38e8788066
Josef recently changed the free extent cache to look in the block group cluster for any bitmaps before trying to add a new bitmap for the same offset. This avoids BUG_ON()s due covering duplicate ranges. But it didn't go quite far enough. A given free range might span between one or more bitmaps or free space entries. The code has looping to cover this, but it doesn't check for clustered bitmaps every time. This shuffles our gotos to check for a bitmap in the cluster for every new bitmap entry we try to add. Signed-off-by: Chris Mason <chris.mason@oracle.com>
2691 lines
66 KiB
C
2691 lines
66 KiB
C
/*
|
|
* Copyright (C) 2008 Red Hat. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License v2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 021110-1307, USA.
|
|
*/
|
|
|
|
#include <linux/pagemap.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/math64.h>
|
|
#include "ctree.h"
|
|
#include "free-space-cache.h"
|
|
#include "transaction.h"
|
|
#include "disk-io.h"
|
|
#include "extent_io.h"
|
|
#include "inode-map.h"
|
|
|
|
#define BITS_PER_BITMAP (PAGE_CACHE_SIZE * 8)
|
|
#define MAX_CACHE_BYTES_PER_GIG (32 * 1024)
|
|
|
|
static int link_free_space(struct btrfs_free_space_ctl *ctl,
|
|
struct btrfs_free_space *info);
|
|
|
|
static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
u64 offset)
|
|
{
|
|
struct btrfs_key key;
|
|
struct btrfs_key location;
|
|
struct btrfs_disk_key disk_key;
|
|
struct btrfs_free_space_header *header;
|
|
struct extent_buffer *leaf;
|
|
struct inode *inode = NULL;
|
|
int ret;
|
|
|
|
key.objectid = BTRFS_FREE_SPACE_OBJECTID;
|
|
key.offset = offset;
|
|
key.type = 0;
|
|
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
return ERR_PTR(ret);
|
|
if (ret > 0) {
|
|
btrfs_release_path(path);
|
|
return ERR_PTR(-ENOENT);
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
header = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_free_space_header);
|
|
btrfs_free_space_key(leaf, header, &disk_key);
|
|
btrfs_disk_key_to_cpu(&location, &disk_key);
|
|
btrfs_release_path(path);
|
|
|
|
inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
|
|
if (!inode)
|
|
return ERR_PTR(-ENOENT);
|
|
if (IS_ERR(inode))
|
|
return inode;
|
|
if (is_bad_inode(inode)) {
|
|
iput(inode);
|
|
return ERR_PTR(-ENOENT);
|
|
}
|
|
|
|
inode->i_mapping->flags &= ~__GFP_FS;
|
|
|
|
return inode;
|
|
}
|
|
|
|
struct inode *lookup_free_space_inode(struct btrfs_root *root,
|
|
struct btrfs_block_group_cache
|
|
*block_group, struct btrfs_path *path)
|
|
{
|
|
struct inode *inode = NULL;
|
|
|
|
spin_lock(&block_group->lock);
|
|
if (block_group->inode)
|
|
inode = igrab(block_group->inode);
|
|
spin_unlock(&block_group->lock);
|
|
if (inode)
|
|
return inode;
|
|
|
|
inode = __lookup_free_space_inode(root, path,
|
|
block_group->key.objectid);
|
|
if (IS_ERR(inode))
|
|
return inode;
|
|
|
|
spin_lock(&block_group->lock);
|
|
if (!btrfs_fs_closing(root->fs_info)) {
|
|
block_group->inode = igrab(inode);
|
|
block_group->iref = 1;
|
|
}
|
|
spin_unlock(&block_group->lock);
|
|
|
|
return inode;
|
|
}
|
|
|
|
int __create_free_space_inode(struct btrfs_root *root,
|
|
struct btrfs_trans_handle *trans,
|
|
struct btrfs_path *path, u64 ino, u64 offset)
|
|
{
|
|
struct btrfs_key key;
|
|
struct btrfs_disk_key disk_key;
|
|
struct btrfs_free_space_header *header;
|
|
struct btrfs_inode_item *inode_item;
|
|
struct extent_buffer *leaf;
|
|
int ret;
|
|
|
|
ret = btrfs_insert_empty_inode(trans, root, path, ino);
|
|
if (ret)
|
|
return ret;
|
|
|
|
leaf = path->nodes[0];
|
|
inode_item = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_inode_item);
|
|
btrfs_item_key(leaf, &disk_key, path->slots[0]);
|
|
memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
|
|
sizeof(*inode_item));
|
|
btrfs_set_inode_generation(leaf, inode_item, trans->transid);
|
|
btrfs_set_inode_size(leaf, inode_item, 0);
|
|
btrfs_set_inode_nbytes(leaf, inode_item, 0);
|
|
btrfs_set_inode_uid(leaf, inode_item, 0);
|
|
btrfs_set_inode_gid(leaf, inode_item, 0);
|
|
btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
|
|
btrfs_set_inode_flags(leaf, inode_item, BTRFS_INODE_NOCOMPRESS |
|
|
BTRFS_INODE_PREALLOC | BTRFS_INODE_NODATASUM);
|
|
btrfs_set_inode_nlink(leaf, inode_item, 1);
|
|
btrfs_set_inode_transid(leaf, inode_item, trans->transid);
|
|
btrfs_set_inode_block_group(leaf, inode_item, offset);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
btrfs_release_path(path);
|
|
|
|
key.objectid = BTRFS_FREE_SPACE_OBJECTID;
|
|
key.offset = offset;
|
|
key.type = 0;
|
|
|
|
ret = btrfs_insert_empty_item(trans, root, path, &key,
|
|
sizeof(struct btrfs_free_space_header));
|
|
if (ret < 0) {
|
|
btrfs_release_path(path);
|
|
return ret;
|
|
}
|
|
leaf = path->nodes[0];
|
|
header = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_free_space_header);
|
|
memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
|
|
btrfs_set_free_space_key(leaf, header, &disk_key);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
btrfs_release_path(path);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int create_free_space_inode(struct btrfs_root *root,
|
|
struct btrfs_trans_handle *trans,
|
|
struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_path *path)
|
|
{
|
|
int ret;
|
|
u64 ino;
|
|
|
|
ret = btrfs_find_free_objectid(root, &ino);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return __create_free_space_inode(root, trans, path, ino,
|
|
block_group->key.objectid);
|
|
}
|
|
|
|
int btrfs_truncate_free_space_cache(struct btrfs_root *root,
|
|
struct btrfs_trans_handle *trans,
|
|
struct btrfs_path *path,
|
|
struct inode *inode)
|
|
{
|
|
loff_t oldsize;
|
|
int ret = 0;
|
|
|
|
trans->block_rsv = root->orphan_block_rsv;
|
|
ret = btrfs_block_rsv_check(trans, root,
|
|
root->orphan_block_rsv,
|
|
0, 5);
|
|
if (ret)
|
|
return ret;
|
|
|
|
oldsize = i_size_read(inode);
|
|
btrfs_i_size_write(inode, 0);
|
|
truncate_pagecache(inode, oldsize, 0);
|
|
|
|
/*
|
|
* We don't need an orphan item because truncating the free space cache
|
|
* will never be split across transactions.
|
|
*/
|
|
ret = btrfs_truncate_inode_items(trans, root, inode,
|
|
0, BTRFS_EXTENT_DATA_KEY);
|
|
if (ret) {
|
|
WARN_ON(1);
|
|
return ret;
|
|
}
|
|
|
|
ret = btrfs_update_inode(trans, root, inode);
|
|
return ret;
|
|
}
|
|
|
|
static int readahead_cache(struct inode *inode)
|
|
{
|
|
struct file_ra_state *ra;
|
|
unsigned long last_index;
|
|
|
|
ra = kzalloc(sizeof(*ra), GFP_NOFS);
|
|
if (!ra)
|
|
return -ENOMEM;
|
|
|
|
file_ra_state_init(ra, inode->i_mapping);
|
|
last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
|
|
|
|
page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
|
|
|
|
kfree(ra);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
|
|
struct btrfs_free_space_ctl *ctl,
|
|
struct btrfs_path *path, u64 offset)
|
|
{
|
|
struct btrfs_free_space_header *header;
|
|
struct extent_buffer *leaf;
|
|
struct page *page;
|
|
u32 *checksums = NULL, *crc;
|
|
char *disk_crcs = NULL;
|
|
struct btrfs_key key;
|
|
struct list_head bitmaps;
|
|
u64 num_entries;
|
|
u64 num_bitmaps;
|
|
u64 generation;
|
|
u32 cur_crc = ~(u32)0;
|
|
pgoff_t index = 0;
|
|
unsigned long first_page_offset;
|
|
int num_checksums;
|
|
int ret = 0;
|
|
|
|
INIT_LIST_HEAD(&bitmaps);
|
|
|
|
/* Nothing in the space cache, goodbye */
|
|
if (!i_size_read(inode))
|
|
goto out;
|
|
|
|
key.objectid = BTRFS_FREE_SPACE_OBJECTID;
|
|
key.offset = offset;
|
|
key.type = 0;
|
|
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
else if (ret > 0) {
|
|
btrfs_release_path(path);
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
ret = -1;
|
|
|
|
leaf = path->nodes[0];
|
|
header = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_free_space_header);
|
|
num_entries = btrfs_free_space_entries(leaf, header);
|
|
num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
|
|
generation = btrfs_free_space_generation(leaf, header);
|
|
btrfs_release_path(path);
|
|
|
|
if (BTRFS_I(inode)->generation != generation) {
|
|
printk(KERN_ERR "btrfs: free space inode generation (%llu) did"
|
|
" not match free space cache generation (%llu)\n",
|
|
(unsigned long long)BTRFS_I(inode)->generation,
|
|
(unsigned long long)generation);
|
|
goto out;
|
|
}
|
|
|
|
if (!num_entries)
|
|
goto out;
|
|
|
|
/* Setup everything for doing checksumming */
|
|
num_checksums = i_size_read(inode) / PAGE_CACHE_SIZE;
|
|
checksums = crc = kzalloc(sizeof(u32) * num_checksums, GFP_NOFS);
|
|
if (!checksums)
|
|
goto out;
|
|
first_page_offset = (sizeof(u32) * num_checksums) + sizeof(u64);
|
|
disk_crcs = kzalloc(first_page_offset, GFP_NOFS);
|
|
if (!disk_crcs)
|
|
goto out;
|
|
|
|
ret = readahead_cache(inode);
|
|
if (ret)
|
|
goto out;
|
|
|
|
while (1) {
|
|
struct btrfs_free_space_entry *entry;
|
|
struct btrfs_free_space *e;
|
|
void *addr;
|
|
unsigned long offset = 0;
