1
linux/net/sched/sch_gred.c
Thomas Graf bc3ed28caa netlink: Improve returned error codes
Make nlmsg_trim(), nlmsg_cancel(), genlmsg_cancel(), and
nla_nest_cancel() void functions.

Return -EMSGSIZE instead of -1 if the provided message buffer is not
big enough.

Signed-off-by: Thomas Graf <tgraf@suug.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-06-03 16:36:54 -07:00

629 lines
14 KiB
C

/*
* net/sched/sch_gred.c Generic Random Early Detection queue.
*
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Authors: J Hadi Salim (hadi@cyberus.ca) 1998-2002
*
* 991129: - Bug fix with grio mode
* - a better sing. AvgQ mode with Grio(WRED)
* - A finer grained VQ dequeue based on sugestion
* from Ren Liu
* - More error checks
*
* For all the glorious comments look at include/net/red.h
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/skbuff.h>
#include <net/pkt_sched.h>
#include <net/red.h>
#define GRED_DEF_PRIO (MAX_DPs / 2)
#define GRED_VQ_MASK (MAX_DPs - 1)
struct gred_sched_data;
struct gred_sched;
struct gred_sched_data
{
u32 limit; /* HARD maximal queue length */
u32 DP; /* the drop pramaters */
u32 bytesin; /* bytes seen on virtualQ so far*/
u32 packetsin; /* packets seen on virtualQ so far*/
u32 backlog; /* bytes on the virtualQ */
u8 prio; /* the prio of this vq */
struct red_parms parms;
struct red_stats stats;
};
enum {
GRED_WRED_MODE = 1,
GRED_RIO_MODE,
};
struct gred_sched
{
struct gred_sched_data *tab[MAX_DPs];
unsigned long flags;
u32 red_flags;
u32 DPs;
u32 def;
struct red_parms wred_set;
};
static inline int gred_wred_mode(struct gred_sched *table)
{
return test_bit(GRED_WRED_MODE, &table->flags);
}
static inline void gred_enable_wred_mode(struct gred_sched *table)
{
__set_bit(GRED_WRED_MODE, &table->flags);
}
static inline void gred_disable_wred_mode(struct gred_sched *table)
{
__clear_bit(GRED_WRED_MODE, &table->flags);
}
static inline int gred_rio_mode(struct gred_sched *table)
{
return test_bit(GRED_RIO_MODE, &table->flags);
}
static inline void gred_enable_rio_mode(struct gred_sched *table)
{
__set_bit(GRED_RIO_MODE, &table->flags);
}
static inline void gred_disable_rio_mode(struct gred_sched *table)
{
__clear_bit(GRED_RIO_MODE, &table->flags);
}
static inline int gred_wred_mode_check(struct Qdisc *sch)
{
struct gred_sched *table = qdisc_priv(sch);
int i;
/* Really ugly O(n^2) but shouldn't be necessary too frequent. */
for (i = 0; i < table->DPs; i++) {
struct gred_sched_data *q = table->tab[i];
int n;
if (q == NULL)
continue;
for (n = 0; n < table->DPs; n++)
if (table->tab[n] && table->tab[n] != q &&
table->tab[n]->prio == q->prio)
return 1;
}
return 0;
}
static inline unsigned int gred_backlog(struct gred_sched *table,
struct gred_sched_data *q,
struct Qdisc *sch)
{
if (gred_wred_mode(table))
return sch->qstats.backlog;
else
return q->backlog;
}
static inline u16 tc_index_to_dp(struct sk_buff *skb)
{
return skb->tc_index & GRED_VQ_MASK;
}
static inline void gred_load_wred_set(struct gred_sched *table,
struct gred_sched_data *q)
{
q->parms.qavg = table->wred_set.qavg;
q->parms.qidlestart = table->wred_set.qidlestart;
}
static inline void gred_store_wred_set(struct gred_sched *table,
struct gred_sched_data *q)
{
table->wred_set.qavg = q->parms.qavg;
}
static inline int gred_use_ecn(struct gred_sched *t)
{
return t->red_flags & TC_RED_ECN;
}
static inline int gred_use_harddrop(struct gred_sched *t)
{
return t->red_flags & TC_RED_HARDDROP;
}
static int gred_enqueue(struct sk_buff *skb, struct Qdisc* sch)
{
struct gred_sched_data *q=NULL;
struct gred_sched *t= qdisc_priv(sch);
unsigned long qavg = 0;
u16 dp = tc_index_to_dp(skb);
if (dp >= t->DPs || (q = t->tab[dp]) == NULL) {
dp = t->def;
if ((q = t->tab[dp]) == NULL) {
/* Pass through packets not assigned to a DP
* if no default DP has been configured. This
* allows for DP flows to be left untouched.
