1
linux/drivers/mmc/core/bus.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

296 lines
5.9 KiB
C

/*
* linux/drivers/mmc/core/bus.c
*
* Copyright (C) 2003 Russell King, All Rights Reserved.
* Copyright (C) 2007 Pierre Ossman
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* MMC card bus driver model
*/
#include <linux/device.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/mmc/card.h>
#include <linux/mmc/host.h>
#include "core.h"
#include "sdio_cis.h"
#include "bus.h"
#define dev_to_mmc_card(d) container_of(d, struct mmc_card, dev)
#define to_mmc_driver(d) container_of(d, struct mmc_driver, drv)
static ssize_t mmc_type_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct mmc_card *card = dev_to_mmc_card(dev);
switch (card->type) {
case MMC_TYPE_MMC:
return sprintf(buf, "MMC\n");
case MMC_TYPE_SD:
return sprintf(buf, "SD\n");
case MMC_TYPE_SDIO:
return sprintf(buf, "SDIO\n");
default:
return -EFAULT;
}
}
static struct device_attribute mmc_dev_attrs[] = {
__ATTR(type, S_IRUGO, mmc_type_show, NULL),
__ATTR_NULL,
};
/*
* This currently matches any MMC driver to any MMC card - drivers
* themselves make the decision whether to drive this card in their
* probe method.
*/
static int mmc_bus_match(struct device *dev, struct device_driver *drv)
{
return 1;
}
static int
mmc_bus_uevent(struct device *dev, struct kobj_uevent_env *env)
{
struct mmc_card *card = dev_to_mmc_card(dev);
const char *type;
int retval = 0;
switch (card->type) {
case MMC_TYPE_MMC:
type = "MMC";
break;
case MMC_TYPE_SD:
type = "SD";
break;
case MMC_TYPE_SDIO:
type = "SDIO";
break;
default:
type = NULL;
}
if (type) {
retval = add_uevent_var(env, "MMC_TYPE=%s", type);
if (retval)
return retval;
}
retval = add_uevent_var(env, "MMC_NAME=%s", mmc_card_name(card));
if (retval)
return retval;
/*
* Request the mmc_block device. Note: that this is a direct request
* for the module it carries no information as to what is inserted.
*/
retval = add_uevent_var(env, "MODALIAS=mmc:block");
return retval;
}
static int mmc_bus_probe(struct device *dev)
{
struct mmc_driver *drv = to_mmc_driver(dev->driver);
struct mmc_card *card = dev_to_mmc_card(dev);
return drv->probe(card);
}
static int mmc_bus_remove(struct device *dev)
{
struct mmc_driver *drv = to_mmc_driver(dev->driver);
struct mmc_card *card = dev_to_mmc_card(dev);
drv->remove(card);
return 0;
}
static int mmc_bus_suspend(struct device *dev, pm_message_t state)
{
struct mmc_driver *drv = to_mmc_driver(dev->driver);
struct mmc_card *card = dev_to_mmc_card(dev);
int ret = 0;
if (dev->driver && drv->suspend)
ret = drv->suspend(card, state);
return ret;
}
static int mmc_bus_resume(struct device *dev)
{
struct mmc_driver *drv = to_mmc_driver(dev->driver);
struct mmc_card *card = dev_to_mmc_card(dev);
int ret = 0;
if (dev->driver && drv->resume)
ret = drv->resume(card);
return ret;
}
static struct bus_type mmc_bus_type = {
.name = "mmc",
.dev_attrs = mmc_dev_attrs,
.match = mmc_bus_match,
.uevent = mmc_bus_uevent,
.probe = mmc_bus_probe,
.remove = mmc_bus_remove,
.suspend = mmc_bus_suspend,
.resume = mmc_bus_resume,
};
int mmc_register_bus(void)
{
return bus_register(&mmc_bus_type);
}
void mmc_unregister_bus(void)
{
bus_unregister(&mmc_bus_type);
}
/**
* mmc_register_driver - register a media driver
* @drv: MMC media driver
*/
int mmc_register_driver(struct mmc_driver *drv)
{
drv->drv.bus = &mmc_bus_type;
return driver_register(&drv->drv);
}
EXPORT_SYMBOL(mmc_register_driver);
/**
* mmc_unregister_driver - unregister a media driver
* @drv: MMC media driver
*/
void mmc_unregister_driver(struct mmc_driver *drv)
{
drv->drv.bus = &mmc_bus_type;
driver_unregister(&drv->drv);
}
EXPORT_SYMBOL(mmc_unregister_driver);
static void mmc_release_card(struct device *dev)
{
struct mmc_card *card = dev_to_mmc_card(dev);
sdio_free_common_cis(card);
if (card->info)
kfree(card->info);
kfree(card);
}
/*
* Allocate and initialise a new MMC card structure.
*/
struct mmc_card *mmc_alloc_card(struct mmc_host *host, struct device_type *type)
{
struct mmc_card *card;
card = kzalloc(sizeof(struct mmc_card), GFP_KERNEL);
if (!card)
return ERR_PTR(-ENOMEM);
card->host = host;
device_initialize(&card->dev);
card->dev.parent = mmc_classdev(host);
card->dev.bus = &mmc_bus_type;
card->dev.release = mmc_release_card;
card->dev.type = type;
return card;
}
/*
* Register a new MMC card with the driver model.
*/
int mmc_add_card(struct mmc_card *card)
{
int ret;
const char *type;
dev_set_name(&card->dev, "%s:%04x", mmc_hostname(card->host), card->rca);
switch (card->type) {
case MMC_TYPE_MMC:
type = "MMC";
break;
case MMC_TYPE_SD:
type = "SD";
if (mmc_card_blockaddr(card))
type = "SDHC";
break;
case MMC_TYPE_SDIO:
type = "SDIO";
break;
default:
type = "?";
break;
}
if (mmc_host_is_spi(card->host)) {
printk(KERN_INFO "%s: new %s%s card on SPI\n",
mmc_hostname(card->host),
mmc_card_highspeed(card) ? "high speed " : "",
type);
} else {
printk(KERN_INFO "%s: new %s%s card at address %04x\n",
mmc_hostname(card->host),
mmc_card_highspeed(card) ? "high speed " : "",
type, card->rca);
}
ret = device_add(&card->dev);
if (ret)
return ret;
#ifdef CONFIG_DEBUG_FS
mmc_add_card_debugfs(card);
#endif
mmc_card_set_present(card);
return 0;
}
/*
* Unregister a new MMC card with the driver model, and
* (eventually) free it.
*/
void mmc_remove_card(struct mmc_card *card)
{
#ifdef CONFIG_DEBUG_FS
mmc_remove_card_debugfs(card);
#endif
if (mmc_card_present(card)) {
if (mmc_host_is_spi(card->host)) {
printk(KERN_INFO "%s: SPI card removed\n",
mmc_hostname(card->host));
} else {
printk(KERN_INFO "%s: card %04x removed\n",
mmc_hostname(card->host), card->rca);
}
device_del(&card->dev);
}
put_device(&card->dev);
}