|
|
unsigned long start_offset = 0;
|
|
int need_loop = 0;
|
|
|
|
if (!num_entries && !num_bitmaps)
|
|
break;
|
|
|
|
if (index == 0) {
|
|
start_offset = first_page_offset;
|
|
offset = start_offset;
|
|
}
|
|
|
|
page = grab_cache_page(inode->i_mapping, index);
|
|
if (!page)
|
|
goto free_cache;
|
|
|
|
if (!PageUptodate(page)) {
|
|
btrfs_readpage(NULL, page);
|
|
lock_page(page);
|
|
if (!PageUptodate(page)) {
|
|
unlock_page(page);
|
|
page_cache_release(page);
|
|
printk(KERN_ERR "btrfs: error reading free "
|
|
"space cache\n");
|
|
goto free_cache;
|
|
}
|
|
}
|
|
addr = kmap(page);
|
|
|
|
if (index == 0) {
|
|
u64 *gen;
|
|
|
|
memcpy(disk_crcs, addr, first_page_offset);
|
|
gen = addr + (sizeof(u32) * num_checksums);
|
|
if (*gen != BTRFS_I(inode)->generation) {
|
|
printk(KERN_ERR "btrfs: space cache generation"
|
|
" (%llu) does not match inode (%llu)\n",
|
|
(unsigned long long)*gen,
|
|
(unsigned long long)
|
|
BTRFS_I(inode)->generation);
|
|
kunmap(page);
|
|
unlock_page(page);
|
|
page_cache_release(page);
|
|
goto free_cache;
|
|
}
|
|
crc = (u32 *)disk_crcs;
|
|
}
|
|
entry = addr + start_offset;
|
|
|
|
/* First lets check our crc before we do anything fun */
|
|
cur_crc = ~(u32)0;
|
|
cur_crc = btrfs_csum_data(root, addr + start_offset, cur_crc,
|
|
PAGE_CACHE_SIZE - start_offset);
|
|
btrfs_csum_final(cur_crc, (char *)&cur_crc);
|
|
if (cur_crc != *crc) {
|
|
printk(KERN_ERR "btrfs: crc mismatch for page %lu\n",
|
|
index);
|
|
kunmap(page);
|
|
unlock_page(page);
|
|
page_cache_release(page);
|
|
goto free_cache;
|
|
}
|
|
crc++;
|
|
|
|
while (1) {
|
|
if (!num_entries)
|
|
break;
|
|
|
|
need_loop = 1;
|
|
e = kmem_cache_zalloc(btrfs_free_space_cachep,
|
|
GFP_NOFS);
|
|
if (!e) {
|
|
kunmap(page);
|
|
unlock_page(page);
|
|
page_cache_release(page);
|
|
goto free_cache;
|
|
}
|
|
|
|
e->offset = le64_to_cpu(entry->offset);
|
|
e->bytes = le64_to_cpu(entry->bytes);
|
|
if (!e->bytes) {
|
|
kunmap(page);
|
|
kmem_cache_free(btrfs_free_space_cachep, e);
|
|
unlock_page(page);
|
|
page_cache_release(page);
|
|
goto free_cache;
|
|
}
|
|
|
|
if (entry->type == BTRFS_FREE_SPACE_EXTENT) {
|
|
spin_lock(&ctl->tree_lock);
|
|
ret = link_free_space(ctl, e);
|
|
spin_unlock(&ctl->tree_lock);
|
|
if (ret) {
|
|
printk(KERN_ERR "Duplicate entries in "
|
|
"free space cache, dumping\n");
|
|
kunmap(page);
|
|
unlock_page(page);
|
|
page_cache_release(page);
|
|
goto free_cache;
|
|
}
|
|
} else {
|
|
e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
|
|
if (!e->bitmap) {
|
|
kunmap(page);
|
|
kmem_cache_free(
|
|
btrfs_free_space_cachep, e);
|
|
unlock_page(page);
|
|
page_cache_release(page);
|
|
goto free_cache;
|
|
}
|
|
spin_lock(&ctl->tree_lock);
|
|
ret = link_free_space(ctl, e);
|
|
ctl->total_bitmaps++;
|
|
ctl->op->recalc_thresholds(ctl);
|
|
spin_unlock(&ctl->tree_lock);
|
|
if (ret) {
|
|
printk(KERN_ERR "Duplicate entries in "
|
|
"free space cache, dumping\n");
|
|
kunmap(page);
|
|
unlock_page(page);
|
|
page_cache_release(page);
|
|
goto free_cache;
|
|
}
|
|
list_add_tail(&e->list, &bitmaps);
|
|
}
|
|
|
|
num_entries--;
|
|
offset += sizeof(struct btrfs_free_space_entry);
|
|
if (offset + sizeof(struct btrfs_free_space_entry) >=
|
|
PAGE_CACHE_SIZE)
|
|
break;
|
|
entry++;
|
|
}
|
|
|
|
/*
|
|
* We read an entry out of this page, we need to move on to the
|
|
* next page.
|
|
*/
|
|
if (need_loop) {
|
|
kunmap(page);
|
|
goto next;
|
|
}
|
|
|
|
/*
|
|
* We add the bitmaps at the end of the entries in order that
|
|
* the bitmap entries are added to the cache.
|
|
*/
|
|
e = list_entry(bitmaps.next, struct btrfs_free_space, list);
|
|
list_del_init(&e->list);
|
|
memcpy(e->bitmap, addr, PAGE_CACHE_SIZE);
|
|
kunmap(page);
|
|
num_bitmaps--;
|
|
next:
|
|
unlock_page(page);
|
|
page_cache_release(page);
|
|
index++;
|
|
}
|
|
|
|
ret = 1;
|
|
out:
|
|
kfree(checksums);
|
|
kfree(disk_crcs);
|
|
return ret;
|
|
free_cache:
|
|
__btrfs_remove_free_space_cache(ctl);
|
|
goto out;
|
|
}
|
|
|
|
int load_free_space_cache(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_block_group_cache *block_group)
|
|
{
|
|
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
|
|
struct btrfs_root *root = fs_info->tree_root;
|
|
struct inode *inode;
|
|
struct btrfs_path *path;
|
|
int ret;
|
|
bool matched;
|
|
u64 used = btrfs_block_group_used(&block_group->item);
|
|
|
|
/*
|
|
* If we're unmounting then just return, since this does a search on the
|
|
* normal root and not the commit root and we could deadlock.
|
|
*/
|
|
if (btrfs_fs_closing(fs_info))
|
|
return 0;
|
|
|
|
/*
|
|
* If this block group has been marked to be cleared for one reason or
|
|
* another then we can't trust the on disk cache, so just return.
|
|
*/
|
|
spin_lock(&block_group->lock);
|
|
if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
|
|
spin_unlock(&block_group->lock);
|
|
return 0;
|
|
}
|
|
spin_unlock(&block_group->lock);
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return 0;
|
|
|
|
inode = lookup_free_space_inode(root, block_group, path);
|
|
if (IS_ERR(inode)) {
|
|
btrfs_free_path(path);
|
|
return 0;
|
|
}
|
|
|
|
ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
|
|
path, block_group->key.objectid);
|
|
btrfs_free_path(path);
|
|
if (ret <= 0)
|
|
goto out;
|
|
|
|
spin_lock(&ctl->tree_lock);
|
|
matched = (ctl->free_space == (block_group->key.offset - used -
|
|
block_group->bytes_super));
|
|
spin_unlock(&ctl->tree_lock);
|
|
|
|
if (!matched) {
|
|
__btrfs_remove_free_space_cache(ctl);
|
|
printk(KERN_ERR "block group %llu has an wrong amount of free "
|
|
"space\n", block_group->key.objectid);
|
|
ret = -1;
|
|
}
|
|
out:
|
|
if (ret < 0) {
|
|
/* This cache is bogus, make sure it gets cleared */
|
|
spin_lock(&block_group->lock);
|
|
block_group->disk_cache_state = BTRFS_DC_CLEAR;
|
|
spin_unlock(&block_group->lock);
|
|
ret = 0;
|
|
|
|
printk(KERN_ERR "btrfs: failed to load free space cache "
|
|
"for block group %llu\n", block_group->key.objectid);
|
|
}
|
|
|
|
iput(inode);
|
|
return ret;
|
|
}
|
|
|
|
int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
|
|
struct btrfs_free_space_ctl *ctl,
|
|
struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_trans_handle *trans,
|
|
struct btrfs_path *path, u64 offset)
|
|
{
|
|
struct btrfs_free_space_header *header;
|
|
struct extent_buffer *leaf;
|
|
struct rb_node *node;
|
|
struct list_head *pos, *n;
|
|
struct page **pages;
|
|
struct page *page;
|
|
struct extent_state *cached_state = NULL;
|
|
struct btrfs_free_cluster *cluster = NULL;
|
|
struct extent_io_tree *unpin = NULL;
|
|
struct list_head bitmap_list;
|
|
struct btrfs_key key;
|
|
u64 start, end, len;
|
|
u64 bytes = 0;
|
|
u32 *crc, *checksums;
|
|
unsigned long first_page_offset;
|
|
int index = 0, num_pages = 0;
|
|
int entries = 0;
|
|
int bitmaps = 0;
|
|
int ret = -1;
|
|
bool next_page = false;
|
|
bool out_of_space = false;
|
|
|
|
INIT_LIST_HEAD(&bitmap_list);
|
|
|
|
node = rb_first(&ctl->free_space_offset);
|
|
if (!node)
|
|
return 0;
|
|
|
|
if (!i_size_read(inode))
|
|
return -1;
|
|
|
|
num_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
|
|
PAGE_CACHE_SHIFT;
|
|
|
|
/* Since the first page has all of our checksums and our generation we
|
|
* need to calculate the offset into the page that we can start writing
|
|
* our entries.
|
|
*/
|
|
first_page_offset = (sizeof(u32) * num_pages) + sizeof(u64);
|
|
|
|
filemap_write_and_wait(inode->i_mapping);
|
|
btrfs_wait_ordered_range(inode, inode->i_size &
|
|
~(root->sectorsize - 1), (u64)-1);
|
|
|
|
/* make sure we don't overflow that first page */
|
|
if (first_page_offset + sizeof(struct btrfs_free_space_entry) >= PAGE_CACHE_SIZE) {
|
|
/* this is really the same as running out of space, where we also return 0 */
|
|
printk(KERN_CRIT "Btrfs: free space cache was too big for the crc page\n");
|
|
ret = 0;
|
|
goto out_update;
|
|
}
|
|
|
|
/* We need a checksum per page. */
|
|
crc = checksums = kzalloc(sizeof(u32) * num_pages, GFP_NOFS);
|
|
if (!crc)
|
|
return -1;
|
|
|
|
pages = kzalloc(sizeof(struct page *) * num_pages, GFP_NOFS);
|
|
if (!pages) {
|
|
kfree(crc);
|
|
return -1;
|
|
}
|
|
|
|
/* Get the cluster for this block_group if it exists */
|
|
if (block_group && !list_empty(&block_group->cluster_list))
|
|
cluster = list_entry(block_group->cluster_list.next,
|
|
struct btrfs_free_cluster,
|
|
block_group_list);
|
|
|
|
/*
|
|
* We shouldn't have switched the pinned extents yet so this is the
|
|
* right one
|
|
*/
|
|
unpin = root->fs_info->pinned_extents;
|
|
|
|
/*
|
|
* Lock all pages first so we can lock the extent safely.
|
|
*
|
|
* NOTE: Because we hold the ref the entire time we're going to write to
|
|
* the page find_get_page should never fail, so we don't do a check
|
|
* after find_get_page at this point. Just putting this here so people
|
|
* know and don't freak out.