*/
if (skb_queue_len(&sch->q) < sch->dev->tx_queue_len)
return qdisc_enqueue_tail(skb, sch);
else
goto drop;
}
/* fix tc_index? --could be controvesial but needed for
requeueing */
skb->tc_index = (skb->tc_index & ~GRED_VQ_MASK) | dp;
}
/* sum up all the qaves of prios <= to ours to get the new qave */
if (!gred_wred_mode(t) && gred_rio_mode(t)) {
int i;
for (i = 0; i < t->DPs; i++) {
if (t->tab[i] && t->tab[i]->prio < q->prio &&
!red_is_idling(&t->tab[i]->parms))
qavg +=t->tab[i]->parms.qavg;
}
}
q->packetsin++;
q->bytesin += skb->len;
if (gred_wred_mode(t))
gred_load_wred_set(t, q);
q->parms.qavg = red_calc_qavg(&q->parms, gred_backlog(t, q, sch));
if (red_is_idling(&q->parms))
red_end_of_idle_period(&q->parms);
if (gred_wred_mode(t))
gred_store_wred_set(t, q);
switch (red_action(&q->parms, q->parms.qavg + qavg)) {
case RED_DONT_MARK:
break;
case RED_PROB_MARK:
sch->qstats.overlimits++;
if (!gred_use_ecn(t) || !INET_ECN_set_ce(skb)) {
q->stats.prob_drop++;
goto congestion_drop;
}
q->stats.prob_mark++;
break;
case RED_HARD_MARK:
sch->qstats.overlimits++;
if (gred_use_harddrop(t) || !gred_use_ecn(t) ||
!INET_ECN_set_ce(skb)) {
q->stats.forced_drop++;
goto congestion_drop;
}
q->stats.forced_mark++;
break;
}
if (q->backlog + skb->len <= q->limit) {
q->backlog += skb->len;
return qdisc_enqueue_tail(skb, sch);
}
q->stats.pdrop++;
drop:
return qdisc_drop(skb, sch);
congestion_drop:
qdisc_drop(skb, sch);
return NET_XMIT_CN;
}
static int gred_requeue(struct sk_buff *skb, struct Qdisc* sch)
{
struct gred_sched *t = qdisc_priv(sch);
struct gred_sched_data *q;
u16 dp = tc_index_to_dp(skb);
if (dp >= t->DPs || (q = t->tab[dp]) == NULL) {
if (net_ratelimit())
printk(KERN_WARNING "GRED: Unable to relocate VQ 0x%x "
"for requeue, screwing up backlog.\n",
tc_index_to_dp(skb));
} else {
if (red_is_idling(&q->parms))
red_end_of_idle_period(&q->parms);
q->backlog += skb->len;
}
return qdisc_requeue(skb, sch);
}
static struct sk_buff *gred_dequeue(struct Qdisc* sch)
{
struct sk_buff *skb;
struct gred_sched *t = qdisc_priv(sch);
skb = qdisc_dequeue_head(sch);
if (skb) {
struct gred_sched_data *q;
u16 dp = tc_index_to_dp(skb);
if (dp >= t->DPs || (q = t->tab[dp]) == NULL) {
if (net_ratelimit())
printk(KERN_WARNING "GRED: Unable to relocate "
"VQ 0x%x after dequeue, screwing up "
"backlog.\n", tc_index_to_dp(skb));
} else {
q->backlog -= skb->len;
if (!q->backlog && !gred_wred_mode(t))
red_start_of_idle_period(&q->parms);
}
return skb;
}
if (gred_wred_mode(t) && !red_is_idling(&t->wred_set))
red_start_of_idle_period(&t->wred_set);
return NULL;
}
static unsigned int gred_drop(struct Qdisc* sch)
{
struct sk_buff *skb;
struct gred_sched *t = qdisc_priv(sch);
skb = qdisc_dequeue_tail(sch);
if (skb) {
unsigned int len = skb->len;
struct gred_sched_data *q;
u16 dp = tc_index_to_dp(skb);
if (dp >= t->DPs || (q = t->tab[dp]) == NULL) {
if (net_ratelimit())
printk(KERN_WARNING "GRED: Unable to relocate "
"VQ 0x%x while dropping, screwing up "
"backlog.\n", tc_index_to_dp(skb));
} else {
q->backlog -= len;
q->stats.other++;
if (!q->backlog && !gred_wred_mode(t))
red_start_of_idle_period(&q->parms);
