1
linux/arch/arm/plat-omap/dma.c
Thomas Gleixner 52e405eaa9 [PATCH] ARM: fixup irqflags breakage after ARM genirq merge
The irgflags consolidation did conflict with the ARM to generic IRQ
conversion and was not applied for ARM. Fix it up.

Use the new IRQF_ constants and remove the SA_INTERRUPT define

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-07-02 17:29:22 -07:00

1452 lines
34 KiB
C

/*
* linux/arch/arm/plat-omap/dma.c
*
* Copyright (C) 2003 Nokia Corporation
* Author: Juha Yrjölä <juha.yrjola@nokia.com>
* DMA channel linking for 1610 by Samuel Ortiz <samuel.ortiz@nokia.com>
* Graphics DMA and LCD DMA graphics tranformations
* by Imre Deak <imre.deak@nokia.com>
* OMAP2 support Copyright (C) 2004-2005 Texas Instruments, Inc.
* Merged to support both OMAP1 and OMAP2 by Tony Lindgren <tony@atomide.com>
* Some functions based on earlier dma-omap.c Copyright (C) 2001 RidgeRun, Inc.
*
* Support functions for the OMAP internal DMA channels.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/spinlock.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <asm/system.h>
#include <asm/hardware.h>
#include <asm/dma.h>
#include <asm/io.h>
#include <asm/arch/tc.h>
#define DEBUG_PRINTS
#undef DEBUG_PRINTS
#ifdef DEBUG_PRINTS
#define debug_printk(x) printk x
#else
#define debug_printk(x)
#endif
#define OMAP_DMA_ACTIVE 0x01
#define OMAP_DMA_CCR_EN (1 << 7)
#define OMAP2_DMA_CSR_CLEAR_MASK 0xffe
#define OMAP_FUNC_MUX_ARM_BASE (0xfffe1000 + 0xec)
static int enable_1510_mode = 0;
struct omap_dma_lch {
int next_lch;
int dev_id;
u16 saved_csr;
u16 enabled_irqs;
const char *dev_name;
void (* callback)(int lch, u16 ch_status, void *data);
void *data;
long flags;
};
static int dma_chan_count;
static spinlock_t dma_chan_lock;
static struct omap_dma_lch dma_chan[OMAP_LOGICAL_DMA_CH_COUNT];
static const u8 omap1_dma_irq[OMAP_LOGICAL_DMA_CH_COUNT] = {
INT_DMA_CH0_6, INT_DMA_CH1_7, INT_DMA_CH2_8, INT_DMA_CH3,
INT_DMA_CH4, INT_DMA_CH5, INT_1610_DMA_CH6, INT_1610_DMA_CH7,
INT_1610_DMA_CH8, INT_1610_DMA_CH9, INT_1610_DMA_CH10,
INT_1610_DMA_CH11, INT_1610_DMA_CH12, INT_1610_DMA_CH13,
INT_1610_DMA_CH14, INT_1610_DMA_CH15, INT_DMA_LCD
};
#define REVISIT_24XX() printk(KERN_ERR "FIXME: no %s on 24xx\n", \
__FUNCTION__);
#ifdef CONFIG_ARCH_OMAP15XX
/* Returns 1 if the DMA module is in OMAP1510-compatible mode, 0 otherwise */
int omap_dma_in_1510_mode(void)
{
return enable_1510_mode;
}
#else
#define omap_dma_in_1510_mode() 0
#endif
#ifdef CONFIG_ARCH_OMAP1
static inline int get_gdma_dev(int req)
{
u32 reg = OMAP_FUNC_MUX_ARM_BASE + ((req - 1) / 5) * 4;
int shift = ((req - 1) % 5) * 6;
return ((omap_readl(reg) >> shift) & 0x3f) + 1;
}
static inline void set_gdma_dev(int req, int dev)
{
u32 reg = OMAP_FUNC_MUX_ARM_BASE + ((req - 1) / 5) * 4;
int shift = ((req - 1) % 5) * 6;
u32 l;
l = omap_readl(reg);
l &= ~(0x3f << shift);
l |= (dev - 1) << shift;
omap_writel(l, reg);
}
#else
#define set_gdma_dev(req, dev) do {} while (0)
#endif
static void clear_lch_regs(int lch)
{
int i;
u32 lch_base = OMAP_DMA_BASE + lch * 0x40;
for (i = 0; i < 0x2c; i += 2)
omap_writew(0, lch_base + i);
}
void omap_set_dma_priority(int dst_port, int priority)
{
unsigned long reg;
u32 l;
switch (dst_port) {
case OMAP_DMA_PORT_OCP_T1: /* FFFECC00 */
reg = OMAP_TC_OCPT1_PRIOR;
break;
case OMAP_DMA_PORT_OCP_T2: /* FFFECCD0 */
reg = OMAP_TC_OCPT2_PRIOR;
break;
case OMAP_DMA_PORT_EMIFF: /* FFFECC08 */
reg = OMAP_TC_EMIFF_PRIOR;
break;
case OMAP_DMA_PORT_EMIFS: /* FFFECC04 */
reg = OMAP_TC_EMIFS_PRIOR;
break;
default:
BUG();
return;
}
l = omap_readl(reg);
l &= ~(0xf << 8);
l |= (priority & 0xf) << 8;
omap_writel(l, reg);
}
void omap_set_dma_transfer_params(int lch, int data_type, int elem_count,
int frame_count, int sync_mode,
int dma_trigger, int src_or_dst_synch)
{
OMAP_DMA_CSDP_REG(lch) &= ~0x03;
OMAP_DMA_CSDP_REG(lch) |= data_type;
if (cpu_class_is_omap1()) {
OMAP_DMA_CCR_REG(lch) &= ~(1 << 5);
if (sync_mode == OMAP_DMA_SYNC_FRAME)
OMAP_DMA_CCR_REG(lch) |= 1 << 5;
OMAP1_DMA_CCR2_REG(lch) &= ~(1 << 2);
if (sync_mode == OMAP_DMA_SYNC_BLOCK)
OMAP1_DMA_CCR2_REG(lch) |= 1 << 2;
}
if (cpu_is_omap24xx() && dma_trigger) {
u32 val = OMAP_DMA_CCR_REG(lch);
val &= ~(3 << 19);
if (dma_trigger > 63)
val |= 1 << 20;
if (dma_trigger > 31)
val |= 1 << 19;
val &= ~(0x1f);
val |= (dma_trigger & 0x1f);
if (sync_mode & OMAP_DMA_SYNC_FRAME)
val |= 1 << 5;
else
val &= ~(1 << 5);