|
|
*/
|
|
while (index < num_pages) {
|
|
page = grab_cache_page(inode->i_mapping, index);
|
|
if (!page) {
|
|
int i;
|
|
|
|
for (i = 0; i < num_pages; i++) {
|
|
unlock_page(pages[i]);
|
|
page_cache_release(pages[i]);
|
|
}
|
|
goto out_free;
|
|
}
|
|
pages[index] = page;
|
|
index++;
|
|
}
|
|
|
|
index = 0;
|
|
lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
|
|
0, &cached_state, GFP_NOFS);
|
|
|
|
/*
|
|
* When searching for pinned extents, we need to start at our start
|
|
* offset.
|
|
*/
|
|
if (block_group)
|
|
start = block_group->key.objectid;
|
|
|
|
/* Write out the extent entries */
|
|
do {
|
|
struct btrfs_free_space_entry *entry;
|
|
void *addr;
|
|
unsigned long offset = 0;
|
|
unsigned long start_offset = 0;
|
|
|
|
next_page = false;
|
|
|
|
if (index == 0) {
|
|
start_offset = first_page_offset;
|
|
offset = start_offset;
|
|
}
|
|
|
|
if (index >= num_pages) {
|
|
out_of_space = true;
|
|
break;
|
|
}
|
|
|
|
page = pages[index];
|
|
|
|
addr = kmap(page);
|
|
entry = addr + start_offset;
|
|
|
|
memset(addr, 0, PAGE_CACHE_SIZE);
|
|
while (node && !next_page) {
|
|
struct btrfs_free_space *e;
|
|
|
|
e = rb_entry(node, struct btrfs_free_space, offset_index);
|
|
entries++;
|
|
|
|
entry->offset = cpu_to_le64(e->offset);
|
|
entry->bytes = cpu_to_le64(e->bytes);
|
|
if (e->bitmap) {
|
|
entry->type = BTRFS_FREE_SPACE_BITMAP;
|
|
list_add_tail(&e->list, &bitmap_list);
|
|
bitmaps++;
|
|
} else {
|
|
entry->type = BTRFS_FREE_SPACE_EXTENT;
|
|
}
|
|
node = rb_next(node);
|
|
if (!node && cluster) {
|
|
node = rb_first(&cluster->root);
|
|
cluster = NULL;
|
|
}
|
|
offset += sizeof(struct btrfs_free_space_entry);
|
|
if (offset + sizeof(struct btrfs_free_space_entry) >=
|
|
PAGE_CACHE_SIZE)
|
|
next_page = true;
|
|
entry++;
|
|
}
|
|
|
|
/*
|
|
* We want to add any pinned extents to our free space cache
|
|
* so we don't leak the space
|
|
*/
|
|
while (block_group && !next_page &&
|
|
(start < block_group->key.objectid +
|
|
block_group->key.offset)) {
|
|
ret = find_first_extent_bit(unpin, start, &start, &end,
|
|
EXTENT_DIRTY);
|
|
if (ret) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
/* This pinned extent is out of our range */
|
|
if (start >= block_group->key.objectid +
|
|
block_group->key.offset)
|
|
break;
|
|
|
|
len = block_group->key.objectid +
|
|
block_group->key.offset - start;
|
|
len = min(len, end + 1 - start);
|
|
|
|
entries++;
|
|
entry->offset = cpu_to_le64(start);
|
|
entry->bytes = cpu_to_le64(len);
|
|
entry->type = BTRFS_FREE_SPACE_EXTENT;
|
|
|
|
start = end + 1;
|
|
offset += sizeof(struct btrfs_free_space_entry);
|
|
if (offset + sizeof(struct btrfs_free_space_entry) >=
|
|
PAGE_CACHE_SIZE)
|
|
next_page = true;
|
|
entry++;
|
|
}
|
|
*crc = ~(u32)0;
|
|
*crc = btrfs_csum_data(root, addr + start_offset, *crc,
|
|
PAGE_CACHE_SIZE - start_offset);
|
|
kunmap(page);
|
|
|
|
btrfs_csum_final(*crc, (char *)crc);
|
|
crc++;
|
|
|
|
bytes += PAGE_CACHE_SIZE;
|
|
|
|
index++;
|
|
} while (node || next_page);
|
|
|
|
/* Write out the bitmaps */
|
|
list_for_each_safe(pos, n, &bitmap_list) {
|
|
void *addr;
|
|
struct btrfs_free_space *entry =
|
|
list_entry(pos, struct btrfs_free_space, list);
|
|
|
|
if (index >= num_pages) {
|
|
out_of_space = true;
|
|
break;
|
|
}
|
|
page = pages[index];
|
|
|
|
addr = kmap(page);
|
|
memcpy(addr, entry->bitmap, PAGE_CACHE_SIZE);
|
|
*crc = ~(u32)0;
|
|
*crc = btrfs_csum_data(root, addr, *crc, PAGE_CACHE_SIZE);
|
|
kunmap(page);
|
|
btrfs_csum_final(*crc, (char *)crc);
|
|
crc++;
|
|
bytes += PAGE_CACHE_SIZE;
|
|
|
|
list_del_init(&entry->list);
|
|
index++;
|
|
}
|
|
|
|
if (out_of_space) {
|
|
btrfs_drop_pages(pages, num_pages);
|
|
unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
|
|
i_size_read(inode) - 1, &cached_state,
|
|
GFP_NOFS);
|
|
ret = 0;
|
|
goto out_free;
|
|
}
|
|
|
|
/* Zero out the rest of the pages just to make sure */
|
|
while (index < num_pages) {
|
|
void *addr;
|
|
|
|
page = pages[index];
|
|
addr = kmap(page);
|
|
memset(addr, 0, PAGE_CACHE_SIZE);
|
|
kunmap(page);
|
|
bytes += PAGE_CACHE_SIZE;
|
|
index++;
|
|
}
|
|
|
|
/* Write the checksums and trans id to the first page */
|
|
{
|
|
void *addr;
|
|
u64 *gen;
|
|
|
|
page = pages[0];
|
|
|
|
addr = kmap(page);
|
|
memcpy(addr, checksums, sizeof(u32) * num_pages);
|
|
gen = addr + (sizeof(u32) * num_pages);
|
|
*gen = trans->transid;
|
|
kunmap(page);
|
|
}
|
|
|
|
ret = btrfs_dirty_pages(root, inode, pages, num_pages, 0,
|
|
bytes, &cached_state);
|
|
btrfs_drop_pages(pages, num_pages);
|
|
unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
|
|
i_size_read(inode) - 1, &cached_state, GFP_NOFS);
|
|
|
|
if (ret) {
|
|
ret = 0;
|
|
goto out_free;
|
|
}
|
|
|
|
BTRFS_I(inode)->generation = trans->transid;
|
|
|
|
filemap_write_and_wait(inode->i_mapping);
|
|
|
|
key.objectid = BTRFS_FREE_SPACE_OBJECTID;
|
|
key.offset = offset;
|
|
key.type = 0;
|
|
|
|
ret = btrfs_search_slot(trans, root, &key, path, 1, 1);
|
|
if (ret < 0) {
|
|
ret = -1;
|
|
clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, bytes - 1,
|
|
EXTENT_DIRTY | EXTENT_DELALLOC |
|
|
EXTENT_DO_ACCOUNTING, 0, 0, NULL, GFP_NOFS);
|
|
goto out_free;
|
|
}
|
|
leaf = path->nodes[0];
|
|
if (ret > 0) {
|
|
struct btrfs_key found_key;
|
|
BUG_ON(!path->slots[0]);
|
|
path->slots[0]--;
|
|
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
|
|
if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
|
|
found_key.offset != offset) {
|
|
ret = -1;
|
|
clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, bytes - 1,
|
|
EXTENT_DIRTY | EXTENT_DELALLOC |
|
|
EXTENT_DO_ACCOUNTING, 0, 0, NULL,
|
|
GFP_NOFS);
|
|
btrfs_release_path(path);
|
|
goto out_free;
|
|
}
|
|
}
|
|
header = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_free_space_header);
|
|
btrfs_set_free_space_entries(leaf, header, entries);
|
|
btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
|
|
btrfs_set_free_space_generation(leaf, header, trans->transid);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
btrfs_release_path(path);
|
|
|
|
ret = 1;
|
|
|
|
out_free:
|
|
kfree(checksums);
|
|
kfree(pages);
|
|
|
|
out_update:
|
|
if (ret != 1) {
|
|
invalidate_inode_pages2_range(inode->i_mapping, 0, index);
|
|
BTRFS_I(inode)->generation = 0;
|
|
}
|
|
btrfs_update_inode(trans, root, inode);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_write_out_cache(struct btrfs_root *root,
|
|
struct btrfs_trans_handle *trans,
|
|
struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_path *path)
|
|
{
|
|
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
|
|
struct inode *inode;
|
|
int ret = 0;
|
|
|
|
root = root->fs_info->tree_root;
|
|
|
|
spin_lock(&block_group->lock);
|
|
if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
|
|
spin_unlock(&block_group->lock);
|
|
return 0;
|
|
}
|
|
spin_unlock(&block_group->lock);
|
|
|
|
inode = lookup_free_space_inode(root, block_group, path);
|
|
if (IS_ERR(inode))
|
|
return 0;
|
|
|
|
ret = __btrfs_write_out_cache(root, inode, ctl, block_group, trans,
|
|
path, block_group->key.objectid);
|
|
if (ret < 0) {
|
|
spin_lock(&block_group->lock);
|
|
block_group->disk_cache_state = BTRFS_DC_ERROR;
|
|
spin_unlock(&block_group->lock);
|
|
ret = 0;
|
|
|
|
printk(KERN_ERR "btrfs: failed to write free space cace "
|
|
"for block group %llu\n", block_group->key.objectid);
|
|
}
|
|
|
|
iput(inode);
|
|
return ret;
|
|
}
|
|
|
|
static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
|
|
u64 offset)
|
|
{
|
|
BUG_ON(offset < bitmap_start);
|
|
offset -= bitmap_start;
|
|
return (unsigned long)(div_u64(offset, unit));
|
|
}
|
|
|
|
static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
|
|
{
|
|
return (unsigned long)(div_u64(bytes, unit));
|
|
}
|
|
|
|
static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
|
|
u64 offset)
|
|
{
|
|
u64 bitmap_start;
|
|
u64 bytes_per_bitmap;
|
|
|
|
bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
|
|
bitmap_start = offset - ctl->start;
|
|
bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
|
|
bitmap_start *= bytes_per_bitmap;
|
|
bitmap_start += ctl->start;
|
|
|
|
return bitmap_start;
|
|
}
|
|
|
|
static int tree_insert_offset(struct rb_root *root, u64 offset,
|
|
struct rb_node *node, int bitmap)
|
|
{
|
|
struct rb_node **p = &root->rb_node;
|
|
struct rb_node *parent = NULL;
|
|
struct btrfs_free_space *info;
|
|
|
|
while (*p) {
|
|
parent = *p;
|
|
info = rb_entry(parent, struct btrfs_free_space, offset_index);
|
|
|
|
if (offset < info->offset) {
|
|
p = &(*p)->rb_left;
|
|
} else if (offset > info->offset) {
|
|
p = &(*p)->rb_right;
|
|
} else {
|
|
/*
|
|
* we could have a bitmap entry and an extent entry
|
|
* share the same offset. If this is the case, we want
|
|
* the extent entry to always be found first if we do a
|
|
* linear search through the tree, since we want to have
|
|
* the quickest allocation time, and allocating from an
|
|
* extent is faster than allocating from a bitmap. So
|
|
* if we're inserting a bitmap and we find an entry at
|
|
* this offset, we want to go right, or after this entry
|
|
* logically. If we are inserting an extent and we've
|
|
* found a bitmap, we want to go left, or before
|
|
* logically.