}
qdisc_drop(skb, sch);
return len;
}
if (gred_wred_mode(t) && !red_is_idling(&t->wred_set))
red_start_of_idle_period(&t->wred_set);
return 0;
}
static void gred_reset(struct Qdisc* sch)
{
int i;
struct gred_sched *t = qdisc_priv(sch);
qdisc_reset_queue(sch);
for (i = 0; i < t->DPs; i++) {
struct gred_sched_data *q = t->tab[i];
if (!q)
continue;
red_restart(&q->parms);
q->backlog = 0;
}
}
static inline void gred_destroy_vq(struct gred_sched_data *q)
{
kfree(q);
}
static inline int gred_change_table_def(struct Qdisc *sch, struct nlattr *dps)
{
struct gred_sched *table = qdisc_priv(sch);
struct tc_gred_sopt *sopt;
int i;
if (dps == NULL)
return -EINVAL;
sopt = nla_data(dps);
if (sopt->DPs > MAX_DPs || sopt->DPs == 0 || sopt->def_DP >= sopt->DPs)
return -EINVAL;
sch_tree_lock(sch);
table->DPs = sopt->DPs;
table->def = sopt->def_DP;
table->red_flags = sopt->flags;
/*
* Every entry point to GRED is synchronized with the above code
* and the DP is checked against DPs, i.e. shadowed VQs can no
* longer be found so we can unlock right here.
*/
sch_tree_unlock(sch);
if (sopt->grio) {
gred_enable_rio_mode(table);
gred_disable_wred_mode(table);
if (gred_wred_mode_check(sch))
gred_enable_wred_mode(table);
} else {
gred_disable_rio_mode(table);
gred_disable_wred_mode(table);
}
for (i = table->DPs; i < MAX_DPs; i++) {
if (table->tab[i]) {
printk(KERN_WARNING "GRED: Warning: Destroying "
"shadowed VQ 0x%x\n", i);
gred_destroy_vq(table->tab[i]);
table->tab[i] = NULL;
}
}
return 0;
}
static inline int gred_change_vq(struct Qdisc *sch, int dp,
struct tc_gred_qopt *ctl, int prio, u8 *stab)
{
struct gred_sched *table = qdisc_priv(sch);
struct gred_sched_data *q;
if (table->tab[dp] == NULL) {
table->tab[dp] = kzalloc(sizeof(*q), GFP_KERNEL);
if (table->tab[dp] == NULL)
return -ENOMEM;
}
q = table->tab[dp];
q->DP = dp;
q->prio = prio;
q->limit = ctl->limit;
if (q->backlog == 0)
red_end_of_idle_period(&q->parms);
red_set_parms(&q->parms,
ctl->qth_min, ctl->qth_max, ctl->Wlog, ctl->Plog,
ctl->Scell_log, stab);
return 0;
}
static const struct nla_policy gred_policy[TCA_GRED_MAX + 1] = {
[TCA_GRED_PARMS] = { .len = sizeof(struct tc_gred_qopt) },
[TCA_GRED_STAB] = { .len = 256 },
[TCA_GRED_DPS] = { .len = sizeof(struct tc_gred_sopt) },
};
static int gred_change(struct Qdisc *sch, struct nlattr *opt)
{
struct gred_sched *table = qdisc_priv(sch);
struct tc_gred_qopt *ctl;
struct nlattr *tb[TCA_GRED_MAX + 1];
int err, prio = GRED_DEF_PRIO;
u8 *stab;
if (opt == NULL)
return -EINVAL;
err = nla_parse_nested(tb, TCA_GRED_MAX, opt, gred_policy);
if (err < 0)
return err;
if (tb[TCA_GRED_PARMS] == NULL && tb[TCA_GRED_STAB] == NULL)
return gred_change_table_def(sch, opt);
if (tb[TCA_GRED_PARMS] == NULL ||
tb[TCA_GRED_STAB] == NULL)
return -EINVAL;
err = -EINVAL;
ctl = nla_data(tb[TCA_GRED_PARMS]);
stab = nla_data(tb[TCA_GRED_STAB]);
if (ctl->DP >= table->DPs)
goto errout;
if (gred_rio_mode(table)) {
if (ctl->prio == 0) {
int def_prio = GRED_DEF_PRIO;
if (table->tab[table->def])
def_prio = table->tab[table->def]->prio;
printk(KERN_DEBUG "GRED: DP %u does not have a prio "
