1
linux/drivers/net/ethernet/dlink/dl2k.c
David S. Miller 0d6c4a2e46 Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
Conflicts:
	drivers/net/ethernet/intel/e1000e/param.c
	drivers/net/wireless/iwlwifi/iwl-agn-rx.c
	drivers/net/wireless/iwlwifi/iwl-trans-pcie-rx.c
	drivers/net/wireless/iwlwifi/iwl-trans.h

Resolved the iwlwifi conflict with mainline using 3-way diff posted
by John Linville and Stephen Rothwell.  In 'net' we added a bug
fix to make iwlwifi report a more accurate skb->truesize but this
conflicted with RX path changes that happened meanwhile in net-next.

In e1000e a conflict arose in the validation code for settings of
adapter->itr.  'net-next' had more sophisticated logic so that
logic was used.

Signed-off-by: David S. Miller <davem@davemloft.net>
2012-05-07 23:35:40 -04:00

1786 lines
46 KiB
C

/* D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
/*
Copyright (c) 2001, 2002 by D-Link Corporation
Written by Edward Peng.<edward_peng@dlink.com.tw>
Created 03-May-2001, base on Linux' sundance.c.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
*/
#define DRV_NAME "DL2000/TC902x-based linux driver"
#define DRV_VERSION "v1.19"
#define DRV_RELDATE "2007/08/12"
#include "dl2k.h"
#include <linux/dma-mapping.h>
#define dw32(reg, val) iowrite32(val, ioaddr + (reg))
#define dw16(reg, val) iowrite16(val, ioaddr + (reg))
#define dw8(reg, val) iowrite8(val, ioaddr + (reg))
#define dr32(reg) ioread32(ioaddr + (reg))
#define dr16(reg) ioread16(ioaddr + (reg))
#define dr8(reg) ioread8(ioaddr + (reg))
static char version[] __devinitdata =
KERN_INFO DRV_NAME " " DRV_VERSION " " DRV_RELDATE "\n";
#define MAX_UNITS 8
static int mtu[MAX_UNITS];
static int vlan[MAX_UNITS];
static int jumbo[MAX_UNITS];
static char *media[MAX_UNITS];
static int tx_flow=-1;
static int rx_flow=-1;
static int copy_thresh;
static int rx_coalesce=10; /* Rx frame count each interrupt */
static int rx_timeout=200; /* Rx DMA wait time in 640ns increments */
static int tx_coalesce=16; /* HW xmit count each TxDMAComplete */
MODULE_AUTHOR ("Edward Peng");
MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
MODULE_LICENSE("GPL");
module_param_array(mtu, int, NULL, 0);
module_param_array(media, charp, NULL, 0);
module_param_array(vlan, int, NULL, 0);
module_param_array(jumbo, int, NULL, 0);
module_param(tx_flow, int, 0);
module_param(rx_flow, int, 0);
module_param(copy_thresh, int, 0);
module_param(rx_coalesce, int, 0); /* Rx frame count each interrupt */
module_param(rx_timeout, int, 0); /* Rx DMA wait time in 64ns increments */
module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
/* Enable the default interrupts */
#define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
UpdateStats | LinkEvent)
static void dl2k_enable_int(struct netdev_private *np)
{
void __iomem *ioaddr = np->ioaddr;
dw16(IntEnable, DEFAULT_INTR);
}
static const int max_intrloop = 50;
static const int multicast_filter_limit = 0x40;
static int rio_open (struct net_device *dev);
static void rio_timer (unsigned long data);
static void rio_tx_timeout (struct net_device *dev);
static void alloc_list (struct net_device *dev);
static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev);
static irqreturn_t rio_interrupt (int irq, void *dev_instance);
static void rio_free_tx (struct net_device *dev, int irq);
static void tx_error (struct net_device *dev, int tx_status);
static int receive_packet (struct net_device *dev);
static void rio_error (struct net_device *dev, int int_status);
static int change_mtu (struct net_device *dev, int new_mtu);
static void set_multicast (struct net_device *dev);
static struct net_device_stats *get_stats (struct net_device *dev);
static int clear_stats (struct net_device *dev);
static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
static int rio_close (struct net_device *dev);
static int find_miiphy (struct net_device *dev);
static int parse_eeprom (struct net_device *dev);
static int read_eeprom (struct netdev_private *, int eep_addr);
static int mii_wait_link (struct net_device *dev, int wait);
static int mii_set_media (struct net_device *dev);
static int mii_get_media (struct net_device *dev);
static int mii_set_media_pcs (struct net_device *dev);
static int mii_get_media_pcs (struct net_device *dev);
static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
u16 data);
static const struct ethtool_ops ethtool_ops;
static const struct net_device_ops netdev_ops = {
.ndo_open = rio_open,
.ndo_start_xmit = start_xmit,
.ndo_stop = rio_close,
.ndo_get_stats = get_stats,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = eth_mac_addr,
.ndo_set_rx_mode = set_multicast,
.ndo_do_ioctl = rio_ioctl,
.ndo_tx_timeout = rio_tx_timeout,
.ndo_change_mtu = change_mtu,
};
static int __devinit
rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct net_device *dev;
struct netdev_private *np;
static int card_idx;
int chip_idx = ent->driver_data;
int err, irq;
void __iomem *ioaddr;
static int version_printed;
void *ring_space;
dma_addr_t ring_dma;
if (!version_printed++)
printk ("%s", version);
err = pci_enable_device (pdev);
if (err)
return err;
irq = pdev->irq;