if (sync_mode & OMAP_DMA_SYNC_BLOCK)
val |= 1 << 18;
else
val &= ~(1 << 18);
if (src_or_dst_synch)
val |= 1 << 24; /* source synch */
else
val &= ~(1 << 24); /* dest synch */
OMAP_DMA_CCR_REG(lch) = val;
}
OMAP_DMA_CEN_REG(lch) = elem_count;
OMAP_DMA_CFN_REG(lch) = frame_count;
}
void omap_set_dma_color_mode(int lch, enum omap_dma_color_mode mode, u32 color)
{
u16 w;
BUG_ON(omap_dma_in_1510_mode());
if (cpu_is_omap24xx()) {
REVISIT_24XX();
return;
}
w = OMAP1_DMA_CCR2_REG(lch) & ~0x03;
switch (mode) {
case OMAP_DMA_CONSTANT_FILL:
w |= 0x01;
break;
case OMAP_DMA_TRANSPARENT_COPY:
w |= 0x02;
break;
case OMAP_DMA_COLOR_DIS:
break;
default:
BUG();
}
OMAP1_DMA_CCR2_REG(lch) = w;
w = OMAP1_DMA_LCH_CTRL_REG(lch) & ~0x0f;
/* Default is channel type 2D */
if (mode) {
OMAP1_DMA_COLOR_L_REG(lch) = (u16)color;
OMAP1_DMA_COLOR_U_REG(lch) = (u16)(color >> 16);
w |= 1; /* Channel type G */
}
OMAP1_DMA_LCH_CTRL_REG(lch) = w;
}
/* Note that src_port is only for omap1 */
void omap_set_dma_src_params(int lch, int src_port, int src_amode,
unsigned long src_start,
int src_ei, int src_fi)
{
if (cpu_class_is_omap1()) {
OMAP_DMA_CSDP_REG(lch) &= ~(0x1f << 2);
OMAP_DMA_CSDP_REG(lch) |= src_port << 2;
}
OMAP_DMA_CCR_REG(lch) &= ~(0x03 << 12);
OMAP_DMA_CCR_REG(lch) |= src_amode << 12;
if (cpu_class_is_omap1()) {
OMAP1_DMA_CSSA_U_REG(lch) = src_start >> 16;
OMAP1_DMA_CSSA_L_REG(lch) = src_start;
}
if (cpu_is_omap24xx())
OMAP2_DMA_CSSA_REG(lch) = src_start;
OMAP_DMA_CSEI_REG(lch) = src_ei;
OMAP_DMA_CSFI_REG(lch) = src_fi;
}
void omap_set_dma_params(int lch, struct omap_dma_channel_params * params)
{
omap_set_dma_transfer_params(lch, params->data_type,
params->elem_count, params->frame_count,
params->sync_mode, params->trigger,
params->src_or_dst_synch);
omap_set_dma_src_params(lch, params->src_port,
params->src_amode, params->src_start,
params->src_ei, params->src_fi);
omap_set_dma_dest_params(lch, params->dst_port,
params->dst_amode, params->dst_start,
params->dst_ei, params->dst_fi);
}
void omap_set_dma_src_index(int lch, int eidx, int fidx)
{
if (cpu_is_omap24xx()) {
REVISIT_24XX();
return;
}
OMAP_DMA_CSEI_REG(lch) = eidx;
OMAP_DMA_CSFI_REG(lch) = fidx;
}
void omap_set_dma_src_data_pack(int lch, int enable)
{
OMAP_DMA_CSDP_REG(lch) &= ~(1 << 6);
if (enable)
OMAP_DMA_CSDP_REG(lch) |= (1 << 6);
}
void omap_set_dma_src_burst_mode(int lch, enum omap_dma_burst_mode burst_mode)
{
unsigned int burst = 0;
OMAP_DMA_CSDP_REG(lch) &= ~(0x03 << 7);
switch (burst_mode) {
case OMAP_DMA_DATA_BURST_DIS:
break;
case OMAP_DMA_DATA_BURST_4:
if (cpu_is_omap24xx())
burst = 0x1;
else
burst = 0x2;
break;
case OMAP_DMA_DATA_BURST_8:
if (cpu_is_omap24xx()) {
burst = 0x2;
break;
}
/* not supported by current hardware on OMAP1
* w |= (0x03 << 7);
* fall through
*/
case OMAP_DMA_DATA_BURST_16:
if (cpu_is_omap24xx()) {
burst = 0x3;
break;
}
/* OMAP1 don't support burst 16
* fall through
*/
default:
BUG();
}
OMAP_DMA_CSDP_REG(lch) |= (burst << 7);
}
/* Note that dest_port is only for OMAP1 */
void omap_set_dma_dest_params(int lch, int dest_port, int dest_amode,
unsigned long dest_start,
int dst_ei, int dst_fi)
{
if (cpu_class_is_omap1()) {
OMAP_DMA_CSDP_REG(lch) &= ~(0x1f << 9);
OMAP_DMA_CSDP_REG(lch) |= dest_port << 9;
}
OMAP_DMA_CCR_REG(lch) &= ~(0x03 << 14);
OMAP_DMA_CCR_REG(lch) |= dest_amode << 14;
if (cpu_class_is_omap1()) {
OMAP1_DMA_CDSA_U_REG(lch) = dest_start >> 16;
OMAP1_DMA_CDSA_L_REG(lch) = dest_start;
}
if (cpu_is_omap24xx())
OMAP2_DMA_CDSA_REG(lch) = dest_start;
OMAP_DMA_CDEI_REG(lch) = dst_ei;
OMAP_DMA_CDFI_REG(lch) = dst_fi;
}
void omap_set_dma_dest_index(int lch, int eidx, int fidx)
{
if (cpu_is_omap24xx()) {
REVISIT_24XX();
return;
}
OMAP_DMA_CDEI_REG(lch) = eidx;
OMAP_DMA_CDFI_REG(lch) = fidx;
}
void omap_set_dma_dest_data_pack(int lch, int enable)
{
OMAP_DMA_CSDP_REG(lch) &= ~(1 << 13);
if (enable)
OMAP_DMA_CSDP_REG(lch) |= 1 << 13;
}
void omap_set_dma_dest_burst_mode(int lch, enum omap_dma_burst_mode burst_mode)
{
unsigned int burst = 0;
OMAP_DMA_CSDP_REG(lch) &= ~(0x03 << 14);
switch (burst_mode) {
case OMAP_DMA_DATA_BURST_DIS:
break;
case OMAP_DMA_DATA_BURST_4:
if (cpu_is_omap24xx())
burst = 0x1;
else
burst = 0x2;
break;
case OMAP_DMA_DATA_BURST_8:
if (cpu_is_omap24xx())
burst = 0x2;
else
burst = 0x3;
break;
case OMAP_DMA_DATA_BURST_16:
if (cpu_is_omap24xx()) {
burst = 0x3;
break;
}
/* OMAP1 don't support burst 16
* fall through
*/
default:
printk(KERN_ERR "Invalid DMA burst mode\n");
BUG();
return;
}
OMAP_DMA_CSDP_REG(lch) |= (burst << 14);
}
static inline void omap_enable_channel_irq(int lch)
{
u32 status;
/* Clear CSR */
if (cpu_class_is_omap1())
status = OMAP_DMA_CSR_REG(lch);
else if (cpu_is_omap24xx())
OMAP_DMA_CSR_REG(lch) = OMAP2_DMA_CSR_CLEAR_MASK;
/* Enable some nice interrupts. */
OMAP_DMA_CICR_REG(lch) = dma_chan[lch].enabled_irqs;
dma_chan[lch].flags |= OMAP_DMA_ACTIVE;
}
static void omap_disable_channel_irq(int lch)
{
if (cpu_is_omap24xx())
OMAP_DMA_CICR_REG(lch) = 0;
}
void omap_enable_dma_irq(int lch, u16 bits)
{
dma_chan[lch].enabled_irqs |= bits;
}
void omap_disable_dma_irq(int lch, u16 bits)
{
dma_chan[lch].enabled_irqs &= ~bits;
}
static inline void enable_lnk(int lch)
{
if (cpu_class_is_omap1())
OMAP_DMA_CLNK_CTRL_REG(lch) &= ~(1 << 14);
/* Set the ENABLE_LNK bits */
if (dma_chan[lch].next_lch != -1)
OMAP_DMA_CLNK_CTRL_REG(lch) =
dma_chan[lch].next_lch | (1 << 15);
}
static inline void disable_lnk(int lch)
{
/* Disable interrupts */
if (cpu_class_is_omap1()) {
OMAP_DMA_CICR_REG(lch) = 0;
/* Set the STOP_LNK bit */
OMAP_DMA_CLNK_CTRL_REG(lch) |= 1 << 14;
}
if (cpu_is_omap24xx()) {
omap_disable_channel_irq(lch);
/* Clear the ENABLE_LNK bit */
OMAP_DMA_CLNK_CTRL_REG(lch) &= ~(1 << 15);
}
dma_chan[lch].flags &= ~OMAP_DMA_ACTIVE;
}
static inline void omap2_enable_irq_lch(int lch)
{
u32 val;
if (!cpu_is_omap24xx())
return;
val = omap_readl(OMAP_DMA4_IRQENABLE_L0);
val |= 1 << lch;
omap_writel(val, OMAP_DMA4_IRQENABLE_L0);
}
int omap_request_dma(int dev_id, const char *dev_name,
void (* callback)(int lch, u16 ch_status, void *data),
void *data, int *dma_ch_out)
{
int ch, free_ch = -1;
unsigned long flags;
struct omap_dma_lch *chan;
spin_lock_irqsave(&dma_chan_lock, flags);
for (ch = 0; ch < dma_chan_count; ch++) {
if (free_ch == -1 && dma_chan[ch].dev_id == -1) {
free_ch = ch;
if (dev_id == 0)
break;
}
}
if (free_ch == -1) {
spin_unlock_irqrestore(&dma_chan_lock, flags);
return -EBUSY;
}
chan = dma_chan + free_ch;
chan->dev_id = dev_id;
if (cpu_class_is_omap1())
clear_lch_regs(free_ch);
if (cpu_is_omap24xx())
omap_clear_dma(free_ch);
spin_unlock_irqrestore(&dma_chan_lock, flags);
chan->dev_name = dev_name;
chan->callback = callback;
chan->data = data;
chan->enabled_irqs = OMAP_DMA_DROP_IRQ | OMAP_DMA_BLOCK_IRQ;
if (cpu_class_is_omap1())
chan->enabled_irqs |= OMAP1_DMA_TOUT_IRQ;
else if (cpu_is_omap24xx())
chan->enabled_irqs |= OMAP2_DMA_MISALIGNED_ERR_IRQ |
OMAP2_DMA_TRANS_ERR_IRQ;
if (cpu_is_omap16xx()) {
/* If the sync device is set, configure it dynamically. */
if (dev_id != 0) {
set_gdma_dev(free_ch + 1, dev_id);
dev_id = free_ch + 1;
}
/* Disable the 1510 compatibility mode and set the sync device
* id. */
OMAP_DMA_CCR_REG(free_ch) = dev_id | (1 << 10);
} else if (cpu_is_omap730() || cpu_is_omap15xx()) {
OMAP_DMA_CCR_REG(free_ch) = dev_id;
}
if (cpu_is_omap24xx()) {
omap2_enable_irq_lch(free_ch);
omap_enable_channel_irq(free_ch);
/* Clear the CSR register and IRQ status register */
OMAP_DMA_CSR_REG(free_ch) = OMAP2_DMA_CSR_CLEAR_MASK;
omap_writel(~0x0, OMAP_DMA4_IRQSTATUS_L0);
}
*dma_ch_out = free_ch;
return 0;
}
void omap_free_dma(int lch)
{
unsigned long flags;
spin_lock_irqsave(&dma_chan_lock, flags);
if (dma_chan[lch].dev_id == -1) {
printk("omap_dma: trying to free nonallocated DMA channel %d\n",
lch);
spin_unlock_irqrestore(&dma_chan_lock, flags);
return;
}
dma_chan[lch].dev_id = -1;
dma_chan[lch].next_lch = -1;
dma_chan[lch].callback = NULL;
spin_unlock_irqrestore(&dma_chan_lock, flags);
if (cpu_class_is_omap1()) {
/* Disable all DMA interrupts for the channel. */
OMAP_DMA_CICR_REG(lch) = 0;
/* Make sure the DMA transfer is stopped. */
OMAP_DMA_CCR_REG(lch) = 0;
}
if (cpu_is_omap24xx()) {
u32 val;
/* Disable interrupts */
val = omap_readl(OMAP_DMA4_IRQENABLE_L0);
val &= ~(1 << lch);
omap_writel(val, OMAP_DMA4_IRQENABLE_L0);
/* Clear the CSR register and IRQ status register */
OMAP_DMA_CSR_REG(lch) = OMAP2_DMA_CSR_CLEAR_MASK;
val = omap_readl(OMAP_DMA4_IRQSTATUS_L0);
val |= 1 << lch;
omap_writel(val, OMAP_DMA4_IRQSTATUS_L0);
/* Disable all DMA interrupts for the channel. */
OMAP_DMA_CICR_REG(lch) = 0;
/* Make sure the DMA transfer is stopped. */
OMAP_DMA_CCR_REG(lch) = 0;
omap_clear_dma(lch);
}
}
/*
* Clears any DMA state so the DMA engine is ready to restart with new buffers
* through omap_start_dma(). Any buffers in flight are discarded.
