1
linux/drivers/media/dvb/dvb-core/dvb_frontend.c
Arnd Bergmann 451a3c24b0 BKL: remove extraneous #include <smp_lock.h>
The big kernel lock has been removed from all these files at some point,
leaving only the #include.

Remove this too as a cleanup.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-11-17 08:59:32 -08:00

2144 lines
60 KiB
C

/*
* dvb_frontend.c: DVB frontend tuning interface/thread
*
*
* Copyright (C) 1999-2001 Ralph Metzler
* Marcus Metzler
* Holger Waechtler
* for convergence integrated media GmbH
*
* Copyright (C) 2004 Andrew de Quincey (tuning thread cleanup)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
* Or, point your browser to http://www.gnu.org/copyleft/gpl.html
*/
#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/wait.h>
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/semaphore.h>
#include <linux/module.h>
#include <linux/list.h>
#include <linux/freezer.h>
#include <linux/jiffies.h>
#include <linux/kthread.h>
#include <asm/processor.h>
#include "dvb_frontend.h"
#include "dvbdev.h"
#include <linux/dvb/version.h>
static int dvb_frontend_debug;
static int dvb_shutdown_timeout;
static int dvb_force_auto_inversion;
static int dvb_override_tune_delay;
static int dvb_powerdown_on_sleep = 1;
static int dvb_mfe_wait_time = 5;
module_param_named(frontend_debug, dvb_frontend_debug, int, 0644);
MODULE_PARM_DESC(frontend_debug, "Turn on/off frontend core debugging (default:off).");
module_param(dvb_shutdown_timeout, int, 0644);
MODULE_PARM_DESC(dvb_shutdown_timeout, "wait <shutdown_timeout> seconds after close() before suspending hardware");
module_param(dvb_force_auto_inversion, int, 0644);
MODULE_PARM_DESC(dvb_force_auto_inversion, "0: normal (default), 1: INVERSION_AUTO forced always");
module_param(dvb_override_tune_delay, int, 0644);
MODULE_PARM_DESC(dvb_override_tune_delay, "0: normal (default), >0 => delay in milliseconds to wait for lock after a tune attempt");
module_param(dvb_powerdown_on_sleep, int, 0644);
MODULE_PARM_DESC(dvb_powerdown_on_sleep, "0: do not power down, 1: turn LNB voltage off on sleep (default)");
module_param(dvb_mfe_wait_time, int, 0644);
MODULE_PARM_DESC(dvb_mfe_wait_time, "Wait up to <mfe_wait_time> seconds on open() for multi-frontend to become available (default:5 seconds)");
#define dprintk if (dvb_frontend_debug) printk
#define FESTATE_IDLE 1
#define FESTATE_RETUNE 2
#define FESTATE_TUNING_FAST 4
#define FESTATE_TUNING_SLOW 8
#define FESTATE_TUNED 16
#define FESTATE_ZIGZAG_FAST 32
#define FESTATE_ZIGZAG_SLOW 64
#define FESTATE_DISEQC 128
#define FESTATE_ERROR 256
#define FESTATE_WAITFORLOCK (FESTATE_TUNING_FAST | FESTATE_TUNING_SLOW | FESTATE_ZIGZAG_FAST | FESTATE_ZIGZAG_SLOW | FESTATE_DISEQC)
#define FESTATE_SEARCHING_FAST (FESTATE_TUNING_FAST | FESTATE_ZIGZAG_FAST)
#define FESTATE_SEARCHING_SLOW (FESTATE_TUNING_SLOW | FESTATE_ZIGZAG_SLOW)
#define FESTATE_LOSTLOCK (FESTATE_ZIGZAG_FAST | FESTATE_ZIGZAG_SLOW)
#define FE_ALGO_HW 1
/*
* FESTATE_IDLE. No tuning parameters have been supplied and the loop is idling.
* FESTATE_RETUNE. Parameters have been supplied, but we have not yet performed the first tune.
* FESTATE_TUNING_FAST. Tuning parameters have been supplied and fast zigzag scan is in progress.
* FESTATE_TUNING_SLOW. Tuning parameters have been supplied. Fast zigzag failed, so we're trying again, but slower.
* FESTATE_TUNED. The frontend has successfully locked on.
* FESTATE_ZIGZAG_FAST. The lock has been lost, and a fast zigzag has been initiated to try and regain it.
* FESTATE_ZIGZAG_SLOW. The lock has been lost. Fast zigzag has been failed, so we're trying again, but slower.
* FESTATE_DISEQC. A DISEQC command has just been issued.
* FESTATE_WAITFORLOCK. When we're waiting for a lock.
* FESTATE_SEARCHING_FAST. When we're searching for a signal using a fast zigzag scan.
* FESTATE_SEARCHING_SLOW. When we're searching for a signal using a slow zigzag scan.
* FESTATE_LOSTLOCK. When the lock has been lost, and we're searching it again.
*/
#define DVB_FE_NO_EXIT 0
#define DVB_FE_NORMAL_EXIT 1
#define DVB_FE_DEVICE_REMOVED 2
static DEFINE_MUTEX(frontend_mutex);
struct dvb_frontend_private {
/* thread/frontend values */
struct dvb_device *dvbdev;
struct dvb_frontend_parameters parameters;
struct dvb_fe_events events;
struct semaphore sem;
struct list_head list_head;
wait_queue_head_t wait_queue;
struct task_struct *thread;
unsigned long release_jiffies;
unsigned int exit;
unsigned int wakeup;
fe_status_t status;
unsigned long tune_mode_flags;
unsigned int delay;
unsigned int reinitialise;
int tone;
int voltage;
/* swzigzag values */
unsigned int state;
unsigned int bending;
int lnb_drift;
unsigned int inversion;
unsigned int auto_step;
unsigned int auto_sub_step;
unsigned int started_auto_step;
unsigned int min_delay;
unsigned int max_drift;
unsigned int step_size;
int quality;
unsigned int check_wrapped;
enum dvbfe_search algo_status;
};
static void dvb_frontend_wakeup(struct dvb_frontend *fe);
static void dvb_frontend_add_event(struct dvb_frontend *fe, fe_status_t status)
{
struct dvb_frontend_private *fepriv = fe->frontend_priv;
struct dvb_fe_events *events = &fepriv->events;
struct dvb_frontend_event *e;
int wp;
dprintk ("%s\n", __func__);
if (mutex_lock_interruptible (&events->mtx))
return;
wp = (events->eventw + 1) % MAX_EVENT;
if (wp == events->eventr) {
events->overflow = 1;
events->eventr = (events->eventr + 1) % MAX_EVENT;
}
e = &events->events[events->eventw];
memcpy (&e->parameters, &fepriv->parameters,
sizeof (struct dvb_frontend_parameters));
if (status & FE_HAS_LOCK)
if (fe->ops.get_frontend)
fe->ops.get_frontend(fe, &e->parameters);
events->eventw = wp;
mutex_unlock(&events->mtx);
e->status = status;
wake_up_interruptible (&events->wait_queue);
}
static int dvb_frontend_get_event(struct dvb_frontend *fe,
struct dvb_frontend_event *event, int flags)
{
struct dvb_frontend_private *fepriv = fe->frontend_priv;
struct dvb_fe_events *events = &fepriv->events;
dprintk ("%s\n", __func__);
if (events->overflow) {
events->overflow = 0;
return -EOVERFLOW;
}
if (events->eventw == events->eventr) {
int ret;
if (flags & O_NONBLOCK)
return -EWOULDBLOCK;
up(&fepriv->sem);
ret = wait_event_interruptible (events->wait_queue,
events->eventw != events->eventr);
if (down_interruptible (&fepriv->sem))
return -ERESTARTSYS;
if (ret < 0)
return ret;
}
if (mutex_lock_interruptible (&events->mtx))
return -ERESTARTSYS;
memcpy (event, &events->events[events->eventr],
sizeof(struct dvb_frontend_event));
events->eventr = (events->eventr + 1) % MAX_EVENT;
mutex_unlock(&events->mtx);
return 0;
}
static void dvb_frontend_init(struct dvb_frontend *fe)
{
dprintk ("DVB: initialising adapter %i frontend %i (%s)...\n",
fe->dvb->num,
fe->id,
fe->ops.info.name);
if (fe->ops.init)
fe->ops.init(fe);
if (fe->ops.tuner_ops.init) {
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
fe->ops.tuner_ops.init(fe);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
}
}
void dvb_frontend_reinitialise(struct dvb_frontend *fe)
{
struct dvb_frontend_private *fepriv = fe->frontend_priv;
fepriv->reinitialise = 1;
dvb_frontend_wakeup(fe);
}
EXPORT_SYMBOL(dvb_frontend_reinitialise);
static void dvb_frontend_swzigzag_update_delay(struct dvb_frontend_private *fepriv, int locked)
{
int q2;
dprintk ("%s\n", __func__);
if (locked)
(fepriv->quality) = (fepriv->quality * 220 + 36*256) / 256;
else
(fepriv->quality) = (fepriv->quality * 220 + 0) / 256;
q2 = fepriv->quality - 128;
q2 *= q2;
fepriv->delay = fepriv->min_delay + q2 * HZ / (128*128);
}
/**
* Performs automatic twiddling of frontend parameters.
*
* @param fe The frontend concerned.
* @param check_wrapped Checks if an iteration has completed. DO NOT SET ON THE FIRST ATTEMPT
* @returns Number of complete iterations that have been performed.