err = pci_request_regions (pdev, "dl2k");
if (err)
goto err_out_disable;
pci_set_master (pdev);
err = -ENOMEM;
dev = alloc_etherdev (sizeof (*np));
if (!dev)
goto err_out_res;
SET_NETDEV_DEV(dev, &pdev->dev);
np = netdev_priv(dev);
/* IO registers range. */
ioaddr = pci_iomap(pdev, 0, 0);
if (!ioaddr)
goto err_out_dev;
np->eeprom_addr = ioaddr;
#ifdef MEM_MAPPING
/* MM registers range. */
ioaddr = pci_iomap(pdev, 1, 0);
if (!ioaddr)
goto err_out_iounmap;
#endif
np->ioaddr = ioaddr;
np->chip_id = chip_idx;
np->pdev = pdev;
spin_lock_init (&np->tx_lock);
spin_lock_init (&np->rx_lock);
/* Parse manual configuration */
np->an_enable = 1;
np->tx_coalesce = 1;
if (card_idx < MAX_UNITS) {
if (media[card_idx] != NULL) {
np->an_enable = 0;
if (strcmp (media[card_idx], "auto") == 0 ||
strcmp (media[card_idx], "autosense") == 0 ||
strcmp (media[card_idx], "0") == 0 ) {
np->an_enable = 2;
} else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
strcmp (media[card_idx], "4") == 0) {
np->speed = 100;
np->full_duplex = 1;
} else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
strcmp (media[card_idx], "3") == 0) {
np->speed = 100;
np->full_duplex = 0;
} else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
strcmp (media[card_idx], "2") == 0) {
np->speed = 10;
np->full_duplex = 1;
} else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
strcmp (media[card_idx], "1") == 0) {
np->speed = 10;
np->full_duplex = 0;
} else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
strcmp (media[card_idx], "6") == 0) {
np->speed=1000;
np->full_duplex=1;
} else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
strcmp (media[card_idx], "5") == 0) {
np->speed = 1000;
np->full_duplex = 0;
} else {
np->an_enable = 1;
}
}
if (jumbo[card_idx] != 0) {
np->jumbo = 1;
dev->mtu = MAX_JUMBO;
} else {
np->jumbo = 0;
if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
dev->mtu = mtu[card_idx];
}
np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
vlan[card_idx] : 0;
if (rx_coalesce > 0 && rx_timeout > 0) {
np->rx_coalesce = rx_coalesce;
np->rx_timeout = rx_timeout;
np->coalesce = 1;
}
np->tx_flow = (tx_flow == 0) ? 0 : 1;
np->rx_flow = (rx_flow == 0) ? 0 : 1;
if (tx_coalesce < 1)
tx_coalesce = 1;
else if (tx_coalesce > TX_RING_SIZE-1)
tx_coalesce = TX_RING_SIZE - 1;
}
dev->netdev_ops = &netdev_ops;
dev->watchdog_timeo = TX_TIMEOUT;
SET_ETHTOOL_OPS(dev, &ethtool_ops);
#if 0
dev->features = NETIF_F_IP_CSUM;
#endif
pci_set_drvdata (pdev, dev);
ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma);
if (!ring_space)
goto err_out_iounmap;
np->tx_ring = ring_space;
np->tx_ring_dma = ring_dma;
ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma);
if (!ring_space)
goto err_out_unmap_tx;
np->rx_ring = ring_space;
np->rx_ring_dma = ring_dma;
/* Parse eeprom data */
parse_eeprom (dev);
/* Find PHY address */
err = find_miiphy (dev);
if (err)
goto err_out_unmap_rx;
/* Fiber device? */
np->phy_media = (dr16(ASICCtrl) & PhyMedia) ? 1 : 0;
np->link_status = 0;
/* Set media and reset PHY */
if (np->phy_media) {
/* default Auto-Negotiation for fiber deivices */
if (np->an_enable == 2) {
np->an_enable = 1;
}
mii_set_media_pcs (dev);
} else {
/* Auto-Negotiation is mandatory for 1000BASE-T,
IEEE 802.3ab Annex 28D page 14 */
if (np->speed == 1000)
np->an_enable = 1;
mii_set_media (dev);
}
err = register_netdev (dev);
if (err)
goto err_out_unmap_rx;
card_idx++;
printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
dev->name, np->name, dev->dev_addr, irq);
if (tx_coalesce > 1)
printk(KERN_INFO "tx_coalesce:\t%d packets\n",
tx_coalesce);
if (np->coalesce)
printk(KERN_INFO
"rx_coalesce:\t%d packets\n"
"rx_timeout: \t%d ns\n",
np->rx_coalesce, np->rx_timeout*640);
if (np->vlan)
printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
return 0;
err_out_unmap_rx:
pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
err_out_unmap_tx:
pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
err_out_iounmap:
#ifdef MEM_MAPPING
pci_iounmap(pdev, np->ioaddr);
#endif
pci_iounmap(pdev, np->eeprom_addr);
err_out_dev:
free_netdev (dev);
err_out_res:
pci_release_regions (pdev);
err_out_disable:
pci_disable_device (pdev);
return err;
}
static int
find_miiphy (struct net_device *dev)
{
struct netdev_private *np = netdev_priv(dev);
int i, phy_found = 0;
np = netdev_priv(dev);
np->phy_addr = 1;
for (i = 31; i >= 0; i--) {
int mii_status = mii_read (dev, i, 1);
if (mii_status != 0xffff && mii_status != 0x0000) {
np->phy_addr = i;
phy_found++;
}
}
if (!phy_found) {
printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
return -ENODEV;
}
return 0;
}
static int
parse_eeprom (struct net_device *dev)
{
struct netdev_private *np = netdev_priv(dev);
void __iomem *ioaddr = np->ioaddr;
int i, j;
u8 sromdata[256];
u8 *psib;
u32 crc;
PSROM_t psrom = (PSROM_t) sromdata;
int cid, next;
for (i = 0; i < 128; i++)
((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom(np, i));
if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) { /* D-Link Only */
/* Check CRC */
crc = ~ether_crc_le (256 - 4, sromdata);
if (psrom->crc != cpu_to_le32(crc)) {
printk (KERN_ERR "%s: EEPROM data CRC error.\n",
dev->name);