*/
void omap_clear_dma(int lch)
{
unsigned long flags;
local_irq_save(flags);
if (cpu_class_is_omap1()) {
int status;
OMAP_DMA_CCR_REG(lch) &= ~OMAP_DMA_CCR_EN;
/* Clear pending interrupts */
status = OMAP_DMA_CSR_REG(lch);
}
if (cpu_is_omap24xx()) {
int i;
u32 lch_base = OMAP24XX_DMA_BASE + lch * 0x60 + 0x80;
for (i = 0; i < 0x44; i += 4)
omap_writel(0, lch_base + i);
}
local_irq_restore(flags);
}
void omap_start_dma(int lch)
{
if (!omap_dma_in_1510_mode() && dma_chan[lch].next_lch != -1) {
int next_lch, cur_lch;
char dma_chan_link_map[OMAP_LOGICAL_DMA_CH_COUNT];
dma_chan_link_map[lch] = 1;
/* Set the link register of the first channel */
enable_lnk(lch);
memset(dma_chan_link_map, 0, sizeof(dma_chan_link_map));
cur_lch = dma_chan[lch].next_lch;
do {
next_lch = dma_chan[cur_lch].next_lch;
/* The loop case: we've been here already */
if (dma_chan_link_map[cur_lch])
break;
/* Mark the current channel */
dma_chan_link_map[cur_lch] = 1;
enable_lnk(cur_lch);
omap_enable_channel_irq(cur_lch);
cur_lch = next_lch;
} while (next_lch != -1);
} else if (cpu_is_omap24xx()) {
/* Errata: Need to write lch even if not using chaining */
OMAP_DMA_CLNK_CTRL_REG(lch) = lch;
}
omap_enable_channel_irq(lch);
/* Errata: On ES2.0 BUFFERING disable must be set.
* This will always fail on ES1.0 */
if (cpu_is_omap24xx()) {
OMAP_DMA_CCR_REG(lch) |= OMAP_DMA_CCR_EN;
}
OMAP_DMA_CCR_REG(lch) |= OMAP_DMA_CCR_EN;
dma_chan[lch].flags |= OMAP_DMA_ACTIVE;
}
void omap_stop_dma(int lch)
{
if (!omap_dma_in_1510_mode() && dma_chan[lch].next_lch != -1) {
int next_lch, cur_lch = lch;
char dma_chan_link_map[OMAP_LOGICAL_DMA_CH_COUNT];
memset(dma_chan_link_map, 0, sizeof(dma_chan_link_map));
do {
/* The loop case: we've been here already */
if (dma_chan_link_map[cur_lch])
break;
/* Mark the current channel */
dma_chan_link_map[cur_lch] = 1;
disable_lnk(cur_lch);
next_lch = dma_chan[cur_lch].next_lch;
cur_lch = next_lch;
} while (next_lch != -1);
return;
}
/* Disable all interrupts on the channel */
if (cpu_class_is_omap1())
OMAP_DMA_CICR_REG(lch) = 0;
OMAP_DMA_CCR_REG(lch) &= ~OMAP_DMA_CCR_EN;
dma_chan[lch].flags &= ~OMAP_DMA_ACTIVE;
}
/*
* Returns current physical source address for the given DMA channel.
* If the channel is running the caller must disable interrupts prior calling
* this function and process the returned value before re-enabling interrupt to
* prevent races with the interrupt handler. Note that in continuous mode there
* is a chance for CSSA_L register overflow inbetween the two reads resulting
* in incorrect return value.
*/
dma_addr_t omap_get_dma_src_pos(int lch)
{
dma_addr_t offset;
if (cpu_class_is_omap1())
offset = (dma_addr_t) (OMAP1_DMA_CSSA_L_REG(lch) |
(OMAP1_DMA_CSSA_U_REG(lch) << 16));
if (cpu_is_omap24xx())
offset = OMAP_DMA_CSAC_REG(lch);
return offset;
}
/*
* Returns current physical destination address for the given DMA channel.
* If the channel is running the caller must disable interrupts prior calling
* this function and process the returned value before re-enabling interrupt to
* prevent races with the interrupt handler. Note that in continuous mode there
* is a chance for CDSA_L register overflow inbetween the two reads resulting
* in incorrect return value.
*/
dma_addr_t omap_get_dma_dst_pos(int lch)
{
dma_addr_t offset;
if (cpu_class_is_omap1())
offset = (dma_addr_t) (OMAP1_DMA_CDSA_L_REG(lch) |
(OMAP1_DMA_CDSA_U_REG(lch) << 16));
if (cpu_is_omap24xx())
offset = OMAP2_DMA_CDSA_REG(lch);
return offset;
}
/*
* Returns current source transfer counting for the given DMA channel.
* Can be used to monitor the progress of a transfer inside a block.
* It must be called with disabled interrupts.