|
|
*/
|
|
if (bitmap) {
|
|
if (info->bitmap) {
|
|
WARN_ON_ONCE(1);
|
|
return -EEXIST;
|
|
}
|
|
p = &(*p)->rb_right;
|
|
} else {
|
|
if (!info->bitmap) {
|
|
WARN_ON_ONCE(1);
|
|
return -EEXIST;
|
|
}
|
|
p = &(*p)->rb_left;
|
|
}
|
|
}
|
|
}
|
|
|
|
rb_link_node(node, parent, p);
|
|
rb_insert_color(node, root);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* searches the tree for the given offset.
|
|
*
|
|
* fuzzy - If this is set, then we are trying to make an allocation, and we just
|
|
* want a section that has at least bytes size and comes at or after the given
|
|
* offset.
|
|
*/
|
|
static struct btrfs_free_space *
|
|
tree_search_offset(struct btrfs_free_space_ctl *ctl,
|
|
u64 offset, int bitmap_only, int fuzzy)
|
|
{
|
|
struct rb_node *n = ctl->free_space_offset.rb_node;
|
|
struct btrfs_free_space *entry, *prev = NULL;
|
|
|
|
/* find entry that is closest to the 'offset' */
|
|
while (1) {
|
|
if (!n) {
|
|
entry = NULL;
|
|
break;
|
|
}
|
|
|
|
entry = rb_entry(n, struct btrfs_free_space, offset_index);
|
|
prev = entry;
|
|
|
|
if (offset < entry->offset)
|
|
n = n->rb_left;
|
|
else if (offset > entry->offset)
|
|
n = n->rb_right;
|
|
else
|
|
break;
|
|
}
|
|
|
|
if (bitmap_only) {
|
|
if (!entry)
|
|
return NULL;
|
|
if (entry->bitmap)
|
|
return entry;
|
|
|
|
/*
|
|
* bitmap entry and extent entry may share same offset,
|
|
* in that case, bitmap entry comes after extent entry.
|
|
*/
|
|
n = rb_next(n);
|
|
if (!n)
|
|
return NULL;
|
|
entry = rb_entry(n, struct btrfs_free_space, offset_index);
|
|
if (entry->offset != offset)
|
|
return NULL;
|
|
|
|
WARN_ON(!entry->bitmap);
|
|
return entry;
|
|
} else if (entry) {
|
|
if (entry->bitmap) {
|
|
/*
|
|
* if previous extent entry covers the offset,
|
|
* we should return it instead of the bitmap entry
|
|
*/
|
|
n = &entry->offset_index;
|
|
while (1) {
|
|
n = rb_prev(n);
|
|
if (!n)
|
|
break;
|
|
prev = rb_entry(n, struct btrfs_free_space,
|
|
offset_index);
|
|
if (!prev->bitmap) {
|
|
if (prev->offset + prev->bytes > offset)
|
|
entry = prev;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return entry;
|
|
}
|
|
|
|
if (!prev)
|
|
return NULL;
|
|
|
|
/* find last entry before the 'offset' */
|
|
entry = prev;
|
|
if (entry->offset > offset) {
|
|
n = rb_prev(&entry->offset_index);
|
|
if (n) {
|
|
entry = rb_entry(n, struct btrfs_free_space,
|
|
offset_index);
|
|
BUG_ON(entry->offset > offset);
|
|
} else {
|
|
if (fuzzy)
|
|
return entry;
|
|
else
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
if (entry->bitmap) {
|
|
n = &entry->offset_index;
|
|
while (1) {
|
|
n = rb_prev(n);
|
|
if (!n)
|
|
break;
|
|
prev = rb_entry(n, struct btrfs_free_space,
|
|
offset_index);
|
|
if (!prev->bitmap) {
|
|
if (prev->offset + prev->bytes > offset)
|
|
return prev;
|
|
break;
|
|
}
|
|
}
|
|
if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
|
|
return entry;
|
|
} else if (entry->offset + entry->bytes > offset)
|
|
return entry;
|
|
|
|
if (!fuzzy)
|
|
return NULL;
|
|
|
|
while (1) {
|
|
if (entry->bitmap) {
|
|
if (entry->offset + BITS_PER_BITMAP *
|
|
ctl->unit > offset)
|
|
break;
|
|
} else {
|
|
if (entry->offset + entry->bytes > offset)
|
|
break;
|
|
}
|
|
|
|
n = rb_next(&entry->offset_index);
|
|
if (!n)
|
|
return NULL;
|
|
entry = rb_entry(n, struct btrfs_free_space, offset_index);
|
|
}
|
|
return entry;
|
|
}
|
|
|
|
static inline void
|
|
__unlink_free_space(struct btrfs_free_space_ctl *ctl,
|
|
struct btrfs_free_space *info)
|
|
{
|
|
rb_erase(&info->offset_index, &ctl->free_space_offset);
|
|
ctl->free_extents--;
|
|
}
|
|
|
|
static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
|
|
struct btrfs_free_space *info)
|
|
{
|
|
__unlink_free_space(ctl, info);
|
|
ctl->free_space -= info->bytes;
|
|
}
|
|
|
|
static int link_free_space(struct btrfs_free_space_ctl *ctl,
|
|
struct btrfs_free_space *info)
|
|
{
|
|
int ret = 0;
|
|
|
|
BUG_ON(!info->bitmap && !info->bytes);
|
|
ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
|
|
&info->offset_index, (info->bitmap != NULL));
|
|
if (ret)
|
|
return ret;
|
|
|
|
ctl->free_space += info->bytes;
|
|
ctl->free_extents++;
|
|
return ret;
|
|
}
|
|
|
|
static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
|
|
{
|
|
struct btrfs_block_group_cache *block_group = ctl->private;
|
|
u64 max_bytes;
|
|
u64 bitmap_bytes;
|
|
u64 extent_bytes;
|
|
u64 size = block_group->key.offset;
|
|
u64 bytes_per_bg = BITS_PER_BITMAP * block_group->sectorsize;
|
|
int max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
|
|
|
|
BUG_ON(ctl->total_bitmaps > max_bitmaps);
|
|
|
|
/*
|
|
* The goal is to keep the total amount of memory used per 1gb of space
|
|
* at or below 32k, so we need to adjust how much memory we allow to be
|
|
* used by extent based free space tracking
|
|
*/
|
|
if (size < 1024 * 1024 * 1024)
|
|
max_bytes = MAX_CACHE_BYTES_PER_GIG;
|
|
else
|
|
max_bytes = MAX_CACHE_BYTES_PER_GIG *
|
|
div64_u64(size, 1024 * 1024 * 1024);
|
|
|
|
/*
|
|
* we want to account for 1 more bitmap than what we have so we can make
|
|
* sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
|
|
* we add more bitmaps.
|
|
*/
|
|
bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE;
|
|
|
|
if (bitmap_bytes >= max_bytes) {
|
|
ctl->extents_thresh = 0;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* we want the extent entry threshold to always be at most 1/2 the maxw
|
|
* bytes we can have, or whatever is less than that.
|
|
*/
|
|
extent_bytes = max_bytes - bitmap_bytes;
|
|
extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2));
|
|
|
|
ctl->extents_thresh =
|
|
div64_u64(extent_bytes, (sizeof(struct btrfs_free_space)));
|
|
}
|
|
|
|
static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
|
|
struct btrfs_free_space *info, u64 offset,
|
|
u64 bytes)
|
|
{
|
|
unsigned long start, count;
|
|
|
|
start = offset_to_bit(info->offset, ctl->unit, offset);
|
|
count = bytes_to_bits(bytes, ctl->unit);
|
|
BUG_ON(start + count > BITS_PER_BITMAP);
|
|
|
|
bitmap_clear(info->bitmap, start, count);
|
|
|
|
info->bytes -= bytes;
|
|
ctl->free_space -= bytes;
|
|
}
|
|
|
|
static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
|
|
struct btrfs_free_space *info, u64 offset,
|
|
u64 bytes)
|
|
{
|
|
unsigned long start, count;
|
|
|
|
start = offset_to_bit(info->offset, ctl->unit, offset);
|
|
count = bytes_to_bits(bytes, ctl->unit);
|
|
BUG_ON(start + count > BITS_PER_BITMAP);
|
|
|
|
bitmap_set(info->bitmap, start, count);
|
|
|
|
info->bytes += bytes;
|
|
ctl->free_space += bytes;
|
|
}
|
|
|
|
static int search_bitmap(struct btrfs_free_space_ctl *ctl,
|
|
struct btrfs_free_space *bitmap_info, u64 *offset,
|
|
u64 *bytes)
|
|
{
|
|
unsigned long found_bits = 0;
|
|
unsigned long bits, i;
|
|
unsigned long next_zero;
|
|
|
|
i = offset_to_bit(bitmap_info->offset, ctl->unit,
|
|
max_t(u64, *offset, bitmap_info->offset));
|
|
bits = bytes_to_bits(*bytes, ctl->unit);
|
|
|
|
for (i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i);
|
|
i < BITS_PER_BITMAP;
|
|
i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i + 1)) {
|
|
next_zero = find_next_zero_bit(bitmap_info->bitmap,
|
|
BITS_PER_BITMAP, i);
|
|
if ((next_zero - i) >= bits) {
|
|
found_bits = next_zero - i;
|
|
break;
|
|
}
|
|
i = next_zero;
|
|
}
|
|
|
|
if (found_bits) {
|
|
*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
|
|
*bytes = (u64)(found_bits) * ctl->unit;
|
|
return 0;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
static struct btrfs_free_space *
|
|
find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes)
|
|
{
|
|
struct btrfs_free_space *entry;
|
|
struct rb_node *node;
|
|
int ret;
|
|
|
|
if (!ctl->free_space_offset.rb_node)
|
|
return NULL;
|
|
|
|
entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
|
|
if (!entry)
|
|
return NULL;
|
|
|
|
for (node = &entry->offset_index; node; node = rb_next(node)) {
|
|
entry = rb_entry(node, struct btrfs_free_space, offset_index);
|
|
if (entry->bytes < *bytes)
|
|
continue;
|
|
|
|
if (entry->bitmap) {
|
|
ret = search_bitmap(ctl, entry, offset, bytes);
|
|
if (!ret)
|
|
return entry;
|
|
continue;
|
|
}
|
|
|
|
*offset = entry->offset;
|
|
*bytes = entry->bytes;
|
|
return entry;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
|
|
struct btrfs_free_space *info, u64 offset)
|
|
{
|
|
info->offset = offset_to_bitmap(ctl, offset);
|
|
info->bytes = 0;
|
|
link_free_space(ctl, info);
|
|
ctl->total_bitmaps++;
|
|
|
|
ctl->op->recalc_thresholds(ctl);
|
|
}
|
|
|
|
static void free_bitmap(struct btrfs_free_space_ctl *ctl,
|
|
struct btrfs_free_space *bitmap_info)
|
|
{
|
|
unlink_free_space(ctl, bitmap_info);
|
|
kfree(bitmap_info->bitmap);
|
|
kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
|
|
ctl->total_bitmaps--;
|
|
ctl->op->recalc_thresholds(ctl);
|
|
}
|
|
|
|
static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
|
|
struct btrfs_free_space *bitmap_info,
|
|
u64 *offset, u64 *bytes)
|
|
{
|
|
u64 end;
|
|
u64 search_start, search_bytes;
|
|
int ret;
|
|
|
|
again:
|
|
end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
|
|
|
|
/*
|
|
* XXX - this can go away after a few releases.