*/
static int dvb_frontend_swzigzag_autotune(struct dvb_frontend *fe, int check_wrapped)
{
int autoinversion;
int ready = 0;
int fe_set_err = 0;
struct dvb_frontend_private *fepriv = fe->frontend_priv;
int original_inversion = fepriv->parameters.inversion;
u32 original_frequency = fepriv->parameters.frequency;
/* are we using autoinversion? */
autoinversion = ((!(fe->ops.info.caps & FE_CAN_INVERSION_AUTO)) &&
(fepriv->parameters.inversion == INVERSION_AUTO));
/* setup parameters correctly */
while(!ready) {
/* calculate the lnb_drift */
fepriv->lnb_drift = fepriv->auto_step * fepriv->step_size;
/* wrap the auto_step if we've exceeded the maximum drift */
if (fepriv->lnb_drift > fepriv->max_drift) {
fepriv->auto_step = 0;
fepriv->auto_sub_step = 0;
fepriv->lnb_drift = 0;
}
/* perform inversion and +/- zigzag */
switch(fepriv->auto_sub_step) {
case 0:
/* try with the current inversion and current drift setting */
ready = 1;
break;
case 1:
if (!autoinversion) break;
fepriv->inversion = (fepriv->inversion == INVERSION_OFF) ? INVERSION_ON : INVERSION_OFF;
ready = 1;
break;
case 2:
if (fepriv->lnb_drift == 0) break;
fepriv->lnb_drift = -fepriv->lnb_drift;
ready = 1;
break;
case 3:
if (fepriv->lnb_drift == 0) break;
if (!autoinversion) break;
fepriv->inversion = (fepriv->inversion == INVERSION_OFF) ? INVERSION_ON : INVERSION_OFF;
fepriv->lnb_drift = -fepriv->lnb_drift;
ready = 1;
break;
default:
fepriv->auto_step++;
fepriv->auto_sub_step = -1; /* it'll be incremented to 0 in a moment */
break;
}
if (!ready) fepriv->auto_sub_step++;
}
/* if this attempt would hit where we started, indicate a complete
* iteration has occurred */
if ((fepriv->auto_step == fepriv->started_auto_step) &&
(fepriv->auto_sub_step == 0) && check_wrapped) {
return 1;
}
dprintk("%s: drift:%i inversion:%i auto_step:%i "
"auto_sub_step:%i started_auto_step:%i\n",
__func__, fepriv->lnb_drift, fepriv->inversion,
fepriv->auto_step, fepriv->auto_sub_step, fepriv->started_auto_step);
/* set the frontend itself */
fepriv->parameters.frequency += fepriv->lnb_drift;
if (autoinversion)
fepriv->parameters.inversion = fepriv->inversion;
if (fe->ops.set_frontend)
fe_set_err = fe->ops.set_frontend(fe, &fepriv->parameters);
if (fe_set_err < 0) {
fepriv->state = FESTATE_ERROR;
return fe_set_err;
}
fepriv->parameters.frequency = original_frequency;
fepriv->parameters.inversion = original_inversion;
fepriv->auto_sub_step++;
return 0;
}
static void dvb_frontend_swzigzag(struct dvb_frontend *fe)
{
fe_status_t s = 0;
int retval = 0;
struct dvb_frontend_private *fepriv = fe->frontend_priv;
/* if we've got no parameters, just keep idling */
if (fepriv->state & FESTATE_IDLE) {
fepriv->delay = 3*HZ;
fepriv->quality = 0;
return;
}
/* in SCAN mode, we just set the frontend when asked and leave it alone */
if (fepriv->tune_mode_flags & FE_TUNE_MODE_ONESHOT) {
if (fepriv->state & FESTATE_RETUNE) {
if (fe->ops.set_frontend)
retval = fe->ops.set_frontend(fe,
&fepriv->parameters);
if (retval < 0)
fepriv->state = FESTATE_ERROR;
else
fepriv->state = FESTATE_TUNED;
}
fepriv->delay = 3*HZ;
fepriv->quality = 0;
return;
}
/* get the frontend status */
if (fepriv->state & FESTATE_RETUNE) {
s = 0;
} else {
if (fe->ops.read_status)
fe->ops.read_status(fe, &s);
if (s != fepriv->status) {
dvb_frontend_add_event(fe, s);
fepriv->status = s;
}
}
/* if we're not tuned, and we have a lock, move to the TUNED state */
if ((fepriv->state & FESTATE_WAITFORLOCK) && (s & FE_HAS_LOCK)) {
dvb_frontend_swzigzag_update_delay(fepriv, s & FE_HAS_LOCK);
fepriv->state = FESTATE_TUNED;
/* if we're tuned, then we have determined the correct inversion */
if ((!(fe->ops.info.caps & FE_CAN_INVERSION_AUTO)) &&
(fepriv->parameters.inversion == INVERSION_AUTO)) {
fepriv->parameters.inversion = fepriv->inversion;
}
return;
}
/* if we are tuned already, check we're still locked */
if (fepriv->state & FESTATE_TUNED) {
dvb_frontend_swzigzag_update_delay(fepriv, s & FE_HAS_LOCK);
/* we're tuned, and the lock is still good... */
if (s & FE_HAS_LOCK) {
return;
} else { /* if we _WERE_ tuned, but now don't have a lock */
fepriv->state = FESTATE_ZIGZAG_FAST;
fepriv->started_auto_step = fepriv->auto_step;
fepriv->check_wrapped = 0;
}
}
/* don't actually do anything if we're in the LOSTLOCK state,
* the frontend is set to FE_CAN_RECOVER, and the max_drift is 0 */
if ((fepriv->state & FESTATE_LOSTLOCK) &&
(fe->ops.info.caps & FE_CAN_RECOVER) && (fepriv->max_drift == 0)) {
dvb_frontend_swzigzag_update_delay(fepriv, s & FE_HAS_LOCK);
return;
}
/* don't do anything if we're in the DISEQC state, since this
* might be someone with a motorized dish controlled by DISEQC.
* If its actually a re-tune, there will be a SET_FRONTEND soon enough. */
if (fepriv->state & FESTATE_DISEQC) {
dvb_frontend_swzigzag_update_delay(fepriv, s & FE_HAS_LOCK);
return;
}
/* if we're in the RETUNE state, set everything up for a brand
* new scan, keeping the current inversion setting, as the next
* tune is _very_ likely to require the same */
if (fepriv->state & FESTATE_RETUNE) {
fepriv->lnb_drift = 0;
fepriv->auto_step = 0;
fepriv->auto_sub_step = 0;
fepriv->started_auto_step = 0;
fepriv->check_wrapped = 0;
}
/* fast zigzag. */
if ((fepriv->state & FESTATE_SEARCHING_FAST) || (fepriv->state & FESTATE_RETUNE)) {
fepriv->delay = fepriv->min_delay;
/* perform a tune */
retval = dvb_frontend_swzigzag_autotune(fe,
fepriv->check_wrapped);
if (retval < 0) {
return;
} else if (retval) {
/* OK, if we've run out of trials at the fast speed.
* Drop back to slow for the _next_ attempt */
fepriv->state = FESTATE_SEARCHING_SLOW;
fepriv->started_auto_step = fepriv->auto_step;
return;
}
fepriv->check_wrapped = 1;
/* if we've just retuned, enter the ZIGZAG_FAST state.
* This ensures we cannot return from an
* FE_SET_FRONTEND ioctl before the first frontend tune
* occurs */
if (fepriv->state & FESTATE_RETUNE) {
fepriv->state = FESTATE_TUNING_FAST;
}
}
/* slow zigzag */
if (fepriv->state & FESTATE_SEARCHING_SLOW) {
dvb_frontend_swzigzag_update_delay(fepriv, s & FE_HAS_LOCK);
/* Note: don't bother checking for wrapping; we stay in this
* state until we get a lock */
dvb_frontend_swzigzag_autotune(fe, 0);
}
}
static int dvb_frontend_is_exiting(struct dvb_frontend *fe)
{
struct dvb_frontend_private *fepriv = fe->frontend_priv;
if (fepriv->exit != DVB_FE_NO_EXIT)
return 1;
if (fepriv->dvbdev->writers == 1)
if (time_after(jiffies, fepriv->release_jiffies +
dvb_shutdown_timeout * HZ))
return 1;
return 0;
}
static int dvb_frontend_should_wakeup(struct dvb_frontend *fe)
{
struct dvb_frontend_private *fepriv = fe->frontend_priv;
if (fepriv->wakeup) {
fepriv->wakeup = 0;
return 1;
}
return dvb_frontend_is_exiting(fe);
}
static void dvb_frontend_wakeup(struct dvb_frontend *fe)
{
struct dvb_frontend_private *fepriv = fe->frontend_priv;
fepriv->wakeup = 1;
wake_up_interruptible(&fepriv->wait_queue);
}
static int dvb_frontend_thread(void *data)
{
struct dvb_frontend *fe = data;
struct dvb_frontend_private *fepriv = fe->frontend_priv;
unsigned long timeout;
fe_status_t s;
enum dvbfe_algo algo;
struct dvb_frontend_parameters *params;
dprintk("%s\n", __func__);
fepriv->check_wrapped = 0;
fepriv->quality = 0;
fepriv->delay = 3*HZ;
fepriv->status = 0;
fepriv->wakeup = 0;
fepriv->reinitialise = 0;
dvb_frontend_init(fe);
set_freezable();
while (1) {
up(&fepriv->sem); /* is locked when we enter the thread... */
restart:
timeout = wait_event_interruptible_timeout(fepriv->wait_queue,
dvb_frontend_should_wakeup(fe) || kthread_should_stop()
|| freezing(current),
fepriv->delay);
if (kthread_should_stop() || dvb_frontend_is_exiting(fe)) {
/* got signal or quitting */
fepriv->exit = DVB_FE_NORMAL_EXIT;
break;
}
if (try_to_freeze())
goto restart;
if (down_interruptible(&fepriv->sem))
break;
if (fepriv->reinitialise) {
dvb_frontend_init(fe);
if (fepriv->tone != -1) {
fe->ops.set_tone(fe, fepriv->tone);
}
if (fepriv->voltage != -1) {
fe->ops.set_voltage(fe, fepriv->voltage);
}
fepriv->reinitialise = 0;
}
/* do an iteration of the tuning loop */
if (fe->ops.get_frontend_algo) {
algo = fe->ops.get_frontend_algo(fe);
switch (algo) {
case DVBFE_ALGO_HW:
dprintk("%s: Frontend ALGO = DVBFE_ALGO_HW\n", __func__);
params = NULL; /* have we been asked to RETUNE ? */
if (fepriv->state & FESTATE_RETUNE) {
dprintk("%s: Retune requested, FESTATE_RETUNE\n", __func__);
params = &fepriv->parameters;
fepriv->state = FESTATE_TUNED;
}
if (fe->ops.tune)
fe->ops.tune(fe, params, fepriv->tune_mode_flags, &fepriv->delay, &s);
if (s != fepriv->status && !(fepriv->tune_mode_flags & FE_TUNE_MODE_ONESHOT)) {
dprintk("%s: state changed, adding current state\n", __func__);
dvb_frontend_add_event(fe, s);
fepriv->status = s;
}
break;
case DVBFE_ALGO_SW:
dprintk("%s: Frontend ALGO = DVBFE_ALGO_SW\n", __func__);
dvb_frontend_swzigzag(fe);
break;
case DVBFE_ALGO_CUSTOM:
params = NULL; /* have we been asked to RETUNE ? */
dprintk("%s: Frontend ALGO = DVBFE_ALGO_CUSTOM, state=%d\n", __func__, fepriv->state);
if (fepriv->state & FESTATE_RETUNE) {
dprintk("%s: Retune requested, FESTAT_RETUNE\n", __func__);
params = &fepriv->parameters;
fepriv->state = FESTATE_TUNED;
}
/* Case where we are going to search for a carrier
* User asked us to retune again for some reason, possibly
* requesting a search with a new set of parameters
*/
if (fepriv->algo_status & DVBFE_ALGO_SEARCH_AGAIN) {
if (fe->ops.search) {
fepriv->algo_status = fe->ops.search(fe, &fepriv->parameters);
/* We did do a search as was requested, the flags are
* now unset as well and has the flags wrt to search.