*/
int omap_get_dma_src_addr_counter(int lch)
{
return (dma_addr_t) OMAP_DMA_CSAC_REG(lch);
}
int omap_dma_running(void)
{
int lch;
/* Check if LCD DMA is running */
if (cpu_is_omap16xx())
if (omap_readw(OMAP1610_DMA_LCD_CCR) & OMAP_DMA_CCR_EN)
return 1;
for (lch = 0; lch < dma_chan_count; lch++)
if (OMAP_DMA_CCR_REG(lch) & OMAP_DMA_CCR_EN)
return 1;
return 0;
}
/*
* lch_queue DMA will start right after lch_head one is finished.
* For this DMA link to start, you still need to start (see omap_start_dma)
* the first one. That will fire up the entire queue.
*/
void omap_dma_link_lch (int lch_head, int lch_queue)
{
if (omap_dma_in_1510_mode()) {
printk(KERN_ERR "DMA linking is not supported in 1510 mode\n");
BUG();
return;
}
if ((dma_chan[lch_head].dev_id == -1) ||
(dma_chan[lch_queue].dev_id == -1)) {
printk(KERN_ERR "omap_dma: trying to link "
"non requested channels\n");
dump_stack();
}
dma_chan[lch_head].next_lch = lch_queue;
}
/*
* Once the DMA queue is stopped, we can destroy it.
*/
void omap_dma_unlink_lch (int lch_head, int lch_queue)
{
if (omap_dma_in_1510_mode()) {
printk(KERN_ERR "DMA linking is not supported in 1510 mode\n");
BUG();
return;
}
if (dma_chan[lch_head].next_lch != lch_queue ||
dma_chan[lch_head].next_lch == -1) {
printk(KERN_ERR "omap_dma: trying to unlink "
"non linked channels\n");
dump_stack();
}
if ((dma_chan[lch_head].flags & OMAP_DMA_ACTIVE) ||
(dma_chan[lch_head].flags & OMAP_DMA_ACTIVE)) {
printk(KERN_ERR "omap_dma: You need to stop the DMA channels "
"before unlinking\n");
dump_stack();
}
dma_chan[lch_head].next_lch = -1;
}
/*----------------------------------------------------------------------------*/
#ifdef CONFIG_ARCH_OMAP1
static int omap1_dma_handle_ch(int ch)
{
u16 csr;
if (enable_1510_mode && ch >= 6) {
csr = dma_chan[ch].saved_csr;
dma_chan[ch].saved_csr = 0;
} else
csr = OMAP_DMA_CSR_REG(ch);
if (enable_1510_mode && ch <= 2 && (csr >> 7) != 0) {
dma_chan[ch + 6].saved_csr = csr >> 7;
csr &= 0x7f;
}
if ((csr & 0x3f) == 0)
return 0;
if (unlikely(dma_chan[ch].dev_id == -1)) {
printk(KERN_WARNING "Spurious interrupt from DMA channel "
"%d (CSR %04x)\n", ch, csr);
return 0;
}
if (unlikely(csr & OMAP1_DMA_TOUT_IRQ))
printk(KERN_WARNING "DMA timeout with device %d\n",
dma_chan[ch].dev_id);
if (unlikely(csr & OMAP_DMA_DROP_IRQ))
printk(KERN_WARNING "DMA synchronization event drop occurred "
"with device %d\n", dma_chan[ch].dev_id);
if (likely(csr & OMAP_DMA_BLOCK_IRQ))
dma_chan[ch].flags &= ~OMAP_DMA_ACTIVE;
if (likely(dma_chan[ch].callback != NULL))
dma_chan[ch].callback(ch, csr, dma_chan[ch].data);
return 1;
}
static irqreturn_t omap1_dma_irq_handler(int irq, void *dev_id,
struct pt_regs *regs)
{
int ch = ((int) dev_id) - 1;
int handled = 0;
for (;;) {
int handled_now = 0;
handled_now += omap1_dma_handle_ch(ch);
if (enable_1510_mode && dma_chan[ch + 6].saved_csr)
handled_now += omap1_dma_handle_ch(ch + 6);
if (!handled_now)
break;
handled += handled_now;
}
return handled ? IRQ_HANDLED : IRQ_NONE;
}
#else
#define omap1_dma_irq_handler NULL
#endif
#ifdef CONFIG_ARCH_OMAP2
static int omap2_dma_handle_ch(int ch)
{
u32 status = OMAP_DMA_CSR_REG(ch);
u32 val;
if (!status)
return 0;
if (unlikely(dma_chan[ch].dev_id == -1))
return 0;
if (unlikely(status & OMAP_DMA_DROP_IRQ))
printk(KERN_INFO
"DMA synchronization event drop occurred with device "
"%d\n", dma_chan[ch].dev_id);
if (unlikely(status & OMAP2_DMA_TRANS_ERR_IRQ))
printk(KERN_INFO "DMA transaction error with device %d\n",
dma_chan[ch].dev_id);
if (unlikely(status & OMAP2_DMA_SECURE_ERR_IRQ))
printk(KERN_INFO "DMA secure error with device %d\n",
dma_chan[ch].dev_id);
if (unlikely(status & OMAP2_DMA_MISALIGNED_ERR_IRQ))
printk(KERN_INFO "DMA misaligned error with device %d\n",
dma_chan[ch].dev_id);
OMAP_DMA_CSR_REG(ch) = OMAP2_DMA_CSR_CLEAR_MASK;
val = omap_readl(OMAP_DMA4_IRQSTATUS_L0);
/* ch in this function is from 0-31 while in register it is 1-32 */
val = 1 << (ch);
omap_writel(val, OMAP_DMA4_IRQSTATUS_L0);
if (likely(dma_chan[ch].callback != NULL))
dma_chan[ch].callback(ch, status, dma_chan[ch].data);
