dimm_mmio;
/* hard-code chip #0 */
mmio += PDC_CHIP0_OFS;
page_mask = 0x00;
window_size = 0x2000 * 4; /* 32K byte uchar size */
idx = (u16) (offset / window_size);
writel(0x01, mmio + PDC_GENERAL_CTLR);
readl(mmio + PDC_GENERAL_CTLR);
writel(((idx) << page_mask), mmio + PDC_DIMM_WINDOW_CTLR);
readl(mmio + PDC_DIMM_WINDOW_CTLR);
offset -= (idx * window_size);
idx++;
dist = ((long) (window_size - (offset + size))) >= 0 ? size :
(long) (window_size - offset);
memcpy_fromio((char *) psource, (char *) (dimm_mmio + offset / 4),
dist);
psource += dist;
size -= dist;
for (; (long) size >= (long) window_size ;) {
writel(0x01, mmio + PDC_GENERAL_CTLR);
readl(mmio + PDC_GENERAL_CTLR);
writel(((idx) << page_mask), mmio + PDC_DIMM_WINDOW_CTLR);
readl(mmio + PDC_DIMM_WINDOW_CTLR);
memcpy_fromio((char *) psource, (char *) (dimm_mmio),
window_size / 4);
psource += window_size;
size -= window_size;
idx ++;
}
if (size) {
writel(0x01, mmio + PDC_GENERAL_CTLR);
readl(mmio + PDC_GENERAL_CTLR);
writel(((idx) << page_mask), mmio + PDC_DIMM_WINDOW_CTLR);
readl(mmio + PDC_DIMM_WINDOW_CTLR);
memcpy_fromio((char *) psource, (char *) (dimm_mmio),
size / 4);
}
}
#endif
static void pdc20621_put_to_dimm(struct ata_probe_ent *pe, void *psource,
u32 offset, u32 size)
{
u32 window_size;
u16 idx;
u8 page_mask;
long dist;
void __iomem *mmio = pe->mmio_base;
struct pdc_host_priv *hpriv = pe->private_data;
void __iomem *dimm_mmio = hpriv->dimm_mmio;
/* hard-code chip #0 */
mmio += PDC_CHIP0_OFS;
page_mask = 0x00;
window_size = 0x2000 * 4; /* 32K byte uchar size */
idx = (u16) (offset / window_size);
writel(((idx) << page_mask), mmio + PDC_DIMM_WINDOW_CTLR);
readl(mmio + PDC_DIMM_WINDOW_CTLR);
offset -= (idx * window_size);
idx++;
dist = ((long)(s32)(window_size - (offset + size))) >= 0 ? size :
(long) (window_size - offset);
memcpy_toio(dimm_mmio + offset / 4, psource, dist);
writel(0x01, mmio + PDC_GENERAL_CTLR);
readl(mmio + PDC_GENERAL_CTLR);
psource += dist;
size -= dist;
for (; (long) size >= (long) window_size ;) {
writel(((idx) << page_mask), mmio + PDC_DIMM_WINDOW_CTLR);
readl(mmio + PDC_DIMM_WINDOW_CTLR);
memcpy_toio(dimm_mmio, psource, window_size / 4);
writel(0x01, mmio + PDC_GENERAL_CTLR);
readl(mmio + PDC_GENERAL_CTLR);
psource += window_size;
size -= window_size;
idx ++;
}
if (size) {
writel(((idx) << page_mask), mmio + PDC_DIMM_WINDOW_CTLR);
readl(mmio + PDC_DIMM_WINDOW_CTLR);
memcpy_toio(dimm_mmio, psource, size / 4);
writel(0x01, mmio + PDC_GENERAL_CTLR);
readl(mmio + PDC_GENERAL_CTLR);
}
}