*/
} else {
fepriv->algo_status &= ~DVBFE_ALGO_SEARCH_AGAIN;
}
}
/* Track the carrier if the search was successful */
if (fepriv->algo_status == DVBFE_ALGO_SEARCH_SUCCESS) {
if (fe->ops.track)
fe->ops.track(fe, &fepriv->parameters);
} else {
fepriv->algo_status |= DVBFE_ALGO_SEARCH_AGAIN;
fepriv->delay = HZ / 2;
}
fe->ops.read_status(fe, &s);
if (s != fepriv->status) {
dvb_frontend_add_event(fe, s); /* update event list */
fepriv->status = s;
if (!(s & FE_HAS_LOCK)) {
fepriv->delay = HZ / 10;
fepriv->algo_status |= DVBFE_ALGO_SEARCH_AGAIN;
} else {
fepriv->delay = 60 * HZ;
}
}
break;
default:
dprintk("%s: UNDEFINED ALGO !\n", __func__);
break;
}
} else {
dvb_frontend_swzigzag(fe);
}
}
if (dvb_powerdown_on_sleep) {
if (fe->ops.set_voltage)
fe->ops.set_voltage(fe, SEC_VOLTAGE_OFF);
if (fe->ops.tuner_ops.sleep) {
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
fe->ops.tuner_ops.sleep(fe);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
}
if (fe->ops.sleep)
fe->ops.sleep(fe);
}
fepriv->thread = NULL;
if (kthread_should_stop())
fepriv->exit = DVB_FE_DEVICE_REMOVED;
else
fepriv->exit = DVB_FE_NO_EXIT;
mb();
dvb_frontend_wakeup(fe);
return 0;
}
static void dvb_frontend_stop(struct dvb_frontend *fe)
{
struct dvb_frontend_private *fepriv = fe->frontend_priv;
dprintk ("%s\n", __func__);
fepriv->exit = DVB_FE_NORMAL_EXIT;
mb();
if (!fepriv->thread)
return;
kthread_stop(fepriv->thread);
sema_init(&fepriv->sem, 1);
fepriv->state = FESTATE_IDLE;
/* paranoia check in case a signal arrived */
if (fepriv->thread)
printk("dvb_frontend_stop: warning: thread %p won't exit\n",
fepriv->thread);
}
s32 timeval_usec_diff(struct timeval lasttime, struct timeval curtime)
{
return ((curtime.tv_usec < lasttime.tv_usec) ?
1000000 - lasttime.tv_usec + curtime.tv_usec :
curtime.tv_usec - lasttime.tv_usec);
}
EXPORT_SYMBOL(timeval_usec_diff);
static inline void timeval_usec_add(struct timeval *curtime, u32 add_usec)
{
curtime->tv_usec += add_usec;
if (curtime->tv_usec >= 1000000) {
curtime->tv_usec -= 1000000;
curtime->tv_sec++;
}
}
/*
* Sleep until gettimeofday() > waketime + add_usec
* This needs to be as precise as possible, but as the delay is
* usually between 2ms and 32ms, it is done using a scheduled msleep
* followed by usleep (normally a busy-wait loop) for the remainder
*/
void dvb_frontend_sleep_until(struct timeval *waketime, u32 add_usec)
{
struct timeval lasttime;
s32 delta, newdelta;
timeval_usec_add(waketime, add_usec);
do_gettimeofday(&lasttime);
delta = timeval_usec_diff(lasttime, *waketime);
if (delta > 2500) {
msleep((delta - 1500) / 1000);
do_gettimeofday(&lasttime);
newdelta = timeval_usec_diff(lasttime, *waketime);
delta = (newdelta > delta) ? 0 : newdelta;
}
if (delta > 0)
udelay(delta);
}
EXPORT_SYMBOL(dvb_frontend_sleep_until);
static int dvb_frontend_start(struct dvb_frontend *fe)
{
int ret;
struct dvb_frontend_private *fepriv = fe->frontend_priv;
struct task_struct *fe_thread;
dprintk ("%s\n", __func__);
if (fepriv->thread) {
if (fepriv->exit == DVB_FE_NO_EXIT)
return 0;
else
dvb_frontend_stop (fe);
}
if (signal_pending(current))
return -EINTR;
if (down_interruptible (&fepriv->sem))
return -EINTR;
fepriv->state = FESTATE_IDLE;
fepriv->exit = DVB_FE_NO_EXIT;
fepriv->thread = NULL;
mb();
fe_thread = kthread_run(dvb_frontend_thread, fe,
"kdvb-ad-%i-fe-%i", fe->dvb->num,fe->id);
if (IS_ERR(fe_thread)) {
ret = PTR_ERR(fe_thread);
printk("dvb_frontend_start: failed to start kthread (%d)\n", ret);
up(&fepriv->sem);
return ret;
}
fepriv->thread = fe_thread;
return 0;
}
static void dvb_frontend_get_frequency_limits(struct dvb_frontend *fe,
u32 *freq_min, u32 *freq_max)
{
*freq_min = max(fe->ops.info.frequency_min, fe->ops.tuner_ops.info.frequency_min);
if (fe->ops.info.frequency_max == 0)
*freq_max = fe->ops.tuner_ops.info.frequency_max;
else if (fe->ops.tuner_ops.info.frequency_max == 0)
*freq_max = fe->ops.info.frequency_max;
else
*freq_max = min(fe->ops.info.frequency_max, fe->ops.tuner_ops.info.frequency_max);
if (*freq_min == 0 || *freq_max == 0)
printk(KERN_WARNING "DVB: adapter %i frontend %u frequency limits undefined - fix the driver\n",
fe->dvb->num,fe->id);
}
static int dvb_frontend_check_parameters(struct dvb_frontend *fe,
struct dvb_frontend_parameters *parms)
{
u32 freq_min;
u32 freq_max;
/* range check: frequency */
dvb_frontend_get_frequency_limits(fe, &freq_min, &freq_max);
if ((freq_min && parms->frequency < freq_min) ||
(freq_max && parms->frequency > freq_max)) {
printk(KERN_WARNING "DVB: adapter %i frontend %i frequency %u out of range (%u..%u)\n",
fe->dvb->num, fe->id, parms->frequency, freq_min, freq_max);
return -EINVAL;
}
/* range check: symbol rate */
if (fe->ops.info.type == FE_QPSK) {
if ((fe->ops.info.symbol_rate_min &&
parms->u.qpsk.symbol_rate < fe->ops.info.symbol_rate_min) ||
(fe->ops.info.symbol_rate_max &&
parms->u.qpsk.symbol_rate > fe->ops.info.symbol_rate_max)) {
printk(KERN_WARNING "DVB: adapter %i frontend %i symbol rate %u out of range (%u..%u)\n",
fe->dvb->num, fe->id, parms->u.qpsk.symbol_rate,
fe->ops.info.symbol_rate_min, fe->ops.info.symbol_rate_max);
return -EINVAL;
}
} else if (fe->ops.info.type == FE_QAM) {
if ((fe->ops.info.symbol_rate_min &&
parms->u.qam.symbol_rate < fe->ops.info.symbol_rate_min) ||
(fe->ops.info.symbol_rate_max &&
parms->u.qam.symbol_rate > fe->ops.info.symbol_rate_max)) {
printk(KERN_WARNING "DVB: adapter %i frontend %i symbol rate %u out of range (%u..%u)\n",