return 0;
}
/* STATUS register count is from 1-32 while our is 0-31 */
static irqreturn_t omap2_dma_irq_handler(int irq, void *dev_id,
struct pt_regs *regs)
{
u32 val;
int i;
val = omap_readl(OMAP_DMA4_IRQSTATUS_L0);
for (i = 1; i <= OMAP_LOGICAL_DMA_CH_COUNT; i++) {
int active = val & (1 << (i - 1));
if (active)
omap2_dma_handle_ch(i - 1);
}
return IRQ_HANDLED;
}
static struct irqaction omap24xx_dma_irq = {
.name = "DMA",
.handler = omap2_dma_irq_handler,
.flags = IRQF_DISABLED
};
#else
static struct irqaction omap24xx_dma_irq;
#endif
/*----------------------------------------------------------------------------*/
static struct lcd_dma_info {
spinlock_t lock;
int reserved;
void (* callback)(u16 status, void *data);
void *cb_data;
int active;
unsigned long addr, size;
int rotate, data_type, xres, yres;
int vxres;
int mirror;
int xscale, yscale;
int ext_ctrl;
int src_port;
int single_transfer;
} lcd_dma;
void omap_set_lcd_dma_b1(unsigned long addr, u16 fb_xres, u16 fb_yres,
int data_type)
{
lcd_dma.addr = addr;
lcd_dma.data_type = data_type;
lcd_dma.xres = fb_xres;
lcd_dma.yres = fb_yres;
}
void omap_set_lcd_dma_src_port(int port)
{
lcd_dma.src_port = port;
}
void omap_set_lcd_dma_ext_controller(int external)
{
lcd_dma.ext_ctrl = external;
}
void omap_set_lcd_dma_single_transfer(int single)
{
lcd_dma.single_transfer = single;
}
void omap_set_lcd_dma_b1_rotation(int rotate)
{
if (omap_dma_in_1510_mode()) {
printk(KERN_ERR "DMA rotation is not supported in 1510 mode\n");
BUG();
return;
}
lcd_dma.rotate = rotate;
}
void omap_set_lcd_dma_b1_mirror(int mirror)
{
if (omap_dma_in_1510_mode()) {
printk(KERN_ERR "DMA mirror is not supported in 1510 mode\n");
BUG();
}
lcd_dma.mirror = mirror;
}
void omap_set_lcd_dma_b1_vxres(unsigned long vxres)
{
if (omap_dma_in_1510_mode()) {
printk(KERN_ERR "DMA virtual resulotion is not supported "
"in 1510 mode\n");
BUG();
}
lcd_dma.vxres = vxres;
}
void omap_set_lcd_dma_b1_scale(unsigned int xscale, unsigned int yscale)
{
if (omap_dma_in_1510_mode()) {
printk(KERN_ERR "DMA scale is not supported in 1510 mode\n");
BUG();
}
lcd_dma.xscale = xscale;
lcd_dma.yscale = yscale;
}
static void set_b1_regs(void)
{
unsigned long top, bottom;
int es;
u16 w;
unsigned long en, fn;
long ei, fi;
unsigned long vxres;
unsigned int xscale, yscale;
switch (lcd_dma.data_type) {
case OMAP_DMA_DATA_TYPE_S8:
es = 1;
break;
case OMAP_DMA_DATA_TYPE_S16:
es = 2;
break;
case OMAP_DMA_DATA_TYPE_S32:
es = 4;
break;
default:
BUG();
return;
}
vxres = lcd_dma.vxres ? lcd_dma.vxres : lcd_dma.xres;
xscale = lcd_dma.xscale ? lcd_dma.xscale : 1;
yscale = lcd_dma.yscale ? lcd_dma.yscale : 1;
BUG_ON(vxres < lcd_dma.xres);
#define PIXADDR(x,y) (lcd_dma.addr + ((y) * vxres * yscale + (x) * xscale) * es)
#define PIXSTEP(sx, sy, dx, dy) (PIXADDR(dx, dy) - PIXADDR(sx, sy) - es + 1)
switch (lcd_dma.rotate) {
case 0:
if (!lcd_dma.mirror) {
top = PIXADDR(0, 0);
bottom = PIXADDR(lcd_dma.xres - 1, lcd_dma.yres - 1);
/* 1510 DMA requires the bottom address to be 2 more
* than the actual last memory access location. */
if (omap_dma_in_1510_mode() &&
lcd_dma.data_type == OMAP_DMA_DATA_TYPE_S32)
bottom += 2;
ei = PIXSTEP(0, 0, 1, 0);
fi = PIXSTEP(lcd_dma.xres - 1, 0, 0, 1);
} else {
top = PIXADDR(lcd_dma.xres - 1, 0);
bottom = PIXADDR(0, lcd_dma.yres - 1);
ei = PIXSTEP(1, 0, 0, 0);
fi = PIXSTEP(0, 0, lcd_dma.xres - 1, 1);
}
en = lcd_dma.xres;
fn = lcd_dma.yres;
break;
case 90:
if (!lcd_dma.mirror) {
top = PIXADDR(0, lcd_dma.yres - 1);
bottom = PIXADDR(lcd_dma.xres - 1, 0);
ei = PIXSTEP(0, 1, 0, 0);
fi = PIXSTEP(0, 0, 1, lcd_dma.yres - 1);
} else {
top = PIXADDR(lcd_dma.xres - 1, lcd_dma.yres - 1);
bottom = PIXADDR(0, 0);
ei = PIXSTEP(0, 1, 0, 0);
fi = PIXSTEP(1, 0, 0, lcd_dma.yres - 1);
}
en = lcd_dma.yres;
fn = lcd_dma.xres;
break;
case 180:
if (!lcd_dma.mirror) {
top = PIXADDR(lcd_dma.xres - 1, lcd_dma.yres - 1);
bottom = PIXADDR(0, 0);
ei = PIXSTEP(1, 0, 0, 0);
fi = PIXSTEP(0, 1, lcd_dma.xres - 1, 0);
} else {
top = PIXADDR(0, lcd_dma.yres - 1);
bottom = PIXADDR(lcd_dma.xres - 1, 0);