static unsigned int pdc20621_i2c_read(struct ata_probe_ent *pe, u32 device,
u32 subaddr, u32 *pdata)
{
void __iomem *mmio = pe->mmio_base;
u32 i2creg = 0;
u32 status;
u32 count =0;
/* hard-code chip #0 */
mmio += PDC_CHIP0_OFS;
i2creg |= device << 24;
i2creg |= subaddr << 16;
/* Set the device and subaddress */
writel(i2creg, mmio + PDC_I2C_ADDR_DATA_OFFSET);
readl(mmio + PDC_I2C_ADDR_DATA_OFFSET);
/* Write Control to perform read operation, mask int */
writel(PDC_I2C_READ | PDC_I2C_START | PDC_I2C_MASK_INT,
mmio + PDC_I2C_CONTROL_OFFSET);
for (count = 0; count <= 1000; count ++) {
status = readl(mmio + PDC_I2C_CONTROL_OFFSET);
if (status & PDC_I2C_COMPLETE) {
status = readl(mmio + PDC_I2C_ADDR_DATA_OFFSET);
break;
} else if (count == 1000)
return 0;
}
*pdata = (status >> 8) & 0x000000ff;
return 1;
}
static int pdc20621_detect_dimm(struct ata_probe_ent *pe)
{
u32 data=0 ;
if (pdc20621_i2c_read(pe, PDC_DIMM0_SPD_DEV_ADDRESS,
PDC_DIMM_SPD_SYSTEM_FREQ, &data)) {
if (data == 100)
return 100;
} else
return 0;
if (pdc20621_i2c_read(pe, PDC_DIMM0_SPD_DEV_ADDRESS, 9, &data)) {
if(data <= 0x75)
return 133;
} else
return 0;
return 0;
}
static int pdc20621_prog_dimm0(struct ata_probe_ent *pe)
{
u32 spd0[50];
u32 data = 0;
int size, i;
u8 bdimmsize;
void __iomem *mmio = pe->mmio_base;
static const struct {
unsigned int reg;
unsigned int ofs;
} pdc_i2c_read_data [] = {
{ PDC_DIMM_SPD_TYPE, 11 },
{ PDC_DIMM_SPD_FRESH_RATE, 12 },
{ PDC_DIMM_SPD_COLUMN_NUM, 4 },
{ PDC_DIMM_SPD_ATTRIBUTE, 21 },
{ PDC_DIMM_SPD_ROW_NUM, 3 },
{ PDC_DIMM_SPD_BANK_NUM, 17 },
{ PDC_DIMM_SPD_MODULE_ROW, 5 },
{ PDC_DIMM_SPD_ROW_PRE_CHARGE, 27 },
{ PDC_DIMM_SPD_ROW_ACTIVE_DELAY, 28 },
{ PDC_DIMM_SPD_RAS_CAS_DELAY, 29 },
{ PDC_DIMM_SPD_ACTIVE_PRECHARGE, 30 },
{ PDC_DIMM_SPD_CAS_LATENCY, 18 },
};
/* hard-code chip #0 */
mmio += PDC_CHIP0_OFS;
for(i=0; i<ARRAY_SIZE(pdc_i2c_read_data); i++)
pdc20621_i2c_read(pe, PDC_DIMM0_SPD_DEV_ADDRESS,
pdc_i2c_read_data[i].reg,
&spd0[pdc_i2c_read_data[i].ofs]);
data |= (spd0[4] - 8) | ((spd0[21] != 0) << 3) | ((spd0[3]-11) << 4);
data |= ((spd0[17] / 4) << 6) | ((spd0[5] / 2) << 7) |
((((spd0[27] + 9) / 10) - 1) << 8) ;
data |= (((((spd0[29] > spd0[28])
? spd0[29] : spd0[28]) + 9) / 10) - 1) << 10;
data |= ((spd0[30] - spd0[29] + 9) / 10 - 2) << 12;
if (spd0[18] & 0x08)
data |= ((0x03) << 14);
else if (spd0[18] & 0x04)
data |= ((0x02) << 14);
else if (spd0[18] & 0x01)
data |= ((0x01) << 14);
else
data |= (0 << 14);
/*
Calculate the size of bDIMMSize (power of 2) and
merge the DIMM size by program start/end address.