|
|
*
|
|
* since the only user of btrfs_remove_free_space is the tree logging
|
|
* stuff, and the only way to test that is under crash conditions, we
|
|
* want to have this debug stuff here just in case somethings not
|
|
* working. Search the bitmap for the space we are trying to use to
|
|
* make sure its actually there. If its not there then we need to stop
|
|
* because something has gone wrong.
|
|
*/
|
|
search_start = *offset;
|
|
search_bytes = *bytes;
|
|
search_bytes = min(search_bytes, end - search_start + 1);
|
|
ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes);
|
|
BUG_ON(ret < 0 || search_start != *offset);
|
|
|
|
if (*offset > bitmap_info->offset && *offset + *bytes > end) {
|
|
bitmap_clear_bits(ctl, bitmap_info, *offset, end - *offset + 1);
|
|
*bytes -= end - *offset + 1;
|
|
*offset = end + 1;
|
|
} else if (*offset >= bitmap_info->offset && *offset + *bytes <= end) {
|
|
bitmap_clear_bits(ctl, bitmap_info, *offset, *bytes);
|
|
*bytes = 0;
|
|
}
|
|
|
|
if (*bytes) {
|
|
struct rb_node *next = rb_next(&bitmap_info->offset_index);
|
|
if (!bitmap_info->bytes)
|
|
free_bitmap(ctl, bitmap_info);
|
|
|
|
/*
|
|
* no entry after this bitmap, but we still have bytes to
|
|
* remove, so something has gone wrong.
|
|
*/
|
|
if (!next)
|
|
return -EINVAL;
|
|
|
|
bitmap_info = rb_entry(next, struct btrfs_free_space,
|
|
offset_index);
|
|
|
|
/*
|
|
* if the next entry isn't a bitmap we need to return to let the
|
|
* extent stuff do its work.
|
|
*/
|
|
if (!bitmap_info->bitmap)
|
|
return -EAGAIN;
|
|
|
|
/*
|
|
* Ok the next item is a bitmap, but it may not actually hold
|
|
* the information for the rest of this free space stuff, so
|
|
* look for it, and if we don't find it return so we can try
|
|
* everything over again.
|
|
*/
|
|
search_start = *offset;
|
|
search_bytes = *bytes;
|
|
ret = search_bitmap(ctl, bitmap_info, &search_start,
|
|
&search_bytes);
|
|
if (ret < 0 || search_start != *offset)
|
|
return -EAGAIN;
|
|
|
|
goto again;
|
|
} else if (!bitmap_info->bytes)
|
|
free_bitmap(ctl, bitmap_info);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
|
|
struct btrfs_free_space *info, u64 offset,
|
|
u64 bytes)
|
|
{
|
|
u64 bytes_to_set = 0;
|
|
u64 end;
|
|
|
|
end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
|
|
|
|
bytes_to_set = min(end - offset, bytes);
|
|
|
|
bitmap_set_bits(ctl, info, offset, bytes_to_set);
|
|
|
|
return bytes_to_set;
|
|
|
|
}
|
|
|
|
static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
|
|
struct btrfs_free_space *info)
|
|
{
|
|
struct btrfs_block_group_cache *block_group = ctl->private;
|
|
|
|
/*
|
|
* If we are below the extents threshold then we can add this as an
|
|
* extent, and don't have to deal with the bitmap
|
|
*/
|
|
if (ctl->free_extents < ctl->extents_thresh) {
|
|
/*
|
|
* If this block group has some small extents we don't want to
|
|
* use up all of our free slots in the cache with them, we want
|
|
* to reserve them to larger extents, however if we have plent
|
|
* of cache left then go ahead an dadd them, no sense in adding
|
|
* the overhead of a bitmap if we don't have to.
|
|
*/
|
|
if (info->bytes <= block_group->sectorsize * 4) {
|
|
if (ctl->free_extents * 2 <= ctl->extents_thresh)
|
|
return false;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* some block groups are so tiny they can't be enveloped by a bitmap, so
|
|
* don't even bother to create a bitmap for this
|
|
*/
|
|
if (BITS_PER_BITMAP * block_group->sectorsize >
|
|
block_group->key.offset)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static struct btrfs_free_space_op free_space_op = {
|
|
.recalc_thresholds = recalculate_thresholds,
|
|
.use_bitmap = use_bitmap,
|
|
};
|
|
|
|
static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
|
|
struct btrfs_free_space *info)
|
|
{
|
|
struct btrfs_free_space *bitmap_info;
|
|
struct btrfs_block_group_cache *block_group = NULL;
|
|
int added = 0;
|
|
u64 bytes, offset, bytes_added;
|
|
int ret;
|
|
|
|
bytes = info->bytes;
|
|
offset = info->offset;
|
|
|
|
if (!ctl->op->use_bitmap(ctl, info))
|
|
return 0;
|
|
|
|
if (ctl->op == &free_space_op)
|
|
block_group = ctl->private;
|
|
again:
|
|
/*
|
|
* Since we link bitmaps right into the cluster we need to see if we
|
|
* have a cluster here, and if so and it has our bitmap we need to add
|
|
* the free space to that bitmap.
|
|
*/
|
|
if (block_group && !list_empty(&block_group->cluster_list)) {
|
|
struct btrfs_free_cluster *cluster;
|
|
struct rb_node *node;
|
|
struct btrfs_free_space *entry;
|
|
|
|
cluster = list_entry(block_group->cluster_list.next,
|
|
struct btrfs_free_cluster,
|
|
block_group_list);
|
|
spin_lock(&cluster->lock);
|
|
node = rb_first(&cluster->root);
|
|
if (!node) {
|
|
spin_unlock(&cluster->lock);
|
|
goto no_cluster_bitmap;
|
|
}
|
|
|
|
entry = rb_entry(node, struct btrfs_free_space, offset_index);
|
|
if (!entry->bitmap) {
|
|
spin_unlock(&cluster->lock);
|
|
goto no_cluster_bitmap;
|
|
}
|
|
|
|
if (entry->offset == offset_to_bitmap(ctl, offset)) {
|
|
bytes_added = add_bytes_to_bitmap(ctl, entry,
|
|
offset, bytes);
|
|
bytes -= bytes_added;
|
|
offset += bytes_added;
|
|
}
|
|
spin_unlock(&cluster->lock);
|
|
if (!bytes) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
no_cluster_bitmap:
|
|
bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
|
|
1, 0);
|
|
if (!bitmap_info) {
|
|
BUG_ON(added);
|
|
goto new_bitmap;
|
|
}
|
|
|
|
bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
|
|
bytes -= bytes_added;
|
|
offset += bytes_added;
|
|
added = 0;
|
|
|
|
if (!bytes) {
|
|
ret = 1;
|
|
goto out;
|
|
} else
|
|
goto again;
|
|
|
|
new_bitmap:
|
|
if (info && info->bitmap) {
|
|
add_new_bitmap(ctl, info, offset);
|
|
added = 1;
|
|
info = NULL;
|
|
goto again;
|
|
} else {
|
|
spin_unlock(&ctl->tree_lock);
|
|
|
|
/* no pre-allocated info, allocate a new one */
|
|
if (!info) {
|
|
info = kmem_cache_zalloc(btrfs_free_space_cachep,
|
|
GFP_NOFS);
|
|
if (!info) {
|
|
spin_lock(&ctl->tree_lock);
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* allocate the bitmap */
|
|
info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
|
|
spin_lock(&ctl->tree_lock);
|
|
if (!info->bitmap) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
goto again;
|
|
}
|
|
|
|
out:
|
|
if (info) {
|
|
if (info->bitmap)
|
|
kfree(info->bitmap);
|
|
kmem_cache_free(btrfs_free_space_cachep, info);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
|
|
struct btrfs_free_space *info, bool update_stat)
|
|
{
|
|
struct btrfs_free_space *left_info;
|
|
struct btrfs_free_space *right_info;
|
|
bool merged = false;
|
|
u64 offset = info->offset;
|
|
u64 bytes = info->bytes;
|
|
|
|
/*
|
|
* first we want to see if there is free space adjacent to the range we
|
|
* are adding, if there is remove that struct and add a new one to
|
|
* cover the entire range
|
|
*/
|
|
right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
|
|
if (right_info && rb_prev(&right_info->offset_index))
|
|
left_info = rb_entry(rb_prev(&right_info->offset_index),
|
|
struct btrfs_free_space, offset_index);
|
|
else
|
|
left_info = tree_search_offset(ctl, offset - 1, 0, 0);
|
|
|
|
if (right_info && !right_info->bitmap) {
|
|
if (update_stat)
|
|
unlink_free_space(ctl, right_info);
|
|
else
|
|
__unlink_free_space(ctl, right_info);
|
|
info->bytes += right_info->bytes;
|
|
kmem_cache_free(btrfs_free_space_cachep, right_info);
|
|
merged = true;
|
|
}
|
|
|
|
if (left_info && !left_info->bitmap &&
|
|
left_info->offset + left_info->bytes == offset) {
|
|
if (update_stat)
|
|
unlink_free_space(ctl, left_info);
|
|
else
|
|
__unlink_free_space(ctl, left_info);
|
|
info->offset = left_info->offset;
|
|
info->bytes += left_info->bytes;
|
|
kmem_cache_free(btrfs_free_space_cachep, left_info);
|
|
merged = true;
|
|
}
|
|
|
|
return merged;
|
|
}
|
|
|
|
int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
|
|
u64 offset, u64 bytes)
|
|
{
|
|
struct btrfs_free_space *info;
|
|
int ret = 0;
|
|
|
|
info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
|
|
if (!info)
|
|
return -ENOMEM;
|
|
|
|
info->offset = offset;
|
|
info->bytes = bytes;
|
|
|
|
spin_lock(&ctl->tree_lock);
|
|
|
|
if (try_merge_free_space(ctl, info, true))
|
|
goto link;
|
|
|
|
/*
|
|
* There was no extent directly to the left or right of this new
|
|
* extent then we know we're going to have to allocate a new extent, so
|
|
* before we do that see if we need to drop this into a bitmap
|
|
*/
|
|
ret = insert_into_bitmap(ctl, info);
|
|
if (ret < 0) {
|
|
goto out;
|
|
} else if (ret) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
link:
|
|
ret = link_free_space(ctl, info);
|
|
if (ret)
|
|
kmem_cache_free(btrfs_free_space_cachep, info);
|
|
out:
|
|
spin_unlock(&ctl->tree_lock);
|
|
|
|
if (ret) {
|
|
printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret);
|
|
BUG_ON(ret == -EEXIST);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
|
|
u64 offset, u64 bytes)
|
|
{
|
|
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
|
|
struct btrfs_free_space *info;
|
|
struct btrfs_free_space *next_info = NULL;
|
|
int ret = 0;
|
|
|
|
spin_lock(&ctl->tree_lock);
|
|
|
|
again:
|
|
info = tree_search_offset(ctl, offset, 0, 0);
|
|
if (!info) {
|
|
/*
|
|
* oops didn't find an extent that matched the space we wanted
|
|
* to remove, look for a bitmap instead
|
|
*/
|
|
info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
|
|
1, 0);
|
|
if (!info) {
|
|
WARN_ON(1);
|
|
goto out_lock;
|
|
}
|
|
}
|
|
|
|
if (info->bytes < bytes && rb_next(&info->offset_index)) {
|
|
u64 end;
|
|
next_info = rb_entry(rb_next(&info->offset_index),
|
|
struct btrfs_free_space,
|
|
offset_index);
|
|
|
|
if (next_info->bitmap)
|
|
end = next_info->offset +
|
|
BITS_PER_BITMAP * ctl->unit - 1;
|
|
else
|
|
end = next_info->offset + next_info->bytes;
|
|
|
|
if (next_info->bytes < bytes ||
|
|
next_info->offset > offset || offset > end) {
|
|
printk(KERN_CRIT "Found free space at %llu, size %llu,"
|
|
" trying to use %llu\n",
|
|
(unsigned long long)info->offset,
|
|
(unsigned long long)info->bytes,
|
|
(unsigned long long)bytes);
|
|
WARN_ON(1);
|
|
ret = -EINVAL;
|
|
goto out_lock;
|
|
}
|
|
|
|
info = next_info;
|
|
}
|
|
|
|
if (info->bytes == bytes) {
|
|
unlink_free_space(ctl, info);
|
|
if (info->bitmap) {
|
|
kfree(info->bitmap);
|
|
ctl->total_bitmaps--;
|
|
}
|
|
kmem_cache_free(btrfs_free_space_cachep, info);
|
|
goto out_lock;
|
|
}
|
|
|
|
if (!info->bitmap && info->offset == offset) {
|
|
unlink_free_space(ctl, info);
|
|
info->offset += bytes;
|
|
info->bytes -= bytes;
|
|
link_free_space(ctl, info);
|
|
goto out_lock;
|
|
}
|
|
|
|
if (!info->bitmap && info->offset <= offset &&
|
|
info->offset + info->bytes >= offset + bytes) {
|
|
u64 old_start = info->offset;
|
|
/*
|
|
* we're freeing space in the middle of the info,
|
|
* this can happen during tree log replay
|
|
*
|
|
* first unlink the old info and then
|
|
* insert it again after the hole we're creating
|
|
*/
|
|
unlink_free_space(ctl, info);
|
|
if (offset + bytes < info->offset + info->bytes) {
|
|
u64 old_end = info->offset + info->bytes;
|
|
|
|
info->offset = offset + bytes;
|
|
info->bytes = old_end - info->offset;
|
|
ret = link_free_space(ctl, info);
|
|
WARN_ON(ret);
|
|
if (ret)
|
|
goto out_lock;
|
|
} else {
|
|
/* the hole we're creating ends at the end
|
|
* of the info struct, just free the info
|
|
*/
|
|
kmem_cache_free(btrfs_free_space_cachep, info);
|
|
}
|
|
spin_unlock(&ctl->tree_lock);
|
|
|
|
/* step two, insert a new info struct to cover
|
|
* anything before the hole
|
|
*/
|
|
ret = btrfs_add_free_space(block_group, old_start,
|
|
offset - old_start);
|
|
WARN_ON(ret);
|
|
goto out;
|
|
}
|
|
|
|
ret = remove_from_bitmap(ctl, info, &offset, &bytes);
|
|
if (ret == -EAGAIN)
|
|
goto again;
|
|
BUG_ON(ret);
|
|
out_lock:
|
|
spin_unlock(&ctl->tree_lock);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
|
|
u64 bytes)
|
|
{
|
|
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
|
|
struct btrfs_free_space *info;
|
|
struct rb_node *n;
|
|
int count = 0;
|
|
|
|
for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
|
|
info = rb_entry(n, struct btrfs_free_space, offset_index);
|
|
if (info->bytes >= bytes)
|
|
count++;
|
|
printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n",
|
|
(unsigned long long)info->offset,
|
|
(unsigned long long)info->bytes,
|
|
(info->bitmap) ? "yes" : "no");
|
|
}
|
|
printk(KERN_INFO "block group has cluster?: %s\n",
|
|
list_empty(&block_group->cluster_list) ? "no" : "yes");
|
|
printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
|
|
"\n", count);
|
|
}
|
|
|
|
void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
|
|
{
|
|
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
|
|
|
|
spin_lock_init(&ctl->tree_lock);
|
|
ctl->unit = block_group->sectorsize;
|
|
ctl->start = block_group->key.objectid;
|
|
ctl->private = block_group;
|
|
ctl->op = &free_space_op;
|
|
|
|
/*
|
|
* we only want to have 32k of ram per block group for keeping
|
|
* track of free space, and if we pass 1/2 of that we want to
|
|
* start converting things over to using bitmaps
|
|
*/
|
|
ctl->extents_thresh = ((1024 * 32) / 2) /
|
|
sizeof(struct btrfs_free_space);
|
|
}
|
|
|
|
/*
|
|
* for a given cluster, put all of its extents back into the free
|
|
* space cache. If the block group passed doesn't match the block group
|
|
* pointed to by the cluster, someone else raced in and freed the
|
|
* cluster already. In that case, we just return without changing anything
|
|
*/
|
|
static int
|
|
__btrfs_return_cluster_to_free_space(
|
|
struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_free_cluster *cluster)
|
|
{
|
|
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
|
|
struct btrfs_free_space *entry;
|
|
struct rb_node *node;
|
|
|
|
spin_lock(&cluster->lock);
|
|
if (cluster->block_group != block_group)
|
|
goto out;
|
|
|
|
cluster->block_group = NULL;
|
|
cluster->window_start = 0;
|
|
list_del_init(&cluster->block_group_list);
|
|
|
|
node = rb_first(&cluster->root);
|
|
while (node) {
|
|
bool bitmap;
|
|
|
|
entry = rb_entry(node, struct btrfs_free_space, offset_index);
|
|
node = rb_next(&entry->offset_index);
|
|
rb_erase(&entry->offset_index, &cluster->root);
|
|
|
|
bitmap = (entry->bitmap != NULL);
|
|
if (!bitmap)
|
|
try_merge_free_space(ctl, entry, false);
|
|
tree_insert_offset(&ctl->free_space_offset,
|
|
entry->offset, &entry->offset_index, bitmap);
|
|
}
|
|
cluster->root = RB_ROOT;
|
|
|
|
out:
|
|
spin_unlock(&cluster->lock);
|
|
btrfs_put_block_group(block_group);
|
|
return 0;
|
|
}
|
|
|
|
void __btrfs_remove_free_space_cache_locked(struct btrfs_free_space_ctl *ctl)
|
|
{
|
|
struct btrfs_free_space *info;
|
|
struct rb_node *node;
|
|
|
|
while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
|
|
info = rb_entry(node, struct btrfs_free_space, offset_index);
|
|
unlink_free_space(ctl, info);
|
|
kfree(info->bitmap);
|
|
kmem_cache_free(btrfs_free_space_cachep, info);
|
|
if (need_resched()) {
|
|
spin_unlock(&ctl->tree_lock);
|
|
cond_resched();
|
|
spin_lock(&ctl->tree_lock);
|
|
}
|
|
}
|
|
}
|
|
|
|
void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
|
|
{
|
|
spin_lock(&ctl->tree_lock);
|
|
__btrfs_remove_free_space_cache_locked(ctl);
|
|
spin_unlock(&ctl->tree_lock);
|
|
}
|
|
|
|
void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
|
|
{
|
|
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
|
|
struct btrfs_free_cluster *cluster;
|
|
struct list_head *head;
|
|
|
|
spin_lock(&ctl->tree_lock);
|
|
while ((head = block_group->cluster_list.next) !=
|
|
&block_group->cluster_list) {
|
|
cluster = list_entry(head, struct btrfs_free_cluster,
|
|
block_group_list);
|
|
|
|
WARN_ON(cluster->block_group != block_group);
|
|
__btrfs_return_cluster_to_free_space(block_group, cluster);
|
|
if (need_resched()) {
|
|
spin_unlock(&ctl->tree_lock);
|
|
cond_resched();
|
|
spin_lock(&ctl->tree_lock);
|
|
}
|
|
}
|
|
__btrfs_remove_free_space_cache_locked(ctl);
|
|
spin_unlock(&ctl->tree_lock);
|
|
|
|
}
|
|
|
|
u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
|
|
u64 offset, u64 bytes, u64 empty_size)
|
|
{
|
|
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
|
|
struct btrfs_free_space *entry = NULL;
|
|
u64 bytes_search = bytes + empty_size;
|
|
u64 ret = 0;
|
|
|
|
spin_lock(&ctl->tree_lock);
|
|
entry = find_free_space(ctl, &offset, &bytes_search);
|
|
if (!entry)
|
|
goto out;
|
|
|
|
ret = offset;
|
|
if (entry->bitmap) {
|
|
bitmap_clear_bits(ctl, entry, offset, bytes);
|
|
if (!entry->bytes)
|
|
free_bitmap(ctl, entry);
|
|
} else {
|
|
unlink_free_space(ctl, entry);
|
|
entry->offset += bytes;
|
|
entry->bytes -= bytes;
|
|
if (!entry->bytes)
|
|
kmem_cache_free(btrfs_free_space_cachep, entry);
|
|
else
|
|
link_free_space(ctl, entry);
|
|
}
|
|
|
|
out:
|
|
spin_unlock(&ctl->tree_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* given a cluster, put all of its extents back into the free space
|
|
* cache. If a block group is passed, this function will only free
|
|
* a cluster that belongs to the passed block group.
|
|
*
|
|
* Otherwise, it'll get a reference on the block group pointed to by the
|
|
* cluster and remove the cluster from it.
