1
linux/arch/sh/drivers/dma/dma-sh.c
Paul Mundt 2e18e04798 Merge branch 'sh/dmaengine'
Conflicts:
	arch/sh/drivers/dma/dma-sh.c
2010-02-08 11:34:03 +09:00

354 lines
7.9 KiB
C

/*
* arch/sh/drivers/dma/dma-sh.c
*
* SuperH On-chip DMAC Support
*
* Copyright (C) 2000 Takashi YOSHII
* Copyright (C) 2003, 2004 Paul Mundt
* Copyright (C) 2005 Andriy Skulysh
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*/
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <mach-dreamcast/mach/dma.h>
#include <asm/dma.h>
#include <asm/io.h>
#include <asm/dma-sh.h>
#if defined(DMAE1_IRQ)
#define NR_DMAE 2
#else
#define NR_DMAE 1
#endif
static const char *dmae_name[] = {
"DMAC Address Error0", "DMAC Address Error1"
};
static inline unsigned int get_dmte_irq(unsigned int chan)
{
unsigned int irq = 0;
if (chan < ARRAY_SIZE(dmte_irq_map))
irq = dmte_irq_map[chan];
#if defined(CONFIG_SH_DMA_IRQ_MULTI)
if (irq > DMTE6_IRQ)
return DMTE6_IRQ;
return DMTE0_IRQ;
#else
return irq;
#endif
}
/*
* We determine the correct shift size based off of the CHCR transmit size
* for the given channel. Since we know that it will take:
*
* info->count >> ts_shift[transmit_size]
*
* iterations to complete the transfer.
*/
static unsigned int ts_shift[] = TS_SHIFT;
static inline unsigned int calc_xmit_shift(struct dma_channel *chan)
{
u32 chcr = __raw_readl(dma_base_addr[chan->chan] + CHCR);
int cnt = ((chcr & CHCR_TS_LOW_MASK) >> CHCR_TS_LOW_SHIFT) |
((chcr & CHCR_TS_HIGH_MASK) >> CHCR_TS_HIGH_SHIFT);
return ts_shift[cnt];
}
/*
* The transfer end interrupt must read the chcr register to end the
* hardware interrupt active condition.
* Besides that it needs to waken any waiting process, which should handle
* setting up the next transfer.
*/
static irqreturn_t dma_tei(int irq, void *dev_id)
{
struct dma_channel *chan = dev_id;
u32 chcr;
chcr = __raw_readl(dma_base_addr[chan->chan] + CHCR);
if (!(chcr & CHCR_TE))
return IRQ_NONE;
chcr &= ~(CHCR_IE | CHCR_DE);
__raw_writel(chcr, (dma_base_addr[chan->chan] + CHCR));
wake_up(&chan->wait_queue);
return IRQ_HANDLED;
}
static int sh_dmac_request_dma(struct dma_channel *chan)
{
if (unlikely(!(chan->flags & DMA_TEI_CAPABLE)))
return 0;
return request_irq(get_dmte_irq(chan->chan), dma_tei,
#if defined(CONFIG_SH_DMA_IRQ_MULTI)
IRQF_SHARED,
#else
IRQF_DISABLED,
#endif
chan->dev_id, chan);
}
static void sh_dmac_free_dma(struct dma_channel *chan)
{
free_irq(get_dmte_irq(chan->chan), chan);
}
static int
sh_dmac_configure_channel(struct dma_channel *chan, unsigned long chcr)
{
if (!chcr)
chcr = RS_DUAL | CHCR_IE;
if (chcr & CHCR_IE) {
chcr &= ~CHCR_IE;
chan->flags |= DMA_TEI_CAPABLE;
} else {
chan->flags &= ~DMA_TEI_CAPABLE;
}
__raw_writel(chcr, (dma_base_addr[chan->chan] + CHCR));
chan->flags |= DMA_CONFIGURED;
return 0;
}
static void sh_dmac_enable_dma(struct dma_channel *chan)
{
int irq;
u32 chcr;
chcr = __raw_readl(dma_base_addr[chan->chan] + CHCR);
chcr |= CHCR_DE;
if (chan->flags & DMA_TEI_CAPABLE)
chcr |= CHCR_IE;
__raw_writel(chcr, (dma_base_addr[chan->chan] + CHCR));
if (chan->flags & DMA_TEI_CAPABLE) {
irq = get_dmte_irq(chan->chan);
enable_irq(irq);
}
}
static void sh_dmac_disable_dma(struct dma_channel *chan)
{
int irq;
u32 chcr;
if (chan->flags & DMA_TEI_CAPABLE) {
irq = get_dmte_irq(chan->chan);
disable_irq(irq);
}
chcr = __raw_readl(dma_base_addr[chan->chan] + CHCR);
chcr &= ~(CHCR_DE | CHCR_TE | CHCR_IE);
__raw_writel(chcr, (dma_base_addr[chan->chan] + CHCR));
}
static int sh_dmac_xfer_dma(struct dma_channel *chan)
{
/*
* If we haven't pre-configured the channel with special flags, use
* the defaults.
*/
if (unlikely(!(chan->flags & DMA_CONFIGURED)))
sh_dmac_configure_channel(chan, 0);
sh_dmac_disable_dma(chan);
/*
* Single-address mode usage note!
*
* It's important that we don't accidentally write any value to SAR/DAR
* (this includes 0) that hasn't been directly specified by the user if
* we're in single-address mode.
*
* In this case, only one address can be defined, anything else will
* result in a DMA address error interrupt (at least on the SH-4),
* which will subsequently halt the transfer.