fe->dvb->num, fe->id, parms->u.qam.symbol_rate,
fe->ops.info.symbol_rate_min, fe->ops.info.symbol_rate_max);
return -EINVAL;
}
}
/* check for supported modulation */
if (fe->ops.info.type == FE_QAM &&
(parms->u.qam.modulation > QAM_AUTO ||
!((1 << (parms->u.qam.modulation + 10)) & fe->ops.info.caps))) {
printk(KERN_WARNING "DVB: adapter %i frontend %i modulation %u not supported\n",
fe->dvb->num, fe->id, parms->u.qam.modulation);
return -EINVAL;
}
return 0;
}
static int dvb_frontend_clear_cache(struct dvb_frontend *fe)
{
int i;
memset(&(fe->dtv_property_cache), 0,
sizeof(struct dtv_frontend_properties));
fe->dtv_property_cache.state = DTV_CLEAR;
fe->dtv_property_cache.delivery_system = SYS_UNDEFINED;
fe->dtv_property_cache.inversion = INVERSION_AUTO;
fe->dtv_property_cache.fec_inner = FEC_AUTO;
fe->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_AUTO;
fe->dtv_property_cache.bandwidth_hz = BANDWIDTH_AUTO;
fe->dtv_property_cache.guard_interval = GUARD_INTERVAL_AUTO;
fe->dtv_property_cache.hierarchy = HIERARCHY_AUTO;
fe->dtv_property_cache.symbol_rate = QAM_AUTO;
fe->dtv_property_cache.code_rate_HP = FEC_AUTO;
fe->dtv_property_cache.code_rate_LP = FEC_AUTO;
fe->dtv_property_cache.isdbt_partial_reception = -1;
fe->dtv_property_cache.isdbt_sb_mode = -1;
fe->dtv_property_cache.isdbt_sb_subchannel = -1;
fe->dtv_property_cache.isdbt_sb_segment_idx = -1;
fe->dtv_property_cache.isdbt_sb_segment_count = -1;
fe->dtv_property_cache.isdbt_layer_enabled = 0x7;
for (i = 0; i < 3; i++) {
fe->dtv_property_cache.layer[i].fec = FEC_AUTO;
fe->dtv_property_cache.layer[i].modulation = QAM_AUTO;
fe->dtv_property_cache.layer[i].interleaving = -1;
fe->dtv_property_cache.layer[i].segment_count = -1;
}
return 0;
}
#define _DTV_CMD(n, s, b) \
[n] = { \
.name = #n, \
.cmd = n, \
.set = s,\
.buffer = b \
}
static struct dtv_cmds_h dtv_cmds[] = {
_DTV_CMD(DTV_TUNE, 1, 0),
_DTV_CMD(DTV_CLEAR, 1, 0),
/* Set */
_DTV_CMD(DTV_FREQUENCY, 1, 0),
_DTV_CMD(DTV_BANDWIDTH_HZ, 1, 0),
_DTV_CMD(DTV_MODULATION, 1, 0),
_DTV_CMD(DTV_INVERSION, 1, 0),
_DTV_CMD(DTV_DISEQC_MASTER, 1, 1),
_DTV_CMD(DTV_SYMBOL_RATE, 1, 0),
_DTV_CMD(DTV_INNER_FEC, 1, 0),
_DTV_CMD(DTV_VOLTAGE, 1, 0),
_DTV_CMD(DTV_TONE, 1, 0),
_DTV_CMD(DTV_PILOT, 1, 0),
_DTV_CMD(DTV_ROLLOFF, 1, 0),
_DTV_CMD(DTV_DELIVERY_SYSTEM, 1, 0),
_DTV_CMD(DTV_HIERARCHY, 1, 0),
_DTV_CMD(DTV_CODE_RATE_HP, 1, 0),
_DTV_CMD(DTV_CODE_RATE_LP, 1, 0),
_DTV_CMD(DTV_GUARD_INTERVAL, 1, 0),
_DTV_CMD(DTV_TRANSMISSION_MODE, 1, 0),
_DTV_CMD(DTV_ISDBT_PARTIAL_RECEPTION, 1, 0),
_DTV_CMD(DTV_ISDBT_SOUND_BROADCASTING, 1, 0),
_DTV_CMD(DTV_ISDBT_SB_SUBCHANNEL_ID, 1, 0),
_DTV_CMD(DTV_ISDBT_SB_SEGMENT_IDX, 1, 0),
_DTV_CMD(DTV_ISDBT_SB_SEGMENT_COUNT, 1, 0),
_DTV_CMD(DTV_ISDBT_LAYER_ENABLED, 1, 0),
_DTV_CMD(DTV_ISDBT_LAYERA_FEC, 1, 0),
_DTV_CMD(DTV_ISDBT_LAYERA_MODULATION, 1, 0),
_DTV_CMD(DTV_ISDBT_LAYERA_SEGMENT_COUNT, 1, 0),
_DTV_CMD(DTV_ISDBT_LAYERA_TIME_INTERLEAVING, 1, 0),
_DTV_CMD(DTV_ISDBT_LAYERB_FEC, 1, 0),
_DTV_CMD(DTV_ISDBT_LAYERB_MODULATION, 1, 0),
_DTV_CMD(DTV_ISDBT_LAYERB_SEGMENT_COUNT, 1, 0),
_DTV_CMD(DTV_ISDBT_LAYERB_TIME_INTERLEAVING, 1, 0),
_DTV_CMD(DTV_ISDBT_LAYERC_FEC, 1, 0),
_DTV_CMD(DTV_ISDBT_LAYERC_MODULATION, 1, 0),
_DTV_CMD(DTV_ISDBT_LAYERC_SEGMENT_COUNT, 1, 0),
_DTV_CMD(DTV_ISDBT_LAYERC_TIME_INTERLEAVING, 1, 0),
_DTV_CMD(DTV_ISDBT_PARTIAL_RECEPTION, 0, 0),
_DTV_CMD(DTV_ISDBT_SOUND_BROADCASTING, 0, 0),
_DTV_CMD(DTV_ISDBT_SB_SUBCHANNEL_ID, 0, 0),
_DTV_CMD(DTV_ISDBT_SB_SEGMENT_IDX, 0, 0),
_DTV_CMD(DTV_ISDBT_SB_SEGMENT_COUNT, 0, 0),
_DTV_CMD(DTV_ISDBT_LAYER_ENABLED, 0, 0),
_DTV_CMD(DTV_ISDBT_LAYERA_FEC, 0, 0),
_DTV_CMD(DTV_ISDBT_LAYERA_MODULATION, 0, 0),
_DTV_CMD(DTV_ISDBT_LAYERA_SEGMENT_COUNT, 0, 0),
_DTV_CMD(DTV_ISDBT_LAYERA_TIME_INTERLEAVING, 0, 0),
_DTV_CMD(DTV_ISDBT_LAYERB_FEC, 0, 0),
_DTV_CMD(DTV_ISDBT_LAYERB_MODULATION, 0, 0),
_DTV_CMD(DTV_ISDBT_LAYERB_SEGMENT_COUNT, 0, 0),
_DTV_CMD(DTV_ISDBT_LAYERB_TIME_INTERLEAVING, 0, 0),
_DTV_CMD(DTV_ISDBT_LAYERC_FEC, 0, 0),
_DTV_CMD(DTV_ISDBT_LAYERC_MODULATION, 0, 0),
_DTV_CMD(DTV_ISDBT_LAYERC_SEGMENT_COUNT, 0, 0),
_DTV_CMD(DTV_ISDBT_LAYERC_TIME_INTERLEAVING, 0, 0),
_DTV_CMD(DTV_ISDBS_TS_ID, 1, 0),
/* Get */
_DTV_CMD(DTV_DISEQC_SLAVE_REPLY, 0, 1),
_DTV_CMD(DTV_API_VERSION, 0, 0),
_DTV_CMD(DTV_CODE_RATE_HP, 0, 0),
_DTV_CMD(DTV_CODE_RATE_LP, 0, 0),
_DTV_CMD(DTV_GUARD_INTERVAL, 0, 0),
_DTV_CMD(DTV_TRANSMISSION_MODE, 0, 0),
_DTV_CMD(DTV_HIERARCHY, 0, 0),
};
static void dtv_property_dump(struct dtv_property *tvp)
{
int i;
if (tvp->cmd <= 0 || tvp->cmd > DTV_MAX_COMMAND) {
printk(KERN_WARNING "%s: tvp.cmd = 0x%08x undefined\n",
__func__, tvp->cmd);
return;
}
dprintk("%s() tvp.cmd = 0x%08x (%s)\n"
,__func__
,tvp->cmd
,dtv_cmds[ tvp->cmd ].name);
if(dtv_cmds[ tvp->cmd ].buffer) {
dprintk("%s() tvp.u.buffer.len = 0x%02x\n"
,__func__
,tvp->u.buffer.len);
for(i = 0; i < tvp->u.buffer.len; i++)
dprintk("%s() tvp.u.buffer.data[0x%02x] = 0x%02x\n"
,__func__
,i
,tvp->u.buffer.data[i]);
} else
dprintk("%s() tvp.u.data = 0x%08x\n", __func__, tvp->u.data);
}
static int is_legacy_delivery_system(fe_delivery_system_t s)
{
if((s == SYS_UNDEFINED) || (s == SYS_DVBC_ANNEX_AC) ||
(s == SYS_DVBC_ANNEX_B) || (s == SYS_DVBT) || (s == SYS_DVBS) ||
(s == SYS_ATSC))
return 1;
return 0;
}
/* Synchronise the legacy tuning parameters into the cache, so that demodulator
* drivers can use a single set_frontend tuning function, regardless of whether
* it's being used for the legacy or new API, reducing code and complexity.