ei = PIXSTEP(0, 0, 1, 0);
fi = PIXSTEP(lcd_dma.xres - 1, 1, 0, 0);
}
en = lcd_dma.xres;
fn = lcd_dma.yres;
break;
case 270:
if (!lcd_dma.mirror) {
top = PIXADDR(lcd_dma.xres - 1, 0);
bottom = PIXADDR(0, lcd_dma.yres - 1);
ei = PIXSTEP(0, 0, 0, 1);
fi = PIXSTEP(1, lcd_dma.yres - 1, 0, 0);
} else {
top = PIXADDR(0, 0);
bottom = PIXADDR(lcd_dma.xres - 1, lcd_dma.yres - 1);
ei = PIXSTEP(0, 0, 0, 1);
fi = PIXSTEP(0, lcd_dma.yres - 1, 1, 0);
}
en = lcd_dma.yres;
fn = lcd_dma.xres;
break;
default:
BUG();
return; /* Supress warning about uninitialized vars */
}
if (omap_dma_in_1510_mode()) {
omap_writew(top >> 16, OMAP1510_DMA_LCD_TOP_F1_U);
omap_writew(top, OMAP1510_DMA_LCD_TOP_F1_L);
omap_writew(bottom >> 16, OMAP1510_DMA_LCD_BOT_F1_U);
omap_writew(bottom, OMAP1510_DMA_LCD_BOT_F1_L);
return;
}
/* 1610 regs */
omap_writew(top >> 16, OMAP1610_DMA_LCD_TOP_B1_U);
omap_writew(top, OMAP1610_DMA_LCD_TOP_B1_L);
omap_writew(bottom >> 16, OMAP1610_DMA_LCD_BOT_B1_U);
omap_writew(bottom, OMAP1610_DMA_LCD_BOT_B1_L);
omap_writew(en, OMAP1610_DMA_LCD_SRC_EN_B1);
omap_writew(fn, OMAP1610_DMA_LCD_SRC_FN_B1);
w = omap_readw(OMAP1610_DMA_LCD_CSDP);
w &= ~0x03;
w |= lcd_dma.data_type;
omap_writew(w, OMAP1610_DMA_LCD_CSDP);
w = omap_readw(OMAP1610_DMA_LCD_CTRL);
/* Always set the source port as SDRAM for now*/
w &= ~(0x03 << 6);
if (lcd_dma.callback != NULL)
w |= 1 << 1; /* Block interrupt enable */
else
w &= ~(1 << 1);
omap_writew(w, OMAP1610_DMA_LCD_CTRL);
if (!(lcd_dma.rotate || lcd_dma.mirror ||
lcd_dma.vxres || lcd_dma.xscale || lcd_dma.yscale))
return;
w = omap_readw(OMAP1610_DMA_LCD_CCR);
/* Set the double-indexed addressing mode */
w |= (0x03 << 12);
omap_writew(w, OMAP1610_DMA_LCD_CCR);
omap_writew(ei, OMAP1610_DMA_LCD_SRC_EI_B1);
omap_writew(fi >> 16, OMAP1610_DMA_LCD_SRC_FI_B1_U);
omap_writew(fi, OMAP1610_DMA_LCD_SRC_FI_B1_L);
}
static irqreturn_t lcd_dma_irq_handler(int irq, void *dev_id,
struct pt_regs *regs)
{
u16 w;
w = omap_readw(OMAP1610_DMA_LCD_CTRL);
if (unlikely(!(w & (1 << 3)))) {
printk(KERN_WARNING "Spurious LCD DMA IRQ\n");
return IRQ_NONE;
}
/* Ack the IRQ */
w |= (1 << 3);
omap_writew(w, OMAP1610_DMA_LCD_CTRL);
lcd_dma.active = 0;
if (lcd_dma.callback != NULL)
lcd_dma.callback(w, lcd_dma.cb_data);
return IRQ_HANDLED;
}
int omap_request_lcd_dma(void (* callback)(u16 status, void *data),
void *data)
{
spin_lock_irq(&lcd_dma.lock);
if (lcd_dma.reserved) {
spin_unlock_irq(&lcd_dma.lock);
printk(KERN_ERR "LCD DMA channel already reserved\n");
BUG();
return -EBUSY;
}
lcd_dma.reserved = 1;
spin_unlock_irq(&lcd_dma.lock);
lcd_dma.callback = callback;
lcd_dma.cb_data = data;
lcd_dma.active = 0;
lcd_dma.single_transfer = 0;
lcd_dma.rotate = 0;
lcd_dma.vxres = 0;
lcd_dma.mirror = 0;
lcd_dma.xscale = 0;
lcd_dma.yscale = 0;
lcd_dma.ext_ctrl = 0;
lcd_dma.src_port = 0;
return 0;
}
void omap_free_lcd_dma(void)
{
spin_lock(&lcd_dma.lock);
if (!lcd_dma.reserved) {
spin_unlock(&lcd_dma.lock);
printk(KERN_ERR "LCD DMA is not reserved\n");
BUG();
return;
}
if (!enable_1510_mode)
omap_writew(omap_readw(OMAP1610_DMA_LCD_CCR) & ~1,
OMAP1610_DMA_LCD_CCR);
lcd_dma.reserved = 0;
spin_unlock(&lcd_dma.lock);
}
void omap_enable_lcd_dma(void)
{
u16 w;
/* Set the Enable bit only if an external controller is
* connected. Otherwise the OMAP internal controller will
* start the transfer when it gets enabled.
*/
if (enable_1510_mode || !lcd_dma.ext_ctrl)
return;
w = omap_readw(OMAP1610_DMA_LCD_CTRL);
w |= 1 << 8;
omap_writew(w, OMAP1610_DMA_LCD_CTRL);
lcd_dma.active = 1;
w = omap_readw(OMAP1610_DMA_LCD_CCR);
w |= 1 << 7;
omap_writew(w, OMAP1610_DMA_LCD_CCR);
}
void omap_setup_lcd_dma(void)
{
BUG_ON(lcd_dma.active);
if (!enable_1510_mode) {
/* Set some reasonable defaults */
omap_writew(0x5440, OMAP1610_DMA_LCD_CCR);
omap_writew(0x9102, OMAP1610_DMA_LCD_CSDP);
omap_writew(0x0004, OMAP1610_DMA_LCD_LCH_CTRL);
}
set_b1_regs();
if (!enable_1510_mode) {
u16 w;
w = omap_readw(OMAP1610_DMA_LCD_CCR);
/* If DMA was already active set the end_prog bit to have
* the programmed register set loaded into the active
* register set.