*/
bdimmsize = spd0[4] + (spd0[5] / 2) + spd0[3] + (spd0[17] / 2) + 3;
size = (1 << bdimmsize) >> 20; /* size = xxx(MB) */
data |= (((size / 16) - 1) << 16);
data |= (0 << 23);
data |= 8;
writel(data, mmio + PDC_DIMM0_CONTROL_OFFSET);
readl(mmio + PDC_DIMM0_CONTROL_OFFSET);
return size;
}
static unsigned int pdc20621_prog_dimm_global(struct ata_probe_ent *pe)
{
u32 data, spd0;
int error, i;
void __iomem *mmio = pe->mmio_base;
/* hard-code chip #0 */
mmio += PDC_CHIP0_OFS;
/*
Set To Default : DIMM Module Global Control Register (0x022259F1)
DIMM Arbitration Disable (bit 20)
DIMM Data/Control Output Driving Selection (bit12 - bit15)
Refresh Enable (bit 17)
*/
data = 0x022259F1;
writel(data, mmio + PDC_SDRAM_CONTROL_OFFSET);
readl(mmio + PDC_SDRAM_CONTROL_OFFSET);
/* Turn on for ECC */
pdc20621_i2c_read(pe, PDC_DIMM0_SPD_DEV_ADDRESS,
PDC_DIMM_SPD_TYPE, &spd0);
if (spd0 == 0x02) {
data |= (0x01 << 16);
writel(data, mmio + PDC_SDRAM_CONTROL_OFFSET);
readl(mmio + PDC_SDRAM_CONTROL_OFFSET);
printk(KERN_ERR "Local DIMM ECC Enabled\n");
}
/* DIMM Initialization Select/Enable (bit 18/19) */
data &= (~(1<<18));
data |= (1<<19);
writel(data, mmio + PDC_SDRAM_CONTROL_OFFSET);
error = 1;
for (i = 1; i <= 10; i++) { /* polling ~5 secs */
data = readl(mmio + PDC_SDRAM_CONTROL_OFFSET);
if (!(data & (1<<19))) {
error = 0;
break;
}
msleep(i*100);
}
return error;
}
static unsigned int pdc20621_dimm_init(struct ata_probe_ent *pe)
{
int speed, size, length;
u32 addr,spd0,pci_status;
u32 tmp=0;
u32 time_period=0;
u32 tcount=0;
u32 ticks=0;
u32 clock=0;
u32 fparam=0;
void __iomem *mmio = pe->mmio_base;
/* hard-code chip #0 */
mmio += PDC_CHIP0_OFS;
/* Initialize PLL based upon PCI Bus Frequency */
/* Initialize Time Period Register */
writel(0xffffffff, mmio + PDC_TIME_PERIOD);
time_period = readl(mmio + PDC_TIME_PERIOD);
VPRINTK("Time Period Register (0x40): 0x%x\n", time_period);
/* Enable timer */
writel(0x00001a0, mmio + PDC_TIME_CONTROL);
readl(mmio + PDC_TIME_CONTROL);
/* Wait 3 seconds */
msleep(3000);
/*
When timer is enabled, counter is decreased every internal
clock cycle.
*/
tcount = readl(mmio + PDC_TIME_COUNTER);
VPRINTK("Time Counter Register (0x44): 0x%x\n", tcount);
/*
If SX4 is on PCI-X bus, after 3 seconds, the timer counter
register should be >= (0xffffffff - 3x10^8).
*/
if(tcount >= PCI_X_TCOUNT) {
ticks = (time_period - tcount);
VPRINTK("Num counters 0x%x (%d)\n", ticks, ticks);
clock = (ticks / 300000);
VPRINTK("10 * Internal clk = 0x%x (%d)\n", clock, clock);
clock = (clock * 33);
VPRINTK("10 * Internal clk * 33 = 0x%x (%d)\n", clock, clock);
/* PLL F Param (bit 22:16) */
fparam = (1400000 / clock) - 2;
VPRINTK("PLL F Param: 0x%x (%d)\n", fparam, fparam);
/* OD param = 0x2 (bit 31:30), R param = 0x5 (bit 29:25) */
pci_status = (0x8a001824 | (fparam << 16));
} else
pci_status = PCI_PLL_INIT;
/* Initialize PLL. */
VPRINTK("pci_status: 0x%x\n", pci_status);
writel(pci_status, mmio + PDC_CTL_STATUS);
readl(mmio + PDC_CTL_STATUS);
/*
Read SPD of DIMM by I2C interface,
and program the DIMM Module Controller.
*/
if (!(speed = pdc20621_detect_dimm(pe))) {
printk(KERN_ERR "Detect Local DIMM Fail\n");
return 1; /* DIMM error */
}
VPRINTK("Local DIMM Speed = %d\n", speed);
/* Programming DIMM0 Module Control Register (index_CID0:80h) */
size = pdc20621_prog_dimm0(pe);
VPRINTK("Local DIMM Size = %dMB\n",size);
/* Programming DIMM Module Global Control Register (index_CID0:88h) */
if (pdc20621_prog_dimm_global(pe)) {
printk(KERN_ERR "Programming DIMM Module Global Control Register Fail\n");
return 1;
}
#ifdef ATA_VERBOSE_DEBUG
{
u8 test_parttern1[40] = {0x55,0xAA,'P','r','o','m','i','s','e',' ',
'N','o','t',' ','Y','e','t',' ','D','e','f','i','n','e','d',' ',
'1','.','1','0',
'9','8','0','3','1','6','1','2',0,0};
u8 test_parttern2[40] = {0};
pdc20621_put_to_dimm(pe, (void *) test_parttern2, 0x10040, 40);
pdc20621_put_to_dimm(pe, (void *) test_parttern2, 0x40, 40);
pdc20621_put_to_dimm(pe, (void *) test_parttern1, 0x10040, 40);
pdc20621_get_from_dimm(pe, (void *) test_parttern2, 0x40, 40);
printk(KERN_ERR "%x, %x, %s\n", test_parttern2[0],
test_parttern2[1], &(test_parttern2[2]));
pdc20621_get_from_dimm(pe, (void *) test_parttern2, 0x10040,
40);
printk(KERN_ERR "%x, %x, %s\n", test_parttern2[0],
test_parttern2[1], &(test_parttern2[2]));
pdc20621_put_to_dimm(pe, (void *) test_parttern1, 0x40, 40);
pdc20621_get_from_dimm(pe, (void *) test_parttern2, 0x40, 40);
printk(KERN_ERR "%x, %x, %s\n", test_parttern2[0],
test_parttern2[1], &(test_parttern2[2]));
}
#endif
/* ECC initiliazation. */
pdc20621_i2c_read(pe, PDC_DIMM0_SPD_DEV_ADDRESS,
PDC_DIMM_SPD_TYPE, &spd0);
if (spd0 == 0x02) {
VPRINTK("Start ECC initialization\n");
addr = 0;
length = size * 1024 * 1024;
while (addr < length) {
pdc20621_put_to_dimm(pe, (void *) &tmp, addr,
sizeof(u32));
addr += sizeof(u32);
}
VPRINTK("Finish ECC initialization\n");
}
return 0;
}
static void pdc_20621_init(struct ata_probe_ent *pe)
{
u32 tmp;
void __iomem *mmio = pe->mmio_base;
/* hard-code chip #0 */
mmio += PDC_CHIP0_OFS;
/*
* Select page 0x40 for our 32k DIMM window
*/
tmp = readl(mmio + PDC_20621_DIMM_WINDOW) & 0xffff0000;
tmp |= PDC_PAGE_WINDOW; /* page 40h; arbitrarily selected */
writel(tmp, mmio + PDC_20621_DIMM_WINDOW);
/*
* Reset Host DMA
*/
tmp = readl(mmio + PDC_HDMA_CTLSTAT);
tmp |= PDC_RESET;
writel(tmp, mmio + PDC_HDMA_CTLSTAT);
readl(mmio + PDC_HDMA_CTLSTAT); /* flush */
udelay(10);
tmp = readl(mmio + PDC_HDMA_CTLSTAT);
tmp &= ~PDC_RESET;
writel(tmp, mmio + PDC_HDMA_CTLSTAT);
readl(mmio + PDC_HDMA_CTLSTAT); /* flush */
}
static int pdc_sata_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
{
static int printed_version;
struct ata_probe_ent *probe_ent = NULL;
unsigned long base;
void __iomem *mmio_base;
void __iomem *dimm_mmio = NULL;
struct pdc_host_priv *hpriv = NULL;
unsigned int board_idx = (unsigned int) ent->driver_data;
int pci_dev_busy = 0;
int rc;
if (!printed_version++)
dev_printk(KERN_DEBUG, &pdev->dev, "version " DRV_VERSION "\n");
rc = pci_enable_device(pdev);
if (rc)
return rc;
rc = pci_request_regions(pdev, DRV_NAME);
if (rc) {
pci_dev_busy = 1;
goto err_out;
}
rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
if (rc)
goto err_out_regions;
rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
if (rc)
goto err_out_regions;
probe_ent = kmalloc(sizeof(*probe_ent), GFP_KERNEL);
if (probe_ent == NULL) {
rc = -ENOMEM;
goto err_out_regions;
}
memset(probe_ent, 0, sizeof(*probe_ent));
probe_ent->dev = pci_dev_to_dev(pdev);
INIT_LIST_HEAD(&probe_ent->node);
mmio_base = pci_iomap(pdev, 3, 0);
if (mmio_base == NULL) {
rc = -ENOMEM;
goto err_out_free_ent;
}
base = (unsigned long) mmio_base;
hpriv = kmalloc(sizeof(*hpriv), GFP_KERNEL);
if (!hpriv) {
rc = -ENOMEM;
goto err_out_iounmap;
}
memset(hpriv, 0, sizeof(*hpriv));
dimm_mmio = pci_iomap(pdev, 4, 0);
if (!dimm_mmio) {
kfree(hpriv);
rc = -ENOMEM;
goto err_out_iounmap;
}
hpriv->dimm_mmio = dimm_mmio;
probe_ent->sht = pdc_port_info[board_idx].sht;
probe_ent->port_flags = pdc_port_info[board_idx].flags;
probe_ent->pio_mask = pdc_port_info[board_idx].pio_mask;
probe_ent->mwdma_mask = pdc_port_info[board_idx].mwdma_mask;
probe_ent->udma_mask = pdc_port_info[board_idx].udma_mask;
probe_ent->port_ops = pdc_port_info[board_idx].port_ops;
probe_ent->irq = pdev->irq;
probe_ent->irq_flags = IRQF_SHARED;
probe_ent->mmio_base = mmio_base;
probe_ent->private_data = hpriv;
base += PDC_CHIP0_OFS;
probe_ent->n_ports = 4;
pdc_sata_setup_port(&probe_ent->port[0], base + 0x200);
pdc_sata_setup_port(&probe_ent->port[1], base + 0x280);
pdc_sata_setup_port(&probe_ent->port[2], base + 0x300);
pdc_sata_setup_port(&probe_ent->port[3], base + 0x380);
pci_set_master(pdev);
/* initialize adapter */
/* initialize local dimm */
if (pdc20621_dimm_init(probe_ent)) {
rc = -ENOMEM;
goto err_out_iounmap_dimm;
}
pdc_20621_init(probe_ent);
/* FIXME: check ata_device_add return value */
ata_device_add(probe_ent);
kfree(probe_ent);
return 0;
err_out_iounmap_dimm: /* only get to this label if 20621 */
kfree(hpriv);
pci_iounmap(pdev, dimm_mmio);
err_out_iounmap:
pci_iounmap(pdev, mmio_base);
err_out_free_ent:
kfree(probe_ent);
err_out_regions:
pci_release_regions(pdev);
err_out:
if (!pci_dev_busy)
pci_disable_device(pdev);
return rc;
}
static int __init pdc_sata_init(void)
{
return pci_register_driver(&pdc_sata_pci_driver);
}
static void __exit pdc_sata_exit(void)
{
pci_unregister_driver(&pdc_sata_pci_driver);
}
MODULE_AUTHOR("Jeff Garzik");
MODULE_DESCRIPTION("Promise SATA low-level driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, pdc_sata_pci_tbl);
MODULE_VERSION(DRV_VERSION);
module_init(pdc_sata_init);
module_exit(pdc_sata_exit);