*/
static void dtv_property_cache_sync(struct dvb_frontend *fe,
struct dvb_frontend_parameters *p)
{
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
c->frequency = p->frequency;
c->inversion = p->inversion;
switch (fe->ops.info.type) {
case FE_QPSK:
c->modulation = QPSK; /* implied for DVB-S in legacy API */
c->rolloff = ROLLOFF_35;/* implied for DVB-S */
c->symbol_rate = p->u.qpsk.symbol_rate;
c->fec_inner = p->u.qpsk.fec_inner;
c->delivery_system = SYS_DVBS;
break;
case FE_QAM:
c->symbol_rate = p->u.qam.symbol_rate;
c->fec_inner = p->u.qam.fec_inner;
c->modulation = p->u.qam.modulation;
c->delivery_system = SYS_DVBC_ANNEX_AC;
break;
case FE_OFDM:
if (p->u.ofdm.bandwidth == BANDWIDTH_6_MHZ)
c->bandwidth_hz = 6000000;
else if (p->u.ofdm.bandwidth == BANDWIDTH_7_MHZ)
c->bandwidth_hz = 7000000;
else if (p->u.ofdm.bandwidth == BANDWIDTH_8_MHZ)
c->bandwidth_hz = 8000000;
else
/* Including BANDWIDTH_AUTO */
c->bandwidth_hz = 0;
c->code_rate_HP = p->u.ofdm.code_rate_HP;
c->code_rate_LP = p->u.ofdm.code_rate_LP;
c->modulation = p->u.ofdm.constellation;
c->transmission_mode = p->u.ofdm.transmission_mode;
c->guard_interval = p->u.ofdm.guard_interval;
c->hierarchy = p->u.ofdm.hierarchy_information;
c->delivery_system = SYS_DVBT;
break;
case FE_ATSC:
c->modulation = p->u.vsb.modulation;
if ((c->modulation == VSB_8) || (c->modulation == VSB_16))
c->delivery_system = SYS_ATSC;
else
c->delivery_system = SYS_DVBC_ANNEX_B;
break;
}
}
/* Ensure the cached values are set correctly in the frontend
* legacy tuning structures, for the advanced tuning API.
*/
static void dtv_property_legacy_params_sync(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
struct dvb_frontend_private *fepriv = fe->frontend_priv;
struct dvb_frontend_parameters *p = &fepriv->parameters;
p->frequency = c->frequency;
p->inversion = c->inversion;
switch (fe->ops.info.type) {
case FE_QPSK:
dprintk("%s() Preparing QPSK req\n", __func__);
p->u.qpsk.symbol_rate = c->symbol_rate;
p->u.qpsk.fec_inner = c->fec_inner;
c->delivery_system = SYS_DVBS;
break;
case FE_QAM:
dprintk("%s() Preparing QAM req\n", __func__);
p->u.qam.symbol_rate = c->symbol_rate;
p->u.qam.fec_inner = c->fec_inner;
p->u.qam.modulation = c->modulation;
c->delivery_system = SYS_DVBC_ANNEX_AC;
break;
case FE_OFDM:
dprintk("%s() Preparing OFDM req\n", __func__);
if (c->bandwidth_hz == 6000000)
p->u.ofdm.bandwidth = BANDWIDTH_6_MHZ;
else if (c->bandwidth_hz == 7000000)
p->u.ofdm.bandwidth = BANDWIDTH_7_MHZ;
else if (c->bandwidth_hz == 8000000)
p->u.ofdm.bandwidth = BANDWIDTH_8_MHZ;
else
p->u.ofdm.bandwidth = BANDWIDTH_AUTO;
p->u.ofdm.code_rate_HP = c->code_rate_HP;
p->u.ofdm.code_rate_LP = c->code_rate_LP;
p->u.ofdm.constellation = c->modulation;
p->u.ofdm.transmission_mode = c->transmission_mode;
p->u.ofdm.guard_interval = c->guard_interval;
p->u.ofdm.hierarchy_information = c->hierarchy;
c->delivery_system = SYS_DVBT;
break;
case FE_ATSC:
dprintk("%s() Preparing VSB req\n", __func__);
p->u.vsb.modulation = c->modulation;
if ((c->modulation == VSB_8) || (c->modulation == VSB_16))
c->delivery_system = SYS_ATSC;
else
c->delivery_system = SYS_DVBC_ANNEX_B;
break;
}
}
/* Ensure the cached values are set correctly in the frontend
* legacy tuning structures, for the legacy tuning API.
*/
static void dtv_property_adv_params_sync(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
struct dvb_frontend_private *fepriv = fe->frontend_priv;
struct dvb_frontend_parameters *p = &fepriv->parameters;
p->frequency = c->frequency;
p->inversion = c->inversion;
switch(c->modulation) {
case PSK_8:
case APSK_16:
case APSK_32:
case QPSK:
p->u.qpsk.symbol_rate = c->symbol_rate;
p->u.qpsk.fec_inner = c->fec_inner;
break;
default:
break;
}
if(c->delivery_system == SYS_ISDBT) {
/* Fake out a generic DVB-T request so we pass validation in the ioctl */
p->frequency = c->frequency;
p->inversion = c->inversion;
p->u.ofdm.constellation = QAM_AUTO;
p->u.ofdm.code_rate_HP = FEC_AUTO;
p->u.ofdm.code_rate_LP = FEC_AUTO;
p->u.ofdm.transmission_mode = TRANSMISSION_MODE_AUTO;
p->u.ofdm.guard_interval = GUARD_INTERVAL_AUTO;
p->u.ofdm.hierarchy_information = HIERARCHY_AUTO;
if (c->bandwidth_hz == 8000000)
p->u.ofdm.bandwidth = BANDWIDTH_8_MHZ;
else if (c->bandwidth_hz == 7000000)
p->u.ofdm.bandwidth = BANDWIDTH_7_MHZ;
else if (c->bandwidth_hz == 6000000)
p->u.ofdm.bandwidth = BANDWIDTH_6_MHZ;
else
p->u.ofdm.bandwidth = BANDWIDTH_AUTO;
}
}
static void dtv_property_cache_submit(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
/* For legacy delivery systems we don't need the delivery_system to
* be specified, but we populate the older structures from the cache
* so we can call set_frontend on older drivers.
*/
if(is_legacy_delivery_system(c->delivery_system)) {
dprintk("%s() legacy, modulation = %d\n", __func__, c->modulation);
dtv_property_legacy_params_sync(fe);
} else {
dprintk("%s() adv, modulation = %d\n", __func__, c->modulation);
/* For advanced delivery systems / modulation types ...
* we seed the lecacy dvb_frontend_parameters structure
* so that the sanity checking code later in the IOCTL processing
* can validate our basic frequency ranges, symbolrates, modulation
* etc.
*/
dtv_property_adv_params_sync(fe);
}
}
static int dvb_frontend_ioctl_legacy(struct file *file,
unsigned int cmd, void *parg);
static int dvb_frontend_ioctl_properties(struct file *file,
unsigned int cmd, void *parg);
static int dtv_property_process_get(struct dvb_frontend *fe,
struct dtv_property *tvp,
struct file *file)
{
int r = 0;
/* Allow the frontend to validate incoming properties */
if (fe->ops.get_property)
r = fe->ops.get_property(fe, tvp);
if (r < 0)
return r;
switch(tvp->cmd) {
case DTV_FREQUENCY:
tvp->u.data = fe->dtv_property_cache.frequency;
break;
case DTV_MODULATION:
tvp->u.data = fe->dtv_property_cache.modulation;
break;
case DTV_BANDWIDTH_HZ:
tvp->u.data = fe->dtv_property_cache.bandwidth_hz;
break;
case DTV_INVERSION:
tvp->u.data = fe->dtv_property_cache.inversion;
break;
case DTV_SYMBOL_RATE:
tvp->u.data = fe->dtv_property_cache.symbol_rate;
break;
case DTV_INNER_FEC:
tvp->u.data = fe->dtv_property_cache.fec_inner;
break;
case DTV_PILOT:
tvp->u.data = fe->dtv_property_cache.pilot;
break;
case DTV_ROLLOFF:
tvp->u.data = fe->dtv_property_cache.rolloff;
break;
case DTV_DELIVERY_SYSTEM:
tvp->u.data = fe->dtv_property_cache.delivery_system;
break;
case DTV_VOLTAGE:
tvp->u.data = fe->dtv_property_cache.voltage;
break;
case DTV_TONE:
tvp->u.data = fe->dtv_property_cache.sectone;
break;
case DTV_API_VERSION:
tvp->u.data = (DVB_API_VERSION << 8) | DVB_API_VERSION_MINOR;
break;
case DTV_CODE_RATE_HP:
tvp->u.data = fe->dtv_property_cache.code_rate_HP;
break;
case DTV_CODE_RATE_LP:
tvp->u.data = fe->dtv_property_cache.code_rate_LP;
break;
case DTV_GUARD_INTERVAL:
tvp->u.data = fe->dtv_property_cache.guard_interval;
break;
case DTV_TRANSMISSION_MODE:
tvp->u.data = fe->dtv_property_cache.transmission_mode;
break;
case DTV_HIERARCHY:
tvp->u.data = fe->dtv_property_cache.hierarchy;
break;
/* ISDB-T Support here */
case DTV_ISDBT_PARTIAL_RECEPTION:
tvp->u.data = fe->dtv_property_cache.isdbt_partial_reception;
break;
case DTV_ISDBT_SOUND_BROADCASTING:
tvp->u.data = fe->dtv_property_cache.isdbt_sb_mode;
break;
case DTV_ISDBT_SB_SUBCHANNEL_ID:
tvp->u.data = fe->dtv_property_cache.isdbt_sb_subchannel;
break;
case DTV_ISDBT_SB_SEGMENT_IDX:
tvp->u.data = fe->dtv_property_cache.isdbt_sb_segment_idx;
break;
case DTV_ISDBT_SB_SEGMENT_COUNT:
tvp->u.data = fe->dtv_property_cache.isdbt_sb_segment_count;
break;
case DTV_ISDBT_LAYER_ENABLED:
tvp->u.data = fe->dtv_property_cache.isdbt_layer_enabled;
break;
case DTV_ISDBT_LAYERA_FEC:
tvp->u.data = fe->dtv_property_cache.layer[0].fec;
break;
case DTV_ISDBT_LAYERA_MODULATION:
tvp->u.data = fe->dtv_property_cache.layer[0].modulation;
break;
case DTV_ISDBT_LAYERA_SEGMENT_COUNT:
tvp->u.data = fe->dtv_property_cache.layer[0].segment_count;
break;
case DTV_ISDBT_LAYERA_TIME_INTERLEAVING:
tvp->u.data = fe->dtv_property_cache.layer[0].interleaving;
break;
case DTV_ISDBT_LAYERB_FEC:
tvp->u.data = fe->dtv_property_cache.layer[1].fec;
break;
case DTV_ISDBT_LAYERB_MODULATION:
tvp->u.data = fe->dtv_property_cache.layer[1].modulation;
break;
case DTV_ISDBT_LAYERB_SEGMENT_COUNT:
tvp->u.data = fe->dtv_property_cache.layer[1].segment_count;
break;
case DTV_ISDBT_LAYERB_TIME_INTERLEAVING:
tvp->u.data = fe->dtv_property_cache.layer[1].interleaving;
break;
case DTV_ISDBT_LAYERC_FEC:
tvp->u.data = fe->dtv_property_cache.layer[2].fec;
break;
case DTV_ISDBT_LAYERC_MODULATION:
tvp->u.data = fe->dtv_property_cache.layer[2].modulation;
break;
case DTV_ISDBT_LAYERC_SEGMENT_COUNT:
tvp->u.data = fe->dtv_property_cache.layer[2].segment_count;
break;
case DTV_ISDBT_LAYERC_TIME_INTERLEAVING:
tvp->u.data = fe->dtv_property_cache.layer[2].interleaving;
break;
case DTV_ISDBS_TS_ID:
tvp->u.data = fe->dtv_property_cache.isdbs_ts_id;
break;
default:
r = -1;
}
dtv_property_dump(tvp);
return r;
}
static int dtv_property_process_set(struct dvb_frontend *fe,
struct dtv_property *tvp,
struct file *file)
{
int r = 0;
struct dvb_frontend_private *fepriv = fe->frontend_priv;
dtv_property_dump(tvp);
/* Allow the frontend to validate incoming properties */
if (fe->ops.set_property)
r = fe->ops.set_property(fe, tvp);
if (r < 0)
return r;
switch(tvp->cmd) {
case DTV_CLEAR:
/* Reset a cache of data specific to the frontend here. This does
* not effect hardware.