*/
w |= 1 << 11; /* End_prog */
if (!lcd_dma.single_transfer)
w |= (3 << 8); /* Auto_init, repeat */
omap_writew(w, OMAP1610_DMA_LCD_CCR);
}
}
void omap_stop_lcd_dma(void)
{
u16 w;
lcd_dma.active = 0;
if (enable_1510_mode || !lcd_dma.ext_ctrl)
return;
w = omap_readw(OMAP1610_DMA_LCD_CCR);
w &= ~(1 << 7);
omap_writew(w, OMAP1610_DMA_LCD_CCR);
w = omap_readw(OMAP1610_DMA_LCD_CTRL);
w &= ~(1 << 8);
omap_writew(w, OMAP1610_DMA_LCD_CTRL);
}
int omap_lcd_dma_ext_running(void)
{
return lcd_dma.ext_ctrl && lcd_dma.active;
}
/*----------------------------------------------------------------------------*/
static int __init omap_init_dma(void)
{
int ch, r;
if (cpu_is_omap15xx()) {
printk(KERN_INFO "DMA support for OMAP15xx initialized\n");
dma_chan_count = 9;
enable_1510_mode = 1;
} else if (cpu_is_omap16xx() || cpu_is_omap730()) {
printk(KERN_INFO "OMAP DMA hardware version %d\n",
omap_readw(OMAP_DMA_HW_ID));
printk(KERN_INFO "DMA capabilities: %08x:%08x:%04x:%04x:%04x\n",
(omap_readw(OMAP_DMA_CAPS_0_U) << 16) |
omap_readw(OMAP_DMA_CAPS_0_L),
(omap_readw(OMAP_DMA_CAPS_1_U) << 16) |
omap_readw(OMAP_DMA_CAPS_1_L),
omap_readw(OMAP_DMA_CAPS_2), omap_readw(OMAP_DMA_CAPS_3),
omap_readw(OMAP_DMA_CAPS_4));
if (!enable_1510_mode) {
u16 w;
/* Disable OMAP 3.0/3.1 compatibility mode. */
w = omap_readw(OMAP_DMA_GSCR);
w |= 1 << 3;
omap_writew(w, OMAP_DMA_GSCR);
dma_chan_count = 16;
} else
dma_chan_count = 9;
} else if (cpu_is_omap24xx()) {
u8 revision = omap_readb(OMAP_DMA4_REVISION);
printk(KERN_INFO "OMAP DMA hardware revision %d.%d\n",
revision >> 4, revision & 0xf);
dma_chan_count = OMAP_LOGICAL_DMA_CH_COUNT;
} else {
dma_chan_count = 0;
return 0;
}
memset(&lcd_dma, 0, sizeof(lcd_dma));
spin_lock_init(&lcd_dma.lock);
spin_lock_init(&dma_chan_lock);
memset(&dma_chan, 0, sizeof(dma_chan));
for (ch = 0; ch < dma_chan_count; ch++) {
omap_clear_dma(ch);
dma_chan[ch].dev_id = -1;
dma_chan[ch].next_lch = -1;
if (ch >= 6 && enable_1510_mode)
continue;
if (cpu_class_is_omap1()) {
/* request_irq() doesn't like dev_id (ie. ch) being
* zero, so we have to kludge around this. */
r = request_irq(omap1_dma_irq[ch],
omap1_dma_irq_handler, 0, "DMA",
(void *) (ch + 1));
if (r != 0) {
int i;
printk(KERN_ERR "unable to request IRQ %d "
"for DMA (error %d)\n",
omap1_dma_irq[ch], r);
for (i = 0; i < ch; i++)
free_irq(omap1_dma_irq[i],
(void *) (i + 1));
return r;
}
}
}
if (cpu_is_omap24xx())
setup_irq(INT_24XX_SDMA_IRQ0, &omap24xx_dma_irq);
/* FIXME: Update LCD DMA to work on 24xx */
if (cpu_class_is_omap1()) {
r = request_irq(INT_DMA_LCD, lcd_dma_irq_handler, 0,
"LCD DMA", NULL);
if (r != 0) {
int i;
printk(KERN_ERR "unable to request IRQ for LCD DMA "
"(error %d)\n", r);
for (i = 0; i < dma_chan_count; i++)
free_irq(omap1_dma_irq[i], (void *) (i + 1));
return r;
}
}
return 0;
}
arch_initcall(omap_init_dma);
EXPORT_SYMBOL(omap_get_dma_src_pos);
EXPORT_SYMBOL(omap_get_dma_dst_pos);
EXPORT_SYMBOL(omap_get_dma_src_addr_counter);
EXPORT_SYMBOL(omap_clear_dma);
EXPORT_SYMBOL(omap_set_dma_priority);
EXPORT_SYMBOL(omap_request_dma);
EXPORT_SYMBOL(omap_free_dma);
EXPORT_SYMBOL(omap_start_dma);
EXPORT_SYMBOL(omap_stop_dma);
EXPORT_SYMBOL(omap_enable_dma_irq);
EXPORT_SYMBOL(omap_disable_dma_irq);
EXPORT_SYMBOL(omap_set_dma_transfer_params);
EXPORT_SYMBOL(omap_set_dma_color_mode);
EXPORT_SYMBOL(omap_set_dma_src_params);
EXPORT_SYMBOL(omap_set_dma_src_index);
EXPORT_SYMBOL(omap_set_dma_src_data_pack);
EXPORT_SYMBOL(omap_set_dma_src_burst_mode);
EXPORT_SYMBOL(omap_set_dma_dest_params);
EXPORT_SYMBOL(omap_set_dma_dest_index);
EXPORT_SYMBOL(omap_set_dma_dest_data_pack);
EXPORT_SYMBOL(omap_set_dma_dest_burst_mode);
EXPORT_SYMBOL(omap_set_dma_params);
EXPORT_SYMBOL(omap_dma_link_lch);
EXPORT_SYMBOL(omap_dma_unlink_lch);
EXPORT_SYMBOL(omap_request_lcd_dma);
EXPORT_SYMBOL(omap_free_lcd_dma);
EXPORT_SYMBOL(omap_enable_lcd_dma);
EXPORT_SYMBOL(omap_setup_lcd_dma);
EXPORT_SYMBOL(omap_stop_lcd_dma);
EXPORT_SYMBOL(omap_lcd_dma_ext_running);
EXPORT_SYMBOL(omap_set_lcd_dma_b1);
EXPORT_SYMBOL(omap_set_lcd_dma_single_transfer);
EXPORT_SYMBOL(omap_set_lcd_dma_ext_controller);
EXPORT_SYMBOL(omap_set_lcd_dma_b1_rotation);
EXPORT_SYMBOL(omap_set_lcd_dma_b1_vxres);
EXPORT_SYMBOL(omap_set_lcd_dma_b1_scale);
EXPORT_SYMBOL(omap_set_lcd_dma_b1_mirror);