return -1;
}
}
/* Set MAC address */
for (i = 0; i < 6; i++)
dev->dev_addr[i] = psrom->mac_addr[i];
if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
return 0;
}
/* Parse Software Information Block */
i = 0x30;
psib = (u8 *) sromdata;
do {
cid = psib[i++];
next = psib[i++];
if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
printk (KERN_ERR "Cell data error\n");
return -1;
}
switch (cid) {
case 0: /* Format version */
break;
case 1: /* End of cell */
return 0;
case 2: /* Duplex Polarity */
np->duplex_polarity = psib[i];
dw8(PhyCtrl, dr8(PhyCtrl) | psib[i]);
break;
case 3: /* Wake Polarity */
np->wake_polarity = psib[i];
break;
case 9: /* Adapter description */
j = (next - i > 255) ? 255 : next - i;
memcpy (np->name, &(psib[i]), j);
break;
case 4:
case 5:
case 6:
case 7:
case 8: /* Reversed */
break;
default: /* Unknown cell */
return -1;
}
i = next;
} while (1);
return 0;
}
static int
rio_open (struct net_device *dev)
{
struct netdev_private *np = netdev_priv(dev);
void __iomem *ioaddr = np->ioaddr;
const int irq = np->pdev->irq;
int i;
u16 macctrl;
i = request_irq(irq, rio_interrupt, IRQF_SHARED, dev->name, dev);
if (i)
return i;
/* Reset all logic functions */
dw16(ASICCtrl + 2,
GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset);
mdelay(10);
/* DebugCtrl bit 4, 5, 9 must set */
dw32(DebugCtrl, dr32(DebugCtrl) | 0x0230);
/* Jumbo frame */
if (np->jumbo != 0)
dw16(MaxFrameSize, MAX_JUMBO+14);
alloc_list (dev);
/* Get station address */
for (i = 0; i < 6; i++)
dw8(StationAddr0 + i, dev->dev_addr[i]);
set_multicast (dev);
if (np->coalesce) {
dw32(RxDMAIntCtrl, np->rx_coalesce | np->rx_timeout << 16);
}
/* Set RIO to poll every N*320nsec. */
dw8(RxDMAPollPeriod, 0x20);
dw8(TxDMAPollPeriod, 0xff);
dw8(RxDMABurstThresh, 0x30);
dw8(RxDMAUrgentThresh, 0x30);
dw32(RmonStatMask, 0x0007ffff);
/* clear statistics */
clear_stats (dev);
/* VLAN supported */
if (np->vlan) {
/* priority field in RxDMAIntCtrl */
dw32(RxDMAIntCtrl, dr32(RxDMAIntCtrl) | 0x7 << 10);
/* VLANId */
dw16(VLANId, np->vlan);
/* Length/Type should be 0x8100 */
dw32(VLANTag, 0x8100 << 16 | np->vlan);
/* Enable AutoVLANuntagging, but disable AutoVLANtagging.
VLAN information tagged by TFC' VID, CFI fields. */
dw32(MACCtrl, dr32(MACCtrl) | AutoVLANuntagging);
}
init_timer (&np->timer);
np->timer.expires = jiffies + 1*HZ;
np->timer.data = (unsigned long) dev;
np->timer.function = rio_timer;
add_timer (&np->timer);
/* Start Tx/Rx */
dw32(MACCtrl, dr32(MACCtrl) | StatsEnable | RxEnable | TxEnable);
macctrl = 0;
macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
macctrl |= (np->full_duplex) ? DuplexSelect : 0;
macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
dw16(MACCtrl, macctrl);
netif_start_queue (dev);
dl2k_enable_int(np);
return 0;
}
static void
rio_timer (unsigned long data)
{
struct net_device *dev = (struct net_device *)data;
struct netdev_private *np = netdev_priv(dev);
unsigned int entry;
int next_tick = 1*HZ;
unsigned long flags;
spin_lock_irqsave(&np->rx_lock, flags);
/* Recover rx ring exhausted error */
if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
printk(KERN_INFO "Try to recover rx ring exhausted...\n");
/* Re-allocate skbuffs to fill the descriptor ring */
for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
struct sk_buff *skb;
entry = np->old_rx % RX_RING_SIZE;
/* Dropped packets don't need to re-allocate */
if (np->rx_skbuff[entry] == NULL) {
skb = netdev_alloc_skb_ip_align(dev,
np->rx_buf_sz);
if (skb == NULL) {
np->rx_ring[entry].fraginfo = 0;
printk (KERN_INFO
"%s: Still unable to re-allocate Rx skbuff.#%d\n",
dev->name, entry);
break;
}
np->rx_skbuff[entry] = skb;
np->rx_ring[entry].fraginfo =
cpu_to_le64 (pci_map_single
(np->pdev, skb->data, np->rx_buf_sz,
PCI_DMA_FROMDEVICE));
}
np->rx_ring[entry].fraginfo |=
cpu_to_le64((u64)np->rx_buf_sz << 48);
np->rx_ring[entry].status = 0;
} /* end for */
} /* end if */
spin_unlock_irqrestore (&np->rx_lock, flags);
np->timer.expires = jiffies + next_tick;
add_timer(&np->timer);
}
static void
rio_tx_timeout (struct net_device *dev)
{
struct netdev_private *np = netdev_priv(dev);
void __iomem *ioaddr = np->ioaddr;
printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
dev->name, dr32(TxStatus));
rio_free_tx(dev, 0);
dev->if_port = 0;
dev->trans_start = jiffies; /* prevent tx timeout */
}
/* allocate and initialize Tx and Rx descriptors */
static void
alloc_list (struct net_device *dev)
{
struct netdev_private *np = netdev_priv(dev);
void __iomem *ioaddr = np->ioaddr;
int i;
np->cur_rx = np->cur_tx = 0;
np->old_rx = np->old_tx = 0;
np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
/* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
for (i = 0; i < TX_RING_SIZE; i++) {
np->tx_skbuff[i] = NULL;
np->tx_ring[i].status = cpu_to_le64 (TFDDone);
np->tx_ring[i].next_desc = cpu_to_le64 (np->tx_ring_dma +
((i+1)%TX_RING_SIZE) *
sizeof (struct netdev_desc));
}
/* Initialize Rx descriptors */
for (i = 0; i < RX_RING_SIZE; i++) {
np->rx_ring[i].next_desc = cpu_to_le64 (np->rx_ring_dma +
((i + 1) % RX_RING_SIZE) *
sizeof (struct netdev_desc));
np->rx_ring[i].status = 0;