*/
dvb_frontend_clear_cache(fe);
dprintk("%s() Flushing property cache\n", __func__);
break;
case DTV_TUNE:
/* interpret the cache of data, build either a traditional frontend
* tunerequest so we can pass validation in the FE_SET_FRONTEND
* ioctl.
*/
fe->dtv_property_cache.state = tvp->cmd;
dprintk("%s() Finalised property cache\n", __func__);
dtv_property_cache_submit(fe);
r |= dvb_frontend_ioctl_legacy(file, FE_SET_FRONTEND,
&fepriv->parameters);
break;
case DTV_FREQUENCY:
fe->dtv_property_cache.frequency = tvp->u.data;
break;
case DTV_MODULATION:
fe->dtv_property_cache.modulation = tvp->u.data;
break;
case DTV_BANDWIDTH_HZ:
fe->dtv_property_cache.bandwidth_hz = tvp->u.data;
break;
case DTV_INVERSION:
fe->dtv_property_cache.inversion = tvp->u.data;
break;
case DTV_SYMBOL_RATE:
fe->dtv_property_cache.symbol_rate = tvp->u.data;
break;
case DTV_INNER_FEC:
fe->dtv_property_cache.fec_inner = tvp->u.data;
break;
case DTV_PILOT:
fe->dtv_property_cache.pilot = tvp->u.data;
break;
case DTV_ROLLOFF:
fe->dtv_property_cache.rolloff = tvp->u.data;
break;
case DTV_DELIVERY_SYSTEM:
fe->dtv_property_cache.delivery_system = tvp->u.data;
break;
case DTV_VOLTAGE:
fe->dtv_property_cache.voltage = tvp->u.data;
r = dvb_frontend_ioctl_legacy(file, FE_SET_VOLTAGE,
(void *)fe->dtv_property_cache.voltage);
break;
case DTV_TONE:
fe->dtv_property_cache.sectone = tvp->u.data;
r = dvb_frontend_ioctl_legacy(file, FE_SET_TONE,
(void *)fe->dtv_property_cache.sectone);
break;
case DTV_CODE_RATE_HP:
fe->dtv_property_cache.code_rate_HP = tvp->u.data;
break;
case DTV_CODE_RATE_LP:
fe->dtv_property_cache.code_rate_LP = tvp->u.data;
break;
case DTV_GUARD_INTERVAL:
fe->dtv_property_cache.guard_interval = tvp->u.data;
break;
case DTV_TRANSMISSION_MODE:
fe->dtv_property_cache.transmission_mode = tvp->u.data;
break;
case DTV_HIERARCHY:
fe->dtv_property_cache.hierarchy = tvp->u.data;
break;
/* ISDB-T Support here */
case DTV_ISDBT_PARTIAL_RECEPTION:
fe->dtv_property_cache.isdbt_partial_reception = tvp->u.data;
break;
case DTV_ISDBT_SOUND_BROADCASTING:
fe->dtv_property_cache.isdbt_sb_mode = tvp->u.data;
break;
case DTV_ISDBT_SB_SUBCHANNEL_ID:
fe->dtv_property_cache.isdbt_sb_subchannel = tvp->u.data;
break;
case DTV_ISDBT_SB_SEGMENT_IDX:
fe->dtv_property_cache.isdbt_sb_segment_idx = tvp->u.data;
break;
case DTV_ISDBT_SB_SEGMENT_COUNT:
fe->dtv_property_cache.isdbt_sb_segment_count = tvp->u.data;
break;
case DTV_ISDBT_LAYER_ENABLED:
fe->dtv_property_cache.isdbt_layer_enabled = tvp->u.data;
break;
case DTV_ISDBT_LAYERA_FEC:
fe->dtv_property_cache.layer[0].fec = tvp->u.data;
break;
case DTV_ISDBT_LAYERA_MODULATION:
fe->dtv_property_cache.layer[0].modulation = tvp->u.data;
break;
case DTV_ISDBT_LAYERA_SEGMENT_COUNT:
fe->dtv_property_cache.layer[0].segment_count = tvp->u.data;
break;
case DTV_ISDBT_LAYERA_TIME_INTERLEAVING:
fe->dtv_property_cache.layer[0].interleaving = tvp->u.data;
break;
case DTV_ISDBT_LAYERB_FEC:
fe->dtv_property_cache.layer[1].fec = tvp->u.data;
break;
case DTV_ISDBT_LAYERB_MODULATION:
fe->dtv_property_cache.layer[1].modulation = tvp->u.data;
break;
case DTV_ISDBT_LAYERB_SEGMENT_COUNT:
fe->dtv_property_cache.layer[1].segment_count = tvp->u.data;
break;
case DTV_ISDBT_LAYERB_TIME_INTERLEAVING:
fe->dtv_property_cache.layer[1].interleaving = tvp->u.data;
break;
case DTV_ISDBT_LAYERC_FEC:
fe->dtv_property_cache.layer[2].fec = tvp->u.data;
break;
case DTV_ISDBT_LAYERC_MODULATION:
fe->dtv_property_cache.layer[2].modulation = tvp->u.data;
break;
case DTV_ISDBT_LAYERC_SEGMENT_COUNT:
fe->dtv_property_cache.layer[2].segment_count = tvp->u.data;
break;
case DTV_ISDBT_LAYERC_TIME_INTERLEAVING:
fe->dtv_property_cache.layer[2].interleaving = tvp->u.data;
break;
case DTV_ISDBS_TS_ID:
fe->dtv_property_cache.isdbs_ts_id = tvp->u.data;
break;
default:
r = -1;
}
return r;
}
static int dvb_frontend_ioctl(struct file *file,
unsigned int cmd, void *parg)
{
struct dvb_device *dvbdev = file->private_data;
struct dvb_frontend *fe = dvbdev->priv;
struct dvb_frontend_private *fepriv = fe->frontend_priv;
int err = -EOPNOTSUPP;
dprintk("%s (%d)\n", __func__, _IOC_NR(cmd));
if (fepriv->exit != DVB_FE_NO_EXIT)
return -ENODEV;
if ((file->f_flags & O_ACCMODE) == O_RDONLY &&
(_IOC_DIR(cmd) != _IOC_READ || cmd == FE_GET_EVENT ||
cmd == FE_DISEQC_RECV_SLAVE_REPLY))
return -EPERM;
if (down_interruptible (&fepriv->sem))
return -ERESTARTSYS;
if ((cmd == FE_SET_PROPERTY) || (cmd == FE_GET_PROPERTY))
err = dvb_frontend_ioctl_properties(file, cmd, parg);
else {
fe->dtv_property_cache.state = DTV_UNDEFINED;
err = dvb_frontend_ioctl_legacy(file, cmd, parg);
}
up(&fepriv->sem);
return err;
}
static int dvb_frontend_ioctl_properties(struct file *file,
unsigned int cmd, void *parg)
{
struct dvb_device *dvbdev = file->private_data;
struct dvb_frontend *fe = dvbdev->priv;
int err = 0;
struct dtv_properties *tvps = NULL;
struct dtv_property *tvp = NULL;
int i;
dprintk("%s\n", __func__);
if(cmd == FE_SET_PROPERTY) {
tvps = (struct dtv_properties __user *)parg;
dprintk("%s() properties.num = %d\n", __func__, tvps->num);
dprintk("%s() properties.props = %p\n", __func__, tvps->props);
/* Put an arbitrary limit on the number of messages that can
* be sent at once */
if ((tvps->num == 0) || (tvps->num > DTV_IOCTL_MAX_MSGS))
return -EINVAL;
tvp = kmalloc(tvps->num * sizeof(struct dtv_property), GFP_KERNEL);
if (!tvp) {
err = -ENOMEM;
goto out;
}
if (copy_from_user(tvp, tvps->props, tvps->num * sizeof(struct dtv_property))) {
err = -EFAULT;
goto out;
}
for (i = 0; i < tvps->num; i++) {
(tvp + i)->result = dtv_property_process_set(fe, tvp + i, file);
err |= (tvp + i)->result;
}
if(fe->dtv_property_cache.state == DTV_TUNE)
dprintk("%s() Property cache is full, tuning\n", __func__);
} else
if(cmd == FE_GET_PROPERTY) {
tvps = (struct dtv_properties __user *)parg;
dprintk("%s() properties.num = %d\n", __func__, tvps->num);
dprintk("%s() properties.props = %p\n", __func__, tvps->props);
/* Put an arbitrary limit on the number of messages that can
* be sent at once */
if ((tvps->num == 0) || (tvps->num > DTV_IOCTL_MAX_MSGS))
return -EINVAL;
tvp = kmalloc(tvps->num * sizeof(struct dtv_property), GFP_KERNEL);
if (!tvp) {
err = -ENOMEM;
goto out;
}
if (copy_from_user(tvp, tvps->props, tvps->num * sizeof(struct dtv_property))) {
err = -EFAULT;
goto out;
}
for (i = 0; i < tvps->num; i++) {
(tvp + i)->result = dtv_property_process_get(fe, tvp + i, file);
err |= (tvp + i)->result;
}
if (copy_to_user(tvps->props, tvp, tvps->num * sizeof(struct dtv_property))) {
err = -EFAULT;
goto out;
}
} else
err = -EOPNOTSUPP;
out:
kfree(tvp);
return err;
}
static int dvb_frontend_ioctl_legacy(struct file *file,