*
* Channel 2 on the Dreamcast is a special case, as this is used for
* cascading to the PVR2 DMAC. In this case, we still need to write
* SAR and DAR, regardless of value, in order for cascading to work.
*/
if (chan->sar || (mach_is_dreamcast() &&
chan->chan == PVR2_CASCADE_CHAN))
__raw_writel(chan->sar, (dma_base_addr[chan->chan]+SAR));
if (chan->dar || (mach_is_dreamcast() &&
chan->chan == PVR2_CASCADE_CHAN))
__raw_writel(chan->dar, (dma_base_addr[chan->chan] + DAR));
__raw_writel(chan->count >> calc_xmit_shift(chan),
(dma_base_addr[chan->chan] + TCR));
sh_dmac_enable_dma(chan);
return 0;
}
static int sh_dmac_get_dma_residue(struct dma_channel *chan)
{
if (!(__raw_readl(dma_base_addr[chan->chan] + CHCR) & CHCR_DE))
return 0;
return __raw_readl(dma_base_addr[chan->chan] + TCR)
<< calc_xmit_shift(chan);
}
static inline int dmaor_reset(int no)
{
unsigned long dmaor = dmaor_read_reg(no);
/* Try to clear the error flags first, incase they are set */
dmaor &= ~(DMAOR_NMIF | DMAOR_AE);
dmaor_write_reg(no, dmaor);
dmaor |= DMAOR_INIT;
dmaor_write_reg(no, dmaor);
/* See if we got an error again */
if ((dmaor_read_reg(no) & (DMAOR_AE | DMAOR_NMIF))) {
printk(KERN_ERR "dma-sh: Can't initialize DMAOR.\n");
return -EINVAL;
}
return 0;
}
#if defined(CONFIG_CPU_SH4)
static irqreturn_t dma_err(int irq, void *dummy)
{
#if defined(CONFIG_SH_DMA_IRQ_MULTI)
int cnt = 0;
switch (irq) {
#if defined(DMTE6_IRQ) && defined(DMAE1_IRQ)
case DMTE6_IRQ:
cnt++;
#endif
case DMTE0_IRQ:
if (dmaor_read_reg(cnt) & (DMAOR_NMIF | DMAOR_AE)) {
disable_irq(irq);
/* DMA multi and error IRQ */
return IRQ_HANDLED;
}
default:
return IRQ_NONE;
}
#else
dmaor_reset(0);
#if defined(CONFIG_CPU_SUBTYPE_SH7723) || \
defined(CONFIG_CPU_SUBTYPE_SH7780) || \
defined(CONFIG_CPU_SUBTYPE_SH7785)
dmaor_reset(1);
#endif
disable_irq(irq);
return IRQ_HANDLED;
#endif
}
#endif
static struct dma_ops sh_dmac_ops = {
.request = sh_dmac_request_dma,
.free = sh_dmac_free_dma,
.get_residue = sh_dmac_get_dma_residue,
.xfer = sh_dmac_xfer_dma,
.configure = sh_dmac_configure_channel,
};
static struct dma_info sh_dmac_info = {
.name = "sh_dmac",
.nr_channels = CONFIG_NR_ONCHIP_DMA_CHANNELS,
.ops = &sh_dmac_ops,
.flags = DMAC_CHANNELS_TEI_CAPABLE,
};
#ifdef CONFIG_CPU_SH4
static unsigned int get_dma_error_irq(int n)
{
#if defined(CONFIG_SH_DMA_IRQ_MULTI)
return (n == 0) ? get_dmte_irq(0) : get_dmte_irq(6);
#else
return (n == 0) ? DMAE0_IRQ :
#if defined(DMAE1_IRQ)
DMAE1_IRQ;
#else
-1;
#endif
#endif
}
#endif
static int __init sh_dmac_init(void)
{
struct dma_info *info = &sh_dmac_info;
int i;
#ifdef CONFIG_CPU_SH4
int n;
for (n = 0; n < NR_DMAE; n++) {
i = request_irq(get_dma_error_irq(n), dma_err,
#if defined(CONFIG_SH_DMA_IRQ_MULTI)
IRQF_SHARED,
#else
IRQF_DISABLED,
#endif
dmae_name[n], (void *)dmae_name[n]);
if (unlikely(i < 0)) {
printk(KERN_ERR "%s request_irq fail\n", dmae_name[n]);
return i;
}
}
#endif /* CONFIG_CPU_SH4 */
/*
* Initialize DMAOR, and clean up any error flags that may have
* been set.
*/
i = dmaor_reset(0);
if (unlikely(i != 0))
return i;
#if defined(CONFIG_CPU_SUBTYPE_SH7723) || \
defined(CONFIG_CPU_SUBTYPE_SH7780) || \
defined(CONFIG_CPU_SUBTYPE_SH7785)
i = dmaor_reset(1);
if (unlikely(i != 0))
return i;
#endif
return register_dmac(info);
}
static void __exit sh_dmac_exit(void)
{
#ifdef CONFIG_CPU_SH4
int n;
for (n = 0; n < NR_DMAE; n++) {
free_irq(get_dma_error_irq(n), (void *)dmae_name[n]);
}
#endif /* CONFIG_CPU_SH4 */
unregister_dmac(&sh_dmac_info);
}
subsys_initcall(sh_dmac_init);
module_exit(sh_dmac_exit);
MODULE_AUTHOR("Takashi YOSHII, Paul Mundt, Andriy Skulysh");
MODULE_DESCRIPTION("SuperH On-Chip DMAC Support");
MODULE_LICENSE("GPL");