|
|
*/
|
|
int btrfs_return_cluster_to_free_space(
|
|
struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_free_cluster *cluster)
|
|
{
|
|
struct btrfs_free_space_ctl *ctl;
|
|
int ret;
|
|
|
|
/* first, get a safe pointer to the block group */
|
|
spin_lock(&cluster->lock);
|
|
if (!block_group) {
|
|
block_group = cluster->block_group;
|
|
if (!block_group) {
|
|
spin_unlock(&cluster->lock);
|
|
return 0;
|
|
}
|
|
} else if (cluster->block_group != block_group) {
|
|
/* someone else has already freed it don't redo their work */
|
|
spin_unlock(&cluster->lock);
|
|
return 0;
|
|
}
|
|
atomic_inc(&block_group->count);
|
|
spin_unlock(&cluster->lock);
|
|
|
|
ctl = block_group->free_space_ctl;
|
|
|
|
/* now return any extents the cluster had on it */
|
|
spin_lock(&ctl->tree_lock);
|
|
ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
|
|
spin_unlock(&ctl->tree_lock);
|
|
|
|
/* finally drop our ref */
|
|
btrfs_put_block_group(block_group);
|
|
return ret;
|
|
}
|
|
|
|
static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_free_cluster *cluster,
|
|
struct btrfs_free_space *entry,
|
|
u64 bytes, u64 min_start)
|
|
{
|
|
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
|
|
int err;
|
|
u64 search_start = cluster->window_start;
|
|
u64 search_bytes = bytes;
|
|
u64 ret = 0;
|
|
|
|
search_start = min_start;
|
|
search_bytes = bytes;
|
|
|
|
err = search_bitmap(ctl, entry, &search_start, &search_bytes);
|
|
if (err)
|
|
return 0;
|
|
|
|
ret = search_start;
|
|
bitmap_clear_bits(ctl, entry, ret, bytes);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* given a cluster, try to allocate 'bytes' from it, returns 0
|
|
* if it couldn't find anything suitably large, or a logical disk offset
|
|
* if things worked out
|
|
*/
|
|
u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_free_cluster *cluster, u64 bytes,
|
|
u64 min_start)
|
|
{
|
|
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
|
|
struct btrfs_free_space *entry = NULL;
|
|
struct rb_node *node;
|
|
u64 ret = 0;
|
|
|
|
spin_lock(&cluster->lock);
|
|
if (bytes > cluster->max_size)
|
|
goto out;
|
|
|
|
if (cluster->block_group != block_group)
|
|
goto out;
|
|
|
|
node = rb_first(&cluster->root);
|
|
if (!node)
|
|
goto out;
|
|
|
|
entry = rb_entry(node, struct btrfs_free_space, offset_index);
|
|
while(1) {
|
|
if (entry->bytes < bytes ||
|
|
(!entry->bitmap && entry->offset < min_start)) {
|
|
node = rb_next(&entry->offset_index);
|
|
if (!node)
|
|
break;
|
|
entry = rb_entry(node, struct btrfs_free_space,
|
|
offset_index);
|
|
continue;
|
|
}
|
|
|
|
if (entry->bitmap) {
|
|
ret = btrfs_alloc_from_bitmap(block_group,
|
|
cluster, entry, bytes,
|
|
min_start);
|
|
if (ret == 0) {
|
|
node = rb_next(&entry->offset_index);
|
|
if (!node)
|
|
break;
|
|
entry = rb_entry(node, struct btrfs_free_space,
|
|
offset_index);
|
|
continue;
|
|
}
|
|
} else {
|
|
|
|
ret = entry->offset;
|
|
|
|
entry->offset += bytes;
|
|
entry->bytes -= bytes;
|
|
}
|
|
|
|
if (entry->bytes == 0)
|
|
rb_erase(&entry->offset_index, &cluster->root);
|
|
break;
|
|
}
|
|
out:
|
|
spin_unlock(&cluster->lock);
|
|
|
|
if (!ret)
|
|
return 0;
|
|
|
|
spin_lock(&ctl->tree_lock);
|
|
|
|
ctl->free_space -= bytes;
|
|
if (entry->bytes == 0) {
|
|
ctl->free_extents--;
|
|
if (entry->bitmap) {
|
|
kfree(entry->bitmap);
|
|
ctl->total_bitmaps--;
|
|
ctl->op->recalc_thresholds(ctl);
|
|
}
|
|
kmem_cache_free(btrfs_free_space_cachep, entry);
|
|
}
|
|
|
|
spin_unlock(&ctl->tree_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_free_space *entry,
|
|
struct btrfs_free_cluster *cluster,
|
|
u64 offset, u64 bytes, u64 min_bytes)
|
|
{
|
|
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
|
|
unsigned long next_zero;
|
|
unsigned long i;
|
|
unsigned long search_bits;
|
|
unsigned long total_bits;
|
|
unsigned long found_bits;
|
|
unsigned long start = 0;
|
|
unsigned long total_found = 0;
|
|
int ret;
|
|
bool found = false;
|
|
|
|
i = offset_to_bit(entry->offset, block_group->sectorsize,
|
|
max_t(u64, offset, entry->offset));
|
|
search_bits = bytes_to_bits(bytes, block_group->sectorsize);
|
|
total_bits = bytes_to_bits(min_bytes, block_group->sectorsize);
|
|
|
|
again:
|
|
found_bits = 0;
|
|
for (i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i);
|
|
i < BITS_PER_BITMAP;
|
|
i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i + 1)) {
|
|
next_zero = find_next_zero_bit(entry->bitmap,
|
|
BITS_PER_BITMAP, i);
|
|
if (next_zero - i >= search_bits) {
|
|
found_bits = next_zero - i;
|
|
break;
|
|
}
|
|
i = next_zero;
|
|
}
|
|
|
|
if (!found_bits)
|
|
return -ENOSPC;
|
|
|
|
if (!found) {
|
|
start = i;
|
|
found = true;
|
|
}
|
|
|
|
total_found += found_bits;
|
|
|
|
if (cluster->max_size < found_bits * block_group->sectorsize)
|
|
cluster->max_size = found_bits * block_group->sectorsize;
|
|
|
|
if (total_found < total_bits) {
|
|
i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, next_zero);
|
|
if (i - start > total_bits * 2) {
|
|
total_found = 0;
|
|
cluster->max_size = 0;
|
|
found = false;
|
|
}
|
|
goto again;
|
|
}
|
|
|
|
cluster->window_start = start * block_group->sectorsize +
|
|
entry->offset;
|
|
rb_erase(&entry->offset_index, &ctl->free_space_offset);
|
|
ret = tree_insert_offset(&cluster->root, entry->offset,
|
|
&entry->offset_index, 1);
|
|
BUG_ON(ret);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This searches the block group for just extents to fill the cluster with.
|
|
*/
|
|
static noinline int
|
|
setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_free_cluster *cluster,
|
|
struct list_head *bitmaps, u64 offset, u64 bytes,
|
|
u64 min_bytes)
|
|
{
|
|
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
|
|
struct btrfs_free_space *first = NULL;
|
|
struct btrfs_free_space *entry = NULL;
|
|
struct btrfs_free_space *prev = NULL;
|
|
struct btrfs_free_space *last;
|
|
struct rb_node *node;
|
|
u64 window_start;
|
|
u64 window_free;
|
|
u64 max_extent;
|
|
u64 max_gap = 128 * 1024;
|
|
|
|
entry = tree_search_offset(ctl, offset, 0, 1);
|
|
if (!entry)
|
|
return -ENOSPC;
|
|
|
|
/*
|
|
* We don't want bitmaps, so just move along until we find a normal
|
|
* extent entry.
|
|
*/
|
|
while (entry->bitmap) {
|
|
if (list_empty(&entry->list))
|
|
list_add_tail(&entry->list, bitmaps);
|
|
node = rb_next(&entry->offset_index);
|
|
if (!node)
|
|
return -ENOSPC;
|
|
entry = rb_entry(node, struct btrfs_free_space, offset_index);
|
|
}
|
|
|
|
window_start = entry->offset;
|
|
window_free = entry->bytes;
|
|
max_extent = entry->bytes;
|
|
first = entry;
|
|
last = entry;
|
|
prev = entry;
|
|
|
|
while (window_free <= min_bytes) {
|
|
node = rb_next(&entry->offset_index);
|
|
if (!node)
|
|
return -ENOSPC;
|
|
entry = rb_entry(node, struct btrfs_free_space, offset_index);
|
|
|
|
if (entry->bitmap) {
|
|
if (list_empty(&entry->list))
|
|
list_add_tail(&entry->list, bitmaps);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* we haven't filled the empty size and the window is
|
|
* very large. reset and try again
|
|
*/
|
|
if (entry->offset - (prev->offset + prev->bytes) > max_gap ||
|
|
entry->offset - window_start > (min_bytes * 2)) {
|
|
first = entry;
|
|
window_start = entry->offset;
|
|
window_free = entry->bytes;
|
|
last = entry;
|
|
max_extent = entry->bytes;
|
|
} else {
|
|
last = entry;
|
|
window_free += entry->bytes;
|
|
if (entry->bytes > max_extent)
|
|
max_extent = entry->bytes;
|
|
}
|
|
prev = entry;
|
|
}
|
|
|
|
cluster->window_start = first->offset;
|
|
|
|
node = &first->offset_index;
|
|
|
|
/*
|
|
* now we've found our entries, pull them out of the free space
|
|
* cache and put them into the cluster rbtree
|
|
*/
|
|
do {
|
|
int ret;
|
|
|
|
entry = rb_entry(node, struct btrfs_free_space, offset_index);
|
|
node = rb_next(&entry->offset_index);
|
|
if (entry->bitmap)
|
|
continue;
|
|
|
|
rb_erase(&entry->offset_index, &ctl->free_space_offset);
|
|
ret = tree_insert_offset(&cluster->root, entry->offset,
|
|
&entry->offset_index, 0);
|
|
BUG_ON(ret);
|
|
} while (node && entry != last);
|
|
|
|
cluster->max_size = max_extent;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This specifically looks for bitmaps that may work in the cluster, we assume
|
|
* that we have already failed to find extents that will work.
|
|
*/
|
|
static noinline int
|
|
setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_free_cluster *cluster,
|
|
struct list_head *bitmaps, u64 offset, u64 bytes,
|
|
u64 min_bytes)
|
|
{
|
|
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
|
|
struct btrfs_free_space *entry;
|
|
struct rb_node *node;
|
|
int ret = -ENOSPC;
|
|
|
|
if (ctl->total_bitmaps == 0)
|
|
return -ENOSPC;
|
|
|
|
/*
|
|
* First check our cached list of bitmaps and see if there is an entry
|
|
* here that will work.
|
|
*/
|
|
list_for_each_entry(entry, bitmaps, list) {
|
|
if (entry->bytes < min_bytes)
|
|
continue;
|
|
ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
|
|
bytes, min_bytes);
|
|
if (!ret)
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If we do have entries on our list and we are here then we didn't find
|
|
* anything, so go ahead and get the next entry after the last entry in
|
|
* this list and start the search from there.
|
|
*/
|
|
if (!list_empty(bitmaps)) {
|
|
entry = list_entry(bitmaps->prev, struct btrfs_free_space,
|
|
list);
|
|
node = rb_next(&entry->offset_index);
|
|
if (!node)
|
|
return -ENOSPC;
|
|
entry = rb_entry(node, struct btrfs_free_space, offset_index);
|
|
goto search;
|
|
}
|
|
|
|
entry = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 0, 1);
|
|
if (!entry)
|
|
return -ENOSPC;
|
|
|
|
search:
|
|
node = &entry->offset_index;
|
|
do {
|
|
entry = rb_entry(node, struct btrfs_free_space, offset_index);
|
|
node = rb_next(&entry->offset_index);
|
|
if (!entry->bitmap)
|
|
continue;
|
|
if (entry->bytes < min_bytes)
|
|
continue;
|
|
ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
|
|
bytes, min_bytes);
|
|
} while (ret && node);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* here we try to find a cluster of blocks in a block group. The goal
|
|
* is to find at least bytes free and up to empty_size + bytes free.
|
|
* We might not find them all in one contiguous area.
|
|
*
|
|
* returns zero and sets up cluster if things worked out, otherwise
|
|
* it returns -enospc
|
|
*/
|
|
int btrfs_find_space_cluster(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_free_cluster *cluster,
|
|
u64 offset, u64 bytes, u64 empty_size)
|
|
{
|
|
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
|
|
struct list_head bitmaps;
|
|
struct btrfs_free_space *entry, *tmp;
|
|
u64 min_bytes;
|
|
int ret;
|
|
|
|
/* for metadata, allow allocates with more holes */
|
|
if (btrfs_test_opt(root, SSD_SPREAD)) {
|
|
min_bytes = bytes + empty_size;
|
|
} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
|
|
/*
|
|
* we want to do larger allocations when we are
|
|
* flushing out the delayed refs, it helps prevent
|
|
* making more work as we go along.
|
|
*/
|
|
if (trans->transaction->delayed_refs.flushing)
|
|
min_bytes = max(bytes, (bytes + empty_size) >> 1);
|
|
else
|
|
min_bytes = max(bytes, (bytes + empty_size) >> 4);
|
|
} else
|
|
min_bytes = max(bytes, (bytes + empty_size) >> 2);
|
|
|
|
spin_lock(&ctl->tree_lock);
|
|
|
|
/*
|
|
* If we know we don't have enough space to make a cluster don't even
|
|
* bother doing all the work to try and find one.
|
|
*/
|
|
if (ctl->free_space < min_bytes) {
|
|
spin_unlock(&ctl->tree_lock);
|
|
return -ENOSPC;
|
|
}
|
|
|
|
spin_lock(&cluster->lock);
|
|
|
|
/* someone already found a cluster, hooray */
|
|
if (cluster->block_group) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
INIT_LIST_HEAD(&bitmaps);
|
|
ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
|
|
bytes, min_bytes);
|
|
if (ret)
|
|
ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
|
|
offset, bytes, min_bytes);
|
|
|
|
/* Clear our temporary list */
|
|
list_for_each_entry_safe(entry, tmp, &bitmaps, list)
|
|
list_del_init(&entry->list);
|
|
|
|
if (!ret) {
|
|
atomic_inc(&block_group->count);
|
|
list_add_tail(&cluster->block_group_list,
|
|
&block_group->cluster_list);
|
|
cluster->block_group = block_group;
|
|
}
|
|
out:
|
|
spin_unlock(&cluster->lock);
|
|
spin_unlock(&ctl->tree_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* simple code to zero out a cluster
|
|
*/
|
|
void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
|
|
{
|
|
spin_lock_init(&cluster->lock);
|
|
spin_lock_init(&cluster->refill_lock);
|
|
cluster->root = RB_ROOT;
|
|
cluster->max_size = 0;
|
|
INIT_LIST_HEAD(&cluster->block_group_list);
|
|
cluster->block_group = NULL;
|
|
}
|
|
|
|
int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
|
|
u64 *trimmed, u64 start, u64 end, u64 minlen)
|
|
{
|
|
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
|
|
struct btrfs_free_space *entry = NULL;
|
|
struct btrfs_fs_info *fs_info = block_group->fs_info;
|
|
u64 bytes = 0;
|
|
u64 actually_trimmed;
|
|
int ret = 0;
|
|
|
|
*trimmed = 0;
|
|
|
|
while (start < end) {
|
|
spin_lock(&ctl->tree_lock);
|
|
|
|
if (ctl->free_space < minlen) {
|
|
spin_unlock(&ctl->tree_lock);
|
|
break;
|
|
}
|
|
|
|
entry = tree_search_offset(ctl, start, 0, 1);
|
|
if (!entry)
|
|
entry = tree_search_offset(ctl,
|
|
offset_to_bitmap(ctl, start),
|
|
1, 1);
|
|
|
|
if (!entry || entry->offset >= end) {
|
|
spin_unlock(&ctl->tree_lock);
|
|
break;
|
|
}
|
|
|
|
if (entry->bitmap) {
|
|
ret = search_bitmap(ctl, entry, &start, &bytes);
|
|
if (!ret) {
|
|
if (start >= end) {
|
|
spin_unlock(&ctl->tree_lock);
|
|
break;
|
|
}
|
|
bytes = min(bytes, end - start);
|
|
bitmap_clear_bits(ctl, entry, start, bytes);
|
|
if (entry->bytes == 0)
|
|
free_bitmap(ctl, entry);
|
|
} else {
|
|
start = entry->offset + BITS_PER_BITMAP *
|
|
block_group->sectorsize;
|
|
spin_unlock(&ctl->tree_lock);
|
|
ret = 0;
|
|
continue;
|
|
}
|
|
} else {
|
|
start = entry->offset;
|
|
bytes = min(entry->bytes, end - start);
|
|
unlink_free_space(ctl, entry);
|
|
kmem_cache_free(btrfs_free_space_cachep, entry);
|
|
}
|
|
|
|
spin_unlock(&ctl->tree_lock);
|
|
|
|
if (bytes >= minlen) {
|
|
int update_ret;
|
|
update_ret = btrfs_update_reserved_bytes(block_group,
|
|
bytes, 1, 1);
|
|
|
|
ret = btrfs_error_discard_extent(fs_info->extent_root,
|
|
start,
|
|
bytes,
|
|
&actually_trimmed);
|
|
|
|
btrfs_add_free_space(block_group, start, bytes);
|
|
if (!update_ret)
|
|
btrfs_update_reserved_bytes(block_group,
|
|
bytes, 0, 1);
|
|
|
|
if (ret)
|
|
break;
|
|
*trimmed += actually_trimmed;
|
|
}
|
|
start += bytes;
|
|
bytes = 0;
|
|
|
|
if (fatal_signal_pending(current)) {
|
|
ret = -ERESTARTSYS;
|
|
break;
|
|
}
|
|
|
|
cond_resched();
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Find the left-most item in the cache tree, and then return the
|
|
* smallest inode number in the item.
|
|
*
|
|
* Note: the returned inode number may not be the smallest one in
|
|
* the tree, if the left-most item is a bitmap.
|
|
*/
|
|
u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
|
|
{
|
|
struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
|
|
struct btrfs_free_space *entry = NULL;
|
|
u64 ino = 0;
|
|
|
|
spin_lock(&ctl->tree_lock);
|
|
|
|
if (RB_EMPTY_ROOT(&ctl->free_space_offset))
|
|
goto out;
|
|
|
|
entry = rb_entry(rb_first(&ctl->free_space_offset),
|
|
struct btrfs_free_space, offset_index);
|
|
|
|
if (!entry->bitmap) {
|
|
ino = entry->offset;
|
|
|
|
unlink_free_space(ctl, entry);
|
|
entry->offset++;
|
|
entry->bytes--;
|
|
if (!entry->bytes)
|
|
kmem_cache_free(btrfs_free_space_cachep, entry);
|
|
else
|
|
link_free_space(ctl, entry);
|
|
} else {
|
|
u64 offset = 0;
|
|
u64 count = 1;
|
|
int ret;
|
|
|
|
ret = search_bitmap(ctl, entry, &offset, &count);
|
|
BUG_ON(ret);
|
|
|
|
ino = offset;
|
|
bitmap_clear_bits(ctl, entry, offset, 1);
|
|
if (entry->bytes == 0)
|
|
free_bitmap(ctl, entry);
|
|
}
|
|
out:
|
|
spin_unlock(&ctl->tree_lock);
|
|
|
|
return ino;
|
|
}
|
|
|
|
struct inode *lookup_free_ino_inode(struct btrfs_root *root,
|
|
struct btrfs_path *path)
|
|
{
|
|
struct inode *inode = NULL;
|
|
|
|
spin_lock(&root->cache_lock);
|
|
if (root->cache_inode)
|
|
inode = igrab(root->cache_inode);
|
|
spin_unlock(&root->cache_lock);
|
|
if (inode)
|
|
return inode;
|
|
|
|
inode = __lookup_free_space_inode(root, path, 0);
|
|
if (IS_ERR(inode))
|
|
return inode;
|
|
|
|
spin_lock(&root->cache_lock);
|
|
if (!btrfs_fs_closing(root->fs_info))
|
|
root->cache_inode = igrab(inode);
|
|
spin_unlock(&root->cache_lock);
|
|
|
|
return inode;
|
|
}
|
|
|
|
int create_free_ino_inode(struct btrfs_root *root,
|
|
struct btrfs_trans_handle *trans,
|
|
struct btrfs_path *path)
|
|
{
|
|
return __create_free_space_inode(root, trans, path,
|
|
BTRFS_FREE_INO_OBJECTID, 0);
|
|
}
|
|
|
|
int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
|
|
{
|
|
struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
|
|
struct btrfs_path *path;
|
|
struct inode *inode;
|
|
int ret = 0;
|
|
u64 root_gen = btrfs_root_generation(&root->root_item);
|
|
|
|
if (!btrfs_test_opt(root, INODE_MAP_CACHE))
|
|
return 0;
|
|
|
|
/*
|
|
* If we're unmounting then just return, since this does a search on the
|
|
* normal root and not the commit root and we could deadlock.
|
|
*/
|
|
if (btrfs_fs_closing(fs_info))
|
|
return 0;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return 0;
|
|
|
|
inode = lookup_free_ino_inode(root, path);
|
|
if (IS_ERR(inode))
|
|
goto out;
|
|
|
|
if (root_gen != BTRFS_I(inode)->generation)
|
|
goto out_put;
|
|
|
|
ret = __load_free_space_cache(root, inode, ctl, path, 0);
|
|
|
|
if (ret < 0)
|
|
printk(KERN_ERR "btrfs: failed to load free ino cache for "
|
|
"root %llu\n", root->root_key.objectid);
|
|
out_put:
|
|
iput(inode);
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_write_out_ino_cache(struct btrfs_root *root,
|
|
struct btrfs_trans_handle *trans,
|
|
struct btrfs_path *path)
|
|
{
|
|
struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
|
|
struct inode *inode;
|
|
int ret;
|
|
|
|
if (!btrfs_test_opt(root, INODE_MAP_CACHE))
|
|
return 0;
|
|
|
|
inode = lookup_free_ino_inode(root, path);
|
|
if (IS_ERR(inode))
|
|
return 0;
|
|
|
|
ret = __btrfs_write_out_cache(root, inode, ctl, NULL, trans, path, 0);
|
|
if (ret < 0)
|
|
printk(KERN_ERR "btrfs: failed to write free ino cache "
|
|
"for root %llu\n", root->root_key.objectid);
|
|
|
|
iput(inode);
|
|
return ret;
|
|
}
|