unsigned int cmd, void *parg)
{
struct dvb_device *dvbdev = file->private_data;
struct dvb_frontend *fe = dvbdev->priv;
struct dvb_frontend_private *fepriv = fe->frontend_priv;
int cb_err, err = -EOPNOTSUPP;
if (fe->dvb->fe_ioctl_override) {
cb_err = fe->dvb->fe_ioctl_override(fe, cmd, parg,
DVB_FE_IOCTL_PRE);
if (cb_err < 0)
return cb_err;
if (cb_err > 0)
return 0;
/* fe_ioctl_override returning 0 allows
* dvb-core to continue handling the ioctl */
}
switch (cmd) {
case FE_GET_INFO: {
struct dvb_frontend_info* info = parg;
memcpy(info, &fe->ops.info, sizeof(struct dvb_frontend_info));
dvb_frontend_get_frequency_limits(fe, &info->frequency_min, &info->frequency_max);
/* Force the CAN_INVERSION_AUTO bit on. If the frontend doesn't
* do it, it is done for it. */
info->caps |= FE_CAN_INVERSION_AUTO;
err = 0;
break;
}
case FE_READ_STATUS: {
fe_status_t* status = parg;
/* if retune was requested but hasn't occured yet, prevent
* that user get signal state from previous tuning */
if (fepriv->state == FESTATE_RETUNE ||
fepriv->state == FESTATE_ERROR) {
err=0;
*status = 0;
break;
}
if (fe->ops.read_status)
err = fe->ops.read_status(fe, status);
break;
}
case FE_READ_BER:
if (fe->ops.read_ber)
err = fe->ops.read_ber(fe, (__u32*) parg);
break;
case FE_READ_SIGNAL_STRENGTH:
if (fe->ops.read_signal_strength)
err = fe->ops.read_signal_strength(fe, (__u16*) parg);
break;
case FE_READ_SNR:
if (fe->ops.read_snr)
err = fe->ops.read_snr(fe, (__u16*) parg);
break;
case FE_READ_UNCORRECTED_BLOCKS:
if (fe->ops.read_ucblocks)
err = fe->ops.read_ucblocks(fe, (__u32*) parg);
break;
case FE_DISEQC_RESET_OVERLOAD:
if (fe->ops.diseqc_reset_overload) {
err = fe->ops.diseqc_reset_overload(fe);
fepriv->state = FESTATE_DISEQC;
fepriv->status = 0;
}
break;
case FE_DISEQC_SEND_MASTER_CMD:
if (fe->ops.diseqc_send_master_cmd) {
err = fe->ops.diseqc_send_master_cmd(fe, (struct dvb_diseqc_master_cmd*) parg);
fepriv->state = FESTATE_DISEQC;
fepriv->status = 0;
}
break;
case FE_DISEQC_SEND_BURST:
if (fe->ops.diseqc_send_burst) {
err = fe->ops.diseqc_send_burst(fe, (fe_sec_mini_cmd_t) parg);
fepriv->state = FESTATE_DISEQC;
fepriv->status = 0;
}
break;
case FE_SET_TONE:
if (fe->ops.set_tone) {
err = fe->ops.set_tone(fe, (fe_sec_tone_mode_t) parg);
fepriv->tone = (fe_sec_tone_mode_t) parg;
fepriv->state = FESTATE_DISEQC;
fepriv->status = 0;
}
break;
case FE_SET_VOLTAGE:
if (fe->ops.set_voltage) {
err = fe->ops.set_voltage(fe, (fe_sec_voltage_t) parg);
fepriv->voltage = (fe_sec_voltage_t) parg;
fepriv->state = FESTATE_DISEQC;
fepriv->status = 0;
}
break;
case FE_DISHNETWORK_SEND_LEGACY_CMD:
if (fe->ops.dishnetwork_send_legacy_command) {
err = fe->ops.dishnetwork_send_legacy_command(fe, (unsigned long) parg);
fepriv->state = FESTATE_DISEQC;
fepriv->status = 0;
} else if (fe->ops.set_voltage) {
/*
* NOTE: This is a fallback condition. Some frontends
* (stv0299 for instance) take longer than 8msec to
* respond to a set_voltage command. Those switches
* need custom routines to switch properly. For all
* other frontends, the following should work ok.
* Dish network legacy switches (as used by Dish500)
* are controlled by sending 9-bit command words
* spaced 8msec apart.
* the actual command word is switch/port dependant
* so it is up to the userspace application to send
* the right command.
* The command must always start with a '0' after
* initialization, so parg is 8 bits and does not
* include the initialization or start bit
*/
unsigned long swcmd = ((unsigned long) parg) << 1;
struct timeval nexttime;
struct timeval tv[10];
int i;
u8 last = 1;
if (dvb_frontend_debug)
printk("%s switch command: 0x%04lx\n", __func__, swcmd);
do_gettimeofday(&nexttime);
if (dvb_frontend_debug)
memcpy(&tv[0], &nexttime, sizeof(struct timeval));
/* before sending a command, initialize by sending
* a 32ms 18V to the switch
*/
fe->ops.set_voltage(fe, SEC_VOLTAGE_18);
dvb_frontend_sleep_until(&nexttime, 32000);
for (i = 0; i < 9; i++) {
if (dvb_frontend_debug)
do_gettimeofday(&tv[i + 1]);
if ((swcmd & 0x01) != last) {
/* set voltage to (last ? 13V : 18V) */
fe->ops.set_voltage(fe, (last) ? SEC_VOLTAGE_13 : SEC_VOLTAGE_18);
last = (last) ? 0 : 1;
}
swcmd = swcmd >> 1;
if (i != 8)
dvb_frontend_sleep_until(&nexttime, 8000);
}
if (dvb_frontend_debug) {
printk("%s(%d): switch delay (should be 32k followed by all 8k\n",
__func__, fe->dvb->num);
for (i = 1; i < 10; i++)
printk("%d: %d\n", i, timeval_usec_diff(tv[i-1] , tv[i]));
}
err = 0;
fepriv->state = FESTATE_DISEQC;
fepriv->status = 0;
}
break;
case FE_DISEQC_RECV_SLAVE_REPLY:
if (fe->ops.diseqc_recv_slave_reply)
err = fe->ops.diseqc_recv_slave_reply(fe, (struct dvb_diseqc_slave_reply*) parg);
break;
case FE_ENABLE_HIGH_LNB_VOLTAGE:
if (fe->ops.enable_high_lnb_voltage)
err = fe->ops.enable_high_lnb_voltage(fe, (long) parg);
break;
case FE_SET_FRONTEND: {
struct dvb_frontend_tune_settings fetunesettings;
if(fe->dtv_property_cache.state == DTV_TUNE) {
if (dvb_frontend_check_parameters(fe, &fepriv->parameters) < 0) {
err = -EINVAL;
break;
}
} else {
if (dvb_frontend_check_parameters(fe, parg) < 0) {
err = -EINVAL;
break;
}
memcpy (&fepriv->parameters, parg,
sizeof (struct dvb_frontend_parameters));
dtv_property_cache_sync(fe, &fepriv->parameters);
}
memset(&fetunesettings, 0, sizeof(struct dvb_frontend_tune_settings));
memcpy(&fetunesettings.parameters, parg,
sizeof (struct dvb_frontend_parameters));
/* force auto frequency inversion if requested */
if (dvb_force_auto_inversion) {
fepriv->parameters.inversion = INVERSION_AUTO;
fetunesettings.parameters.inversion = INVERSION_AUTO;
}
if (fe->ops.info.type == FE_OFDM) {
/* without hierarchical coding code_rate_LP is irrelevant,
* so we tolerate the otherwise invalid FEC_NONE setting */
if (fepriv->parameters.u.ofdm.hierarchy_information == HIERARCHY_NONE &&
fepriv->parameters.u.ofdm.code_rate_LP == FEC_NONE)
fepriv->parameters.u.ofdm.code_rate_LP = FEC_AUTO;
}
/* get frontend-specific tuning settings */
if (fe->ops.get_tune_settings && (fe->ops.get_tune_settings(fe, &fetunesettings) == 0)) {
fepriv->min_delay = (fetunesettings.min_delay_ms * HZ) / 1000;
fepriv->max_drift = fetunesettings.max_drift;
fepriv->step_size = fetunesettings.step_size;
} else {
/* default values */
switch(fe->ops.info.type) {
case FE_QPSK:
fepriv->min_delay = HZ/20;
fepriv->step_size = fepriv->parameters.u.qpsk.symbol_rate / 16000;
fepriv->max_drift = fepriv->parameters.u.qpsk.symbol_rate / 2000;
break;
case FE_QAM:
fepriv->min_delay = HZ/20;
fepriv->step_size = 0; /* no zigzag */
fepriv->max_drift = 0;
break;
case FE_OFDM:
fepriv->min_delay = HZ/20;
fepriv->step_size = fe->ops.info.frequency_stepsize * 2;
fepriv->max_drift = (fe->ops.info.frequency_stepsize * 2) + 1;
break;
case FE_ATSC:
fepriv->min_delay = HZ/20;
fepriv->step_size = 0;
fepriv->max_drift = 0;
break;
}
}
if (dvb_override_tune_delay > 0)
fepriv->min_delay = (dvb_override_tune_delay * HZ) / 1000;
fepriv->state = FESTATE_RETUNE;
/* Request the search algorithm to search */
fepriv->algo_status |= DVBFE_ALGO_SEARCH_AGAIN;
dvb_frontend_wakeup(fe);
dvb_frontend_add_event(fe, 0);
fepriv->status = 0;
err = 0;
break;
}
case FE_GET_EVENT:
err = dvb_frontend_get_event (fe, parg, file->f_flags);
break;
case FE_GET_FRONTEND:
if (fe->ops.get_frontend) {
memcpy (parg, &fepriv->parameters, sizeof (struct dvb_frontend_parameters));
err = fe->ops.get_frontend(fe, (struct dvb_frontend_parameters*) parg);
}
break;
case FE_SET_FRONTEND_TUNE_MODE:
fepriv->tune_mode_flags = (unsigned long) parg;
err = 0;
break;
};
if (fe->dvb->fe_ioctl_override) {
cb_err = fe->dvb->fe_ioctl_override(fe, cmd, parg,
DVB_FE_IOCTL_POST);
if (cb_err < 0)
return cb_err;
}
return err;
}
static unsigned int dvb_frontend_poll(struct file *file, struct poll_table_struct *wait)
{
struct dvb_device *dvbdev = file->private_data;
struct dvb_frontend *fe = dvbdev->priv;
struct dvb_frontend_private *fepriv = fe->frontend_priv;
dprintk ("%s\n", __func__);
poll_wait (file, &fepriv->events.wait_queue, wait);
if (fepriv->events.eventw != fepriv->events.eventr)
return (POLLIN | POLLRDNORM | POLLPRI);
return 0;
}
static int dvb_frontend_open(struct inode *inode, struct file *file)
{
struct dvb_device *dvbdev = file->private_data;
struct dvb_frontend *fe = dvbdev->priv;
struct dvb_frontend_private *fepriv = fe->frontend_priv;
struct dvb_adapter *adapter = fe->dvb;
int ret;
dprintk ("%s\n", __func__);
if (fepriv->exit == DVB_FE_DEVICE_REMOVED)
return -ENODEV;
if (adapter->mfe_shared) {
mutex_lock (&adapter->mfe_lock);
if (adapter->mfe_dvbdev == NULL)
adapter->mfe_dvbdev = dvbdev;
else if (adapter->mfe_dvbdev != dvbdev) {
struct dvb_device
*mfedev = adapter->mfe_dvbdev;
struct dvb_frontend
*mfe = mfedev->priv;
struct dvb_frontend_private
*mfepriv = mfe->frontend_priv;
int mferetry = (dvb_mfe_wait_time << 1);
mutex_unlock (&adapter->mfe_lock);
while (mferetry-- && (mfedev->users != -1 ||
mfepriv->thread != NULL)) {
if(msleep_interruptible(500)) {
if(signal_pending(current))
return -EINTR;
}
}
mutex_lock (&adapter->mfe_lock);
if(adapter->mfe_dvbdev != dvbdev) {
mfedev = adapter->mfe_dvbdev;
mfe = mfedev->priv;
mfepriv = mfe->frontend_priv;
if (mfedev->users != -1 ||
mfepriv->thread != NULL) {
mutex_unlock (&adapter->mfe_lock);
return -EBUSY;
}
adapter->mfe_dvbdev = dvbdev;
}
}
}
if (dvbdev->users == -1 && fe->ops.ts_bus_ctrl) {
if ((ret = fe->ops.ts_bus_ctrl(fe, 1)) < 0)
goto err0;
}
if ((ret = dvb_generic_open (inode, file)) < 0)
goto err1;
if ((file->f_flags & O_ACCMODE) != O_RDONLY) {
/* normal tune mode when opened R/W */
fepriv->tune_mode_flags &= ~FE_TUNE_MODE_ONESHOT;
fepriv->tone = -1;
fepriv->voltage = -1;
ret = dvb_frontend_start (fe);
if (ret)
goto err2;
/* empty event queue */
fepriv->events.eventr = fepriv->events.eventw = 0;
}
if (adapter->mfe_shared)
mutex_unlock (&adapter->mfe_lock);
return ret;
err2:
dvb_generic_release(inode, file);
err1:
if (dvbdev->users == -1 && fe->ops.ts_bus_ctrl)
fe->ops.ts_bus_ctrl(fe, 0);
err0:
if (adapter->mfe_shared)
mutex_unlock (&adapter->mfe_lock);
return ret;
}
static int dvb_frontend_release(struct inode *inode, struct file *file)
{
struct dvb_device *dvbdev = file->private_data;
struct dvb_frontend *fe = dvbdev->priv;
struct dvb_frontend_private *fepriv = fe->frontend_priv;
int ret;
dprintk ("%s\n", __func__);
if ((file->f_flags & O_ACCMODE) != O_RDONLY)
fepriv->release_jiffies = jiffies;
ret = dvb_generic_release (inode, file);
if (dvbdev->users == -1) {
if (fepriv->exit != DVB_FE_NO_EXIT) {
fops_put(file->f_op);
file->f_op = NULL;
wake_up(&dvbdev->wait_queue);
}
if (fe->ops.ts_bus_ctrl)
fe->ops.ts_bus_ctrl(fe, 0);
}
return ret;
}
static const struct file_operations dvb_frontend_fops = {
.owner = THIS_MODULE,
.unlocked_ioctl = dvb_generic_ioctl,
.poll = dvb_frontend_poll,
.open = dvb_frontend_open,
.release = dvb_frontend_release,
.llseek = noop_llseek,
};
int dvb_register_frontend(struct dvb_adapter* dvb,
struct dvb_frontend* fe)
{
struct dvb_frontend_private *fepriv;
static const struct dvb_device dvbdev_template = {
.users = ~0,
.writers = 1,
.readers = (~0)-1,
.fops = &dvb_frontend_fops,
.kernel_ioctl = dvb_frontend_ioctl
};
dprintk ("%s\n", __func__);
if (mutex_lock_interruptible(&frontend_mutex))
return -ERESTARTSYS;
fe->frontend_priv = kzalloc(sizeof(struct dvb_frontend_private), GFP_KERNEL);
if (fe->frontend_priv == NULL) {
mutex_unlock(&frontend_mutex);
return -ENOMEM;
}
fepriv = fe->frontend_priv;
sema_init(&fepriv->sem, 1);
init_waitqueue_head (&fepriv->wait_queue);
init_waitqueue_head (&fepriv->events.wait_queue);
mutex_init(&fepriv->events.mtx);
fe->dvb = dvb;
fepriv->inversion = INVERSION_OFF;
printk ("DVB: registering adapter %i frontend %i (%s)...\n",
fe->dvb->num,
fe->id,
fe->ops.info.name);
dvb_register_device (fe->dvb, &fepriv->dvbdev, &dvbdev_template,
fe, DVB_DEVICE_FRONTEND);
mutex_unlock(&frontend_mutex);
return 0;
}
EXPORT_SYMBOL(dvb_register_frontend);
int dvb_unregister_frontend(struct dvb_frontend* fe)
{
struct dvb_frontend_private *fepriv = fe->frontend_priv;
dprintk ("%s\n", __func__);
mutex_lock(&frontend_mutex);
dvb_frontend_stop (fe);
mutex_unlock(&frontend_mutex);
if (fepriv->dvbdev->users < -1)
wait_event(fepriv->dvbdev->wait_queue,
fepriv->dvbdev->users==-1);
mutex_lock(&frontend_mutex);
dvb_unregister_device (fepriv->dvbdev);
/* fe is invalid now */
kfree(fepriv);
mutex_unlock(&frontend_mutex);
return 0;
}
EXPORT_SYMBOL(dvb_unregister_frontend);
#ifdef CONFIG_MEDIA_ATTACH
void dvb_frontend_detach(struct dvb_frontend* fe)
{
void *ptr;
if (fe->ops.release_sec) {
fe->ops.release_sec(fe);
symbol_put_addr(fe->ops.release_sec);
}
if (fe->ops.tuner_ops.release) {
fe->ops.tuner_ops.release(fe);
symbol_put_addr(fe->ops.tuner_ops.release);
}
if (fe->ops.analog_ops.release) {
fe->ops.analog_ops.release(fe);
symbol_put_addr(fe->ops.analog_ops.release);
}
ptr = (void*)fe->ops.release;
if (ptr) {
fe->ops.release(fe);
symbol_put_addr(ptr);
}
}
#else
void dvb_frontend_detach(struct dvb_frontend* fe)
{
if (fe->ops.release_sec)
fe->ops.release_sec(fe);
if (fe->ops.tuner_ops.release)
fe->ops.tuner_ops.release(fe);
if (fe->ops.analog_ops.release)
fe->ops.analog_ops.release(fe);
if (fe->ops.release)
fe->ops.release(fe);
}
#endif
EXPORT_SYMBOL(dvb_frontend_detach);