"setting default to %d\n", ctl->DP, def_prio);
prio = def_prio;
} else
prio = ctl->prio;
}
sch_tree_lock(sch);
err = gred_change_vq(sch, ctl->DP, ctl, prio, stab);
if (err < 0)
goto errout_locked;
if (gred_rio_mode(table)) {
gred_disable_wred_mode(table);
if (gred_wred_mode_check(sch))
gred_enable_wred_mode(table);
}
err = 0;
errout_locked:
sch_tree_unlock(sch);
errout:
return err;
}
static int gred_init(struct Qdisc *sch, struct nlattr *opt)
{
struct nlattr *tb[TCA_GRED_MAX + 1];
int err;
if (opt == NULL)
return -EINVAL;
err = nla_parse_nested(tb, TCA_GRED_MAX, opt, gred_policy);
if (err < 0)
return err;
if (tb[TCA_GRED_PARMS] || tb[TCA_GRED_STAB])
return -EINVAL;
return gred_change_table_def(sch, tb[TCA_GRED_DPS]);
}
static int gred_dump(struct Qdisc *sch, struct sk_buff *skb)
{
struct gred_sched *table = qdisc_priv(sch);
struct nlattr *parms, *opts = NULL;
int i;
struct tc_gred_sopt sopt = {
.DPs = table->DPs,
.def_DP = table->def,
.grio = gred_rio_mode(table),
.flags = table->red_flags,
};
opts = nla_nest_start(skb, TCA_OPTIONS);
if (opts == NULL)
goto nla_put_failure;
NLA_PUT(skb, TCA_GRED_DPS, sizeof(sopt), &sopt);
parms = nla_nest_start(skb, TCA_GRED_PARMS);
if (parms == NULL)
goto nla_put_failure;
for (i = 0; i < MAX_DPs; i++) {
struct gred_sched_data *q = table->tab[i];
struct tc_gred_qopt opt;
memset(&opt, 0, sizeof(opt));
if (!q) {
/* hack -- fix at some point with proper message
This is how we indicate to tc that there is no VQ
at this DP */
opt.DP = MAX_DPs + i;
goto append_opt;
}
opt.limit = q->limit;
opt.DP = q->DP;
opt.backlog = q->backlog;
opt.prio = q->prio;
opt.qth_min = q->parms.qth_min >> q->parms.Wlog;
opt.qth_max = q->parms.qth_max >> q->parms.Wlog;
opt.Wlog = q->parms.Wlog;
opt.Plog = q->parms.Plog;
opt.Scell_log = q->parms.Scell_log;
opt.other = q->stats.other;
opt.early = q->stats.prob_drop;
opt.forced = q->stats.forced_drop;
opt.pdrop = q->stats.pdrop;
opt.packets = q->packetsin;
opt.bytesin = q->bytesin;
if (gred_wred_mode(table)) {
q->parms.qidlestart =
table->tab[table->def]->parms.qidlestart;
q->parms.qavg = table->tab[table->def]->parms.qavg;
}
opt.qave = red_calc_qavg(&q->parms, q->parms.qavg);
append_opt:
if (nla_append(skb, sizeof(opt), &opt) < 0)
goto nla_put_failure;
}
nla_nest_end(skb, parms);
return nla_nest_end(skb, opts);
nla_put_failure:
nla_nest_cancel(skb, opts);
return -EMSGSIZE;
}
static void gred_destroy(struct Qdisc *sch)
{
struct gred_sched *table = qdisc_priv(sch);
int i;
for (i = 0; i < table->DPs; i++) {
if (table->tab[i])
gred_destroy_vq(table->tab[i]);
}
}
static struct Qdisc_ops gred_qdisc_ops __read_mostly = {
.id = "gred",
.priv_size = sizeof(struct gred_sched),
.enqueue = gred_enqueue,
.dequeue = gred_dequeue,
.requeue = gred_requeue,
.drop = gred_drop,
.init = gred_init,
.reset = gred_reset,
.destroy = gred_destroy,
.change = gred_change,
.dump = gred_dump,
.owner = THIS_MODULE,
};
static int __init gred_module_init(void)
{
return register_qdisc(&gred_qdisc_ops);
}
static void __exit gred_module_exit(void)
{
unregister_qdisc(&gred_qdisc_ops);
}
module_init(gred_module_init)
module_exit(gred_module_exit)
MODULE_LICENSE("GPL");