np->rx_ring[i].fraginfo = 0;
np->rx_skbuff[i] = NULL;
}
/* Allocate the rx buffers */
for (i = 0; i < RX_RING_SIZE; i++) {
/* Allocated fixed size of skbuff */
struct sk_buff *skb;
skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
np->rx_skbuff[i] = skb;
if (skb == NULL) {
printk (KERN_ERR
"%s: alloc_list: allocate Rx buffer error! ",
dev->name);
break;
}
/* Rubicon now supports 40 bits of addressing space. */
np->rx_ring[i].fraginfo =
cpu_to_le64 ( pci_map_single (
np->pdev, skb->data, np->rx_buf_sz,
PCI_DMA_FROMDEVICE));
np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
}
/* Set RFDListPtr */
dw32(RFDListPtr0, np->rx_ring_dma);
dw32(RFDListPtr1, 0);
}
static netdev_tx_t
start_xmit (struct sk_buff *skb, struct net_device *dev)
{
struct netdev_private *np = netdev_priv(dev);
void __iomem *ioaddr = np->ioaddr;
struct netdev_desc *txdesc;
unsigned entry;
u64 tfc_vlan_tag = 0;
if (np->link_status == 0) { /* Link Down */
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
entry = np->cur_tx % TX_RING_SIZE;
np->tx_skbuff[entry] = skb;
txdesc = &np->tx_ring[entry];
#if 0
if (skb->ip_summed == CHECKSUM_PARTIAL) {
txdesc->status |=
cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
IPChecksumEnable);
}
#endif
if (np->vlan) {
tfc_vlan_tag = VLANTagInsert |
((u64)np->vlan << 32) |
((u64)skb->priority << 45);
}
txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data,
skb->len,
PCI_DMA_TODEVICE));
txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
/* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
* Work around: Always use 1 descriptor in 10Mbps mode */
if (entry % np->tx_coalesce == 0 || np->speed == 10)
txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
WordAlignDisable |
TxDMAIndicate |
(1 << FragCountShift));
else
txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
WordAlignDisable |
(1 << FragCountShift));
/* TxDMAPollNow */
dw32(DMACtrl, dr32(DMACtrl) | 0x00001000);
/* Schedule ISR */
dw32(CountDown, 10000);
np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
< TX_QUEUE_LEN - 1 && np->speed != 10) {
/* do nothing */
} else if (!netif_queue_stopped(dev)) {
netif_stop_queue (dev);
}
/* The first TFDListPtr */
if (!dr32(TFDListPtr0)) {
dw32(TFDListPtr0, np->tx_ring_dma +
entry * sizeof (struct netdev_desc));
dw32(TFDListPtr1, 0);
}
return NETDEV_TX_OK;
}
static irqreturn_t
rio_interrupt (int irq, void *dev_instance)
{
struct net_device *dev = dev_instance;
struct netdev_private *np = netdev_priv(dev);
void __iomem *ioaddr = np->ioaddr;
unsigned int_status;
int cnt = max_intrloop;
int handled = 0;
while (1) {
int_status = dr16(IntStatus);
dw16(IntStatus, int_status);
int_status &= DEFAULT_INTR;
if (int_status == 0 || --cnt < 0)
break;
handled = 1;
/* Processing received packets */
if (int_status & RxDMAComplete)
receive_packet (dev);
/* TxDMAComplete interrupt */
if ((int_status & (TxDMAComplete|IntRequested))) {
int tx_status;
tx_status = dr32(TxStatus);
if (tx_status & 0x01)
tx_error (dev, tx_status);
/* Free used tx skbuffs */
rio_free_tx (dev, 1);
}
/* Handle uncommon events */
if (int_status &
(HostError | LinkEvent | UpdateStats))
rio_error (dev, int_status);
}
if (np->cur_tx != np->old_tx)
dw32(CountDown, 100);
return IRQ_RETVAL(handled);
}
static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
{
return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48);
}
static void
rio_free_tx (struct net_device *dev, int irq)
{
struct netdev_private *np = netdev_priv(dev);
int entry = np->old_tx % TX_RING_SIZE;
int tx_use = 0;
unsigned long flag = 0;
if (irq)
spin_lock(&np->tx_lock);
else
spin_lock_irqsave(&np->tx_lock, flag);
/* Free used tx skbuffs */
while (entry != np->cur_tx) {
struct sk_buff *skb;
if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
break;
skb = np->tx_skbuff[entry];
pci_unmap_single (np->pdev,
desc_to_dma(&np->tx_ring[entry]),
skb->len, PCI_DMA_TODEVICE);
if (irq)
dev_kfree_skb_irq (skb);
else
dev_kfree_skb (skb);
np->tx_skbuff[entry] = NULL;
entry = (entry + 1) % TX_RING_SIZE;
tx_use++;
}
if (irq)
spin_unlock(&np->tx_lock);
else
spin_unlock_irqrestore(&np->tx_lock, flag);
np->old_tx = entry;
/* If the ring is no longer full, clear tx_full and
call netif_wake_queue() */
if (netif_queue_stopped(dev) &&
((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
< TX_QUEUE_LEN - 1 || np->speed == 10)) {
netif_wake_queue (dev);
}
}
static void
tx_error (struct net_device *dev, int tx_status)
{
struct netdev_private *np = netdev_priv(dev);
void __iomem *ioaddr = np->ioaddr;
int frame_id;
int i;
frame_id = (tx_status & 0xffff0000);
printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
dev->name, tx_status, frame_id);
np->stats.tx_errors++;
/* Ttransmit Underrun */
if (tx_status & 0x10) {
np->stats.tx_fifo_errors++;
dw16(TxStartThresh, dr16(TxStartThresh) + 0x10);
/* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
dw16(ASICCtrl + 2,
TxReset | DMAReset | FIFOReset | NetworkReset);
/* Wait for ResetBusy bit clear */
for (i = 50; i > 0; i--) {
if (!(dr16(ASICCtrl + 2) & ResetBusy))
break;
mdelay (1);
}
rio_free_tx (dev, 1);
/* Reset TFDListPtr */
dw32(TFDListPtr0, np->tx_ring_dma +
np->old_tx * sizeof (struct netdev_desc));
dw32(TFDListPtr1, 0);
/* Let TxStartThresh stay default value */
}
/* Late Collision */
if (tx_status & 0x04) {
np->stats.tx_fifo_errors++;
/* TxReset and clear FIFO */
dw16(ASICCtrl + 2, TxReset | FIFOReset);
/* Wait reset done */
for (i = 50; i > 0; i--) {
if (!(dr16(ASICCtrl + 2) & ResetBusy))
break;
mdelay (1);
}
/* Let TxStartThresh stay default value */
}
/* Maximum Collisions */
#ifdef ETHER_STATS
if (tx_status & 0x08)
np->stats.collisions16++;
#else
if (tx_status & 0x08)
np->stats.collisions++;
#endif
/* Restart the Tx */
dw32(MACCtrl, dr16(MACCtrl) | TxEnable);
}
static int
receive_packet (struct net_device *dev)
{
struct netdev_private *np = netdev_priv(dev);
int entry = np->cur_rx % RX_RING_SIZE;
int cnt = 30;
/* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
while (1) {
struct netdev_desc *desc = &np->rx_ring[entry];
int pkt_len;
u64 frame_status;
if (!(desc->status & cpu_to_le64(RFDDone)) ||
!(desc->status & cpu_to_le64(FrameStart)) ||
!(desc->status & cpu_to_le64(FrameEnd)))
break;
/* Chip omits the CRC. */
frame_status = le64_to_cpu(desc->status);
pkt_len = frame_status & 0xffff;
if (--cnt < 0)
break;
/* Update rx error statistics, drop packet. */
if (frame_status & RFS_Errors) {
np->stats.rx_errors++;
if (frame_status & (RxRuntFrame | RxLengthError))
np->stats.rx_length_errors++;
if (frame_status & RxFCSError)
np->stats.rx_crc_errors++;
if (frame_status & RxAlignmentError && np->speed != 1000)
np->stats.rx_frame_errors++;
if (frame_status & RxFIFOOverrun)
np->stats.rx_fifo_errors++;
} else {
struct sk_buff *skb;
/* Small skbuffs for short packets */
if (pkt_len > copy_thresh) {
pci_unmap_single (np->pdev,
desc_to_dma(desc),
np->rx_buf_sz,
PCI_DMA_FROMDEVICE);
skb_put (skb = np->rx_skbuff[entry], pkt_len);
np->rx_skbuff[entry] = NULL;
} else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) {
pci_dma_sync_single_for_cpu(np->pdev,
desc_to_dma(desc),
np->rx_buf_sz,
PCI_DMA_FROMDEVICE);
skb_copy_to_linear_data (skb,
np->rx_skbuff[entry]->data,
pkt_len);
skb_put (skb, pkt_len);
pci_dma_sync_single_for_device(np->pdev,
desc_to_dma(desc),
np->rx_buf_sz,
PCI_DMA_FROMDEVICE);
}
skb->protocol = eth_type_trans (skb, dev);
#if 0
/* Checksum done by hw, but csum value unavailable. */
if (np->pdev->pci_rev_id >= 0x0c &&
!(frame_status & (TCPError | UDPError | IPError))) {
skb->ip_summed = CHECKSUM_UNNECESSARY;
}
#endif
netif_rx (skb);
}
entry = (entry + 1) % RX_RING_SIZE;
}
spin_lock(&np->rx_lock);
np->cur_rx = entry;
/* Re-allocate skbuffs to fill the descriptor ring */
entry = np->old_rx;
while (entry != np->cur_rx) {
struct sk_buff *skb;
/* Dropped packets don't need to re-allocate */
if (np->rx_skbuff[entry] == NULL) {
skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
if (skb == NULL) {
np->rx_ring[entry].fraginfo = 0;
printk (KERN_INFO
"%s: receive_packet: "
"Unable to re-allocate Rx skbuff.#%d\n",
dev->name, entry);
break;
}
np->rx_skbuff[entry] = skb;
np->rx_ring[entry].fraginfo =
cpu_to_le64 (pci_map_single
(np->pdev, skb->data, np->rx_buf_sz,
PCI_DMA_FROMDEVICE));
}
np->rx_ring[entry].fraginfo |=
cpu_to_le64((u64)np->rx_buf_sz << 48);
np->rx_ring[entry].status = 0;
entry = (entry + 1) % RX_RING_SIZE;
}
np->old_rx = entry;
spin_unlock(&np->rx_lock);
return 0;
}
static void
rio_error (struct net_device *dev, int int_status)
{
struct netdev_private *np = netdev_priv(dev);
void __iomem *ioaddr = np->ioaddr;
u16 macctrl;
/* Link change event */
if (int_status & LinkEvent) {
if (mii_wait_link (dev, 10) == 0) {
printk (KERN_INFO "%s: Link up\n", dev->name);
if (np->phy_media)
mii_get_media_pcs (dev);
else
mii_get_media (dev);
if (np->speed == 1000)
np->tx_coalesce = tx_coalesce;
else
np->tx_coalesce = 1;
macctrl = 0;
macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
macctrl |= (np->full_duplex) ? DuplexSelect : 0;
macctrl |= (np->tx_flow) ?
TxFlowControlEnable : 0;
macctrl |= (np->rx_flow) ?
RxFlowControlEnable : 0;
dw16(MACCtrl, macctrl);
np->link_status = 1;
netif_carrier_on(dev);
} else {
printk (KERN_INFO "%s: Link off\n", dev->name);
np->link_status = 0;
netif_carrier_off(dev);
}
}
/* UpdateStats statistics registers */
if (int_status & UpdateStats) {
get_stats (dev);
}
/* PCI Error, a catastronphic error related to the bus interface
occurs, set GlobalReset and HostReset to reset. */
if (int_status & HostError) {
printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
dev->name, int_status);
dw16(ASICCtrl + 2, GlobalReset | HostReset);
mdelay (500);
}
}
static struct net_device_stats *
get_stats (struct net_device *dev)
{
struct netdev_private *np = netdev_priv(dev);
void __iomem *ioaddr = np->ioaddr;
#ifdef MEM_MAPPING
int i;
#endif
unsigned int stat_reg;
/* All statistics registers need to be acknowledged,
else statistic overflow could cause problems */
np->stats.rx_packets += dr32(FramesRcvOk);
np->stats.tx_packets += dr32(FramesXmtOk);
np->stats.rx_bytes += dr32(OctetRcvOk);
np->stats.tx_bytes += dr32(OctetXmtOk);
np->stats.multicast = dr32(McstFramesRcvdOk);
np->stats.collisions += dr32(SingleColFrames)
+ dr32(MultiColFrames);
/* detailed tx errors */
stat_reg = dr16(FramesAbortXSColls);
np->stats.tx_aborted_errors += stat_reg;
np->stats.tx_errors += stat_reg;
stat_reg = dr16(CarrierSenseErrors);
np->stats.tx_carrier_errors += stat_reg;
np->stats.tx_errors += stat_reg;
/* Clear all other statistic register. */
dr32(McstOctetXmtOk);
dr16(BcstFramesXmtdOk);
dr32(McstFramesXmtdOk);
dr16(BcstFramesRcvdOk);
dr16(MacControlFramesRcvd);
dr16(FrameTooLongErrors);
dr16(InRangeLengthErrors);
dr16(FramesCheckSeqErrors);
dr16(FramesLostRxErrors);
dr32(McstOctetXmtOk);
dr32(BcstOctetXmtOk);
dr32(McstFramesXmtdOk);
dr32(FramesWDeferredXmt);
dr32(LateCollisions);
dr16(BcstFramesXmtdOk);
dr16(MacControlFramesXmtd);
dr16(FramesWEXDeferal);
#ifdef MEM_MAPPING
for (i = 0x100; i <= 0x150; i += 4)
dr32(i);
#endif
dr16(TxJumboFrames);
dr16(RxJumboFrames);
dr16(TCPCheckSumErrors);
dr16(UDPCheckSumErrors);
dr16(IPCheckSumErrors);
return &np->stats;
}
static int
clear_stats (struct net_device *dev)
{
struct netdev_private *np = netdev_priv(dev);
void __iomem *ioaddr = np->ioaddr;
#ifdef MEM_MAPPING
int i;
#endif
/* All statistics registers need to be acknowledged,
else statistic overflow could cause problems */
dr32(FramesRcvOk);
dr32(FramesXmtOk);
dr32(OctetRcvOk);
dr32(OctetXmtOk);
dr32(McstFramesRcvdOk);
dr32(SingleColFrames);
dr32(MultiColFrames);
dr32(LateCollisions);
/* detailed rx errors */
dr16(FrameTooLongErrors);
dr16(InRangeLengthErrors);
dr16(FramesCheckSeqErrors);
dr16(FramesLostRxErrors);
/* detailed tx errors */
dr16(FramesAbortXSColls);
dr16(CarrierSenseErrors);
/* Clear all other statistic register. */
dr32(McstOctetXmtOk);
dr16(BcstFramesXmtdOk);
dr32(McstFramesXmtdOk);
dr16(BcstFramesRcvdOk);
dr16(MacControlFramesRcvd);
dr32(McstOctetXmtOk);
dr32(BcstOctetXmtOk);
dr32(McstFramesXmtdOk);
dr32(FramesWDeferredXmt);
dr16(BcstFramesXmtdOk);
dr16(MacControlFramesXmtd);
dr16(FramesWEXDeferal);
#ifdef MEM_MAPPING
for (i = 0x100; i <= 0x150; i += 4)
dr32(i);
#endif
dr16(TxJumboFrames);
dr16(RxJumboFrames);
dr16(TCPCheckSumErrors);
dr16(UDPCheckSumErrors);
dr16(IPCheckSumErrors);
return 0;
}
static int
change_mtu (struct net_device *dev, int new_mtu)
{
struct netdev_private *np = netdev_priv(dev);
int max = (np->jumbo) ? MAX_JUMBO : 1536;
if ((new_mtu < 68) || (new_mtu > max)) {
return -EINVAL;
}
dev->mtu = new_mtu;
return 0;
}
static void
set_multicast (struct net_device *dev)
{
struct netdev_private *np = netdev_priv(dev);
void __iomem *ioaddr = np->ioaddr;
u32 hash_table[2];
u16 rx_mode = 0;
hash_table[0] = hash_table[1] = 0;
/* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
hash_table[1] |= 0x02000000;
if (dev->flags & IFF_PROMISC) {
/* Receive all frames promiscuously. */
rx_mode = ReceiveAllFrames;
} else if ((dev->flags & IFF_ALLMULTI) ||
(netdev_mc_count(dev) > multicast_filter_limit)) {
/* Receive broadcast and multicast frames */
rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
} else if (!netdev_mc_empty(dev)) {
struct netdev_hw_addr *ha;
/* Receive broadcast frames and multicast frames filtering
by Hashtable */
rx_mode =
ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
netdev_for_each_mc_addr(ha, dev) {
int bit, index = 0;
int crc = ether_crc_le(ETH_ALEN, ha->addr);
/* The inverted high significant 6 bits of CRC are
used as an index to hashtable */
for (bit = 0; bit < 6; bit++)
if (crc & (1 << (31 - bit)))
index |= (1 << bit);
hash_table[index / 32] |= (1 << (index % 32));
}
} else {
rx_mode = ReceiveBroadcast | ReceiveUnicast;
}
if (np->vlan) {
/* ReceiveVLANMatch field in ReceiveMode */
rx_mode |= ReceiveVLANMatch;
}
dw32(HashTable0, hash_table[0]);
dw32(HashTable1, hash_table[1]);
dw16(ReceiveMode, rx_mode);
}
static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
struct netdev_private *np = netdev_priv(dev);
strcpy(info->driver, "dl2k");
strcpy(info->version, DRV_VERSION);
strcpy(info->bus_info, pci_name(np->pdev));
}
static int rio_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct netdev_private *np = netdev_priv(dev);
if (np->phy_media) {
/* fiber device */
cmd->supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
cmd->advertising= ADVERTISED_Autoneg | ADVERTISED_FIBRE;
cmd->port = PORT_FIBRE;
cmd->transceiver = XCVR_INTERNAL;
} else {
/* copper device */
cmd->supported = SUPPORTED_10baseT_Half |
SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
SUPPORTED_Autoneg | SUPPORTED_MII;
cmd->advertising = ADVERTISED_10baseT_Half |
ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full|
ADVERTISED_Autoneg | ADVERTISED_MII;
cmd->port = PORT_MII;
cmd->transceiver = XCVR_INTERNAL;
}
if ( np->link_status ) {
ethtool_cmd_speed_set(cmd, np->speed);
cmd->duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
} else {
ethtool_cmd_speed_set(cmd, -1);
cmd->duplex = -1;
}
if ( np->an_enable)
cmd->autoneg = AUTONEG_ENABLE;
else
cmd->autoneg = AUTONEG_DISABLE;
cmd->phy_address = np->phy_addr;
return 0;
}
static int rio_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct netdev_private *np = netdev_priv(dev);
netif_carrier_off(dev);
if (cmd->autoneg == AUTONEG_ENABLE) {
if (np->an_enable)
return 0;
else {
np->an_enable = 1;
mii_set_media(dev);
return 0;
}
} else {
np->an_enable = 0;
if (np->speed == 1000) {
ethtool_cmd_speed_set(cmd, SPEED_100);
cmd->duplex = DUPLEX_FULL;
printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
}
switch (ethtool_cmd_speed(cmd)) {
case SPEED_10:
np->speed = 10;
np->full_duplex = (cmd->duplex == DUPLEX_FULL);
break;
case SPEED_100:
np->speed = 100;
np->full_duplex = (cmd->duplex == DUPLEX_FULL);
break;
case SPEED_1000: /* not supported */
default:
return -EINVAL;
}
mii_set_media(dev);
}
return 0;
}
static u32 rio_get_link(struct net_device *dev)
{
struct netdev_private *np = netdev_priv(dev);
return np->link_status;
}
static const struct ethtool_ops ethtool_ops = {
.get_drvinfo = rio_get_drvinfo,
.get_settings = rio_get_settings,
.set_settings = rio_set_settings,
.get_link = rio_get_link,
};
static int
rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
{
int phy_addr;
struct netdev_private *np = netdev_priv(dev);
struct mii_ioctl_data *miidata = if_mii(rq);
phy_addr = np->phy_addr;
switch (cmd) {
case SIOCGMIIPHY:
miidata->phy_id = phy_addr;
break;
case SIOCGMIIREG:
miidata->val_out = mii_read (dev, phy_addr, miidata->reg_num);
break;
case SIOCSMIIREG:
if (!capable(CAP_NET_ADMIN))
return -EPERM;
mii_write (dev, phy_addr, miidata->reg_num, miidata->val_in);
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
#define EEP_READ 0x0200
#define EEP_BUSY 0x8000
/* Read the EEPROM word */
/* We use I/O instruction to read/write eeprom to avoid fail on some machines */
static int read_eeprom(struct netdev_private *np, int eep_addr)
{
void __iomem *ioaddr = np->eeprom_addr;
int i = 1000;
dw16(EepromCtrl, EEP_READ | (eep_addr & 0xff));
while (i-- > 0) {
if (!(dr16(EepromCtrl) & EEP_BUSY))
return dr16(EepromData);
}
return 0;
}
enum phy_ctrl_bits {
MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
MII_DUPLEX = 0x08,
};
#define mii_delay() dr8(PhyCtrl)
static void
mii_sendbit (struct net_device *dev, u32 data)
{
struct netdev_private *np = netdev_priv(dev);
void __iomem *ioaddr = np->ioaddr;
data = ((data) ? MII_DATA1 : 0) | (dr8(PhyCtrl) & 0xf8) | MII_WRITE;
dw8(PhyCtrl, data);
mii_delay ();
dw8(PhyCtrl, data | MII_CLK);
mii_delay ();
}
static int
mii_getbit (struct net_device *dev)
{
struct netdev_private *np = netdev_priv(dev);
void __iomem *ioaddr = np->ioaddr;
u8 data;
data = (dr8(PhyCtrl) & 0xf8) | MII_READ;
dw8(PhyCtrl, data);
mii_delay ();
dw8(PhyCtrl, data | MII_CLK);
mii_delay ();
return (dr8(PhyCtrl) >> 1) & 1;
}
static void
mii_send_bits (struct net_device *dev, u32 data, int len)
{
int i;
for (i = len - 1; i >= 0; i--) {
mii_sendbit (dev, data & (1 << i));
}
}
static int
mii_read (struct net_device *dev, int phy_addr, int reg_num)
{
u32 cmd;
int i;
u32 retval = 0;
/* Preamble */
mii_send_bits (dev, 0xffffffff, 32);
/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
/* ST,OP = 0110'b for read operation */
cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
mii_send_bits (dev, cmd, 14);
/* Turnaround */
if (mii_getbit (dev))
goto err_out;
/* Read data */
for (i = 0; i < 16; i++) {
retval |= mii_getbit (dev);
retval <<= 1;
}
/* End cycle */
mii_getbit (dev);
return (retval >> 1) & 0xffff;
err_out:
return 0;
}
static int
mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
{
u32 cmd;
/* Preamble */
mii_send_bits (dev, 0xffffffff, 32);
/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
mii_send_bits (dev, cmd, 32);
/* End cycle */
mii_getbit (dev);
return 0;
}
static int
mii_wait_link (struct net_device *dev, int wait)
{
__u16 bmsr;
int phy_addr;
struct netdev_private *np;
np = netdev_priv(dev);
phy_addr = np->phy_addr;
do {
bmsr = mii_read (dev, phy_addr, MII_BMSR);
if (bmsr & BMSR_LSTATUS)
return 0;
mdelay (1);
} while (--wait > 0);
return -1;
}
static int
mii_get_media (struct net_device *dev)
{
__u16 negotiate;
__u16 bmsr;
__u16 mscr;
__u16 mssr;
int phy_addr;
struct netdev_private *np;
np = netdev_priv(dev);
phy_addr = np->phy_addr;
bmsr = mii_read (dev, phy_addr, MII_BMSR);
if (np->an_enable) {
if (!(bmsr & BMSR_ANEGCOMPLETE)) {
/* Auto-Negotiation not completed */
return -1;
}
negotiate = mii_read (dev, phy_addr, MII_ADVERTISE) &
mii_read (dev, phy_addr, MII_LPA);
mscr = mii_read (dev, phy_addr, MII_CTRL1000);
mssr = mii_read (dev, phy_addr, MII_STAT1000);
if (mscr & ADVERTISE_1000FULL && mssr & LPA_1000FULL) {
np->speed = 1000;
np->full_duplex = 1;
printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
} else if (mscr & ADVERTISE_1000HALF && mssr & LPA_1000HALF) {
np->speed = 1000;
np->full_duplex = 0;
printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
} else if (negotiate & ADVERTISE_100FULL) {
np->speed = 100;
np->full_duplex = 1;
printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
} else if (negotiate & ADVERTISE_100HALF) {
np->speed = 100;
np->full_duplex = 0;
printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
} else if (negotiate & ADVERTISE_10FULL) {
np->speed = 10;
np->full_duplex = 1;
printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
} else if (negotiate & ADVERTISE_10HALF) {
np->speed = 10;
np->full_duplex = 0;
printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
}
if (negotiate & ADVERTISE_PAUSE_CAP) {
np->tx_flow &= 1;
np->rx_flow &= 1;
} else if (negotiate & ADVERTISE_PAUSE_ASYM) {
np->tx_flow = 0;
np->rx_flow &= 1;
}
/* else tx_flow, rx_flow = user select */
} else {
__u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
switch (bmcr & (BMCR_SPEED100 | BMCR_SPEED1000)) {
case BMCR_SPEED1000:
printk (KERN_INFO "Operating at 1000 Mbps, ");
break;
case BMCR_SPEED100:
printk (KERN_INFO "Operating at 100 Mbps, ");
break;
case 0:
printk (KERN_INFO "Operating at 10 Mbps, ");
}
if (bmcr & BMCR_FULLDPLX) {
printk (KERN_CONT "Full duplex\n");
} else {
printk (KERN_CONT "Half duplex\n");
}
}
if (np->tx_flow)
printk(KERN_INFO "Enable Tx Flow Control\n");
else
printk(KERN_INFO "Disable Tx Flow Control\n");
if (np->rx_flow)
printk(KERN_INFO "Enable Rx Flow Control\n");
else
printk(KERN_INFO "Disable Rx Flow Control\n");
return 0;
}
static int
mii_set_media (struct net_device *dev)
{
__u16 pscr;
__u16 bmcr;
__u16 bmsr;
__u16 anar;
int phy_addr;
struct netdev_private *np;
np = netdev_priv(dev);
phy_addr = np->phy_addr;
/* Does user set speed? */
if (np->an_enable) {
/* Advertise capabilities */
bmsr = mii_read (dev, phy_addr, MII_BMSR);
anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
~(ADVERTISE_100FULL | ADVERTISE_10FULL |
ADVERTISE_100HALF | ADVERTISE_10HALF |
ADVERTISE_100BASE4);
if (bmsr & BMSR_100FULL)
anar |= ADVERTISE_100FULL;
if (bmsr & BMSR_100HALF)
anar |= ADVERTISE_100HALF;
if (bmsr & BMSR_100BASE4)
anar |= ADVERTISE_100BASE4;
if (bmsr & BMSR_10FULL)
anar |= ADVERTISE_10FULL;
if (bmsr & BMSR_10HALF)
anar |= ADVERTISE_10HALF;
anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
mii_write (dev, phy_addr, MII_ADVERTISE, anar);
/* Enable Auto crossover */
pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
pscr |= 3 << 5; /* 11'b */
mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
/* Soft reset PHY */
mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
mii_write (dev, phy_addr, MII_BMCR, bmcr);
mdelay(1);
} else {
/* Force speed setting */
/* 1) Disable Auto crossover */
pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
pscr &= ~(3 << 5);
mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
/* 2) PHY Reset */
bmcr = mii_read (dev, phy_addr, MII_BMCR);
bmcr |= BMCR_RESET;
mii_write (dev, phy_addr, MII_BMCR, bmcr);
/* 3) Power Down */
bmcr = 0x1940; /* must be 0x1940 */
mii_write (dev, phy_addr, MII_BMCR, bmcr);
mdelay (100); /* wait a certain time */
/* 4) Advertise nothing */
mii_write (dev, phy_addr, MII_ADVERTISE, 0);
/* 5) Set media and Power Up */
bmcr = BMCR_PDOWN;
if (np->speed == 100) {
bmcr |= BMCR_SPEED100;
printk (KERN_INFO "Manual 100 Mbps, ");
} else if (np->speed == 10) {
printk (KERN_INFO "Manual 10 Mbps, ");
}
if (np->full_duplex) {
bmcr |= BMCR_FULLDPLX;
printk (KERN_CONT "Full duplex\n");
} else {
printk (KERN_CONT "Half duplex\n");
}
#if 0
/* Set 1000BaseT Master/Slave setting */
mscr = mii_read (dev, phy_addr, MII_CTRL1000);
mscr |= MII_MSCR_CFG_ENABLE;
mscr &= ~MII_MSCR_CFG_VALUE = 0;
#endif
mii_write (dev, phy_addr, MII_BMCR, bmcr);
mdelay(10);
}
return 0;
}
static int
mii_get_media_pcs (struct net_device *dev)
{
__u16 negotiate;
__u16 bmsr;
int phy_addr;
struct netdev_private *np;
np = netdev_priv(dev);
phy_addr = np->phy_addr;
bmsr = mii_read (dev, phy_addr, PCS_BMSR);
if (np->an_enable) {
if (!(bmsr & BMSR_ANEGCOMPLETE)) {
/* Auto-Negotiation not completed */
return -1;
}
negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
mii_read (dev, phy_addr, PCS_ANLPAR);
np->speed = 1000;
if (negotiate & PCS_ANAR_FULL_DUPLEX) {
printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
np->full_duplex = 1;
} else {
printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
np->full_duplex = 0;
}
if (negotiate & PCS_ANAR_PAUSE) {
np->tx_flow &= 1;
np->rx_flow &= 1;
} else if (negotiate & PCS_ANAR_ASYMMETRIC) {
np->tx_flow = 0;
np->rx_flow &= 1;
}
/* else tx_flow, rx_flow = user select */
} else {
__u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
printk (KERN_INFO "Operating at 1000 Mbps, ");
if (bmcr & BMCR_FULLDPLX) {
printk (KERN_CONT "Full duplex\n");
} else {
printk (KERN_CONT "Half duplex\n");
}
}
if (np->tx_flow)
printk(KERN_INFO "Enable Tx Flow Control\n");
else
printk(KERN_INFO "Disable Tx Flow Control\n");
if (np->rx_flow)
printk(KERN_INFO "Enable Rx Flow Control\n");
else
printk(KERN_INFO "Disable Rx Flow Control\n");
return 0;
}
static int
mii_set_media_pcs (struct net_device *dev)
{
__u16 bmcr;
__u16 esr;
__u16 anar;
int phy_addr;
struct netdev_private *np;
np = netdev_priv(dev);
phy_addr = np->phy_addr;
/* Auto-Negotiation? */
if (np->an_enable) {
/* Advertise capabilities */
esr = mii_read (dev, phy_addr, PCS_ESR);
anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
~PCS_ANAR_HALF_DUPLEX &
~PCS_ANAR_FULL_DUPLEX;
if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
anar |= PCS_ANAR_HALF_DUPLEX;
if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
anar |= PCS_ANAR_FULL_DUPLEX;
anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
mii_write (dev, phy_addr, MII_ADVERTISE, anar);
/* Soft reset PHY */
mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
mii_write (dev, phy_addr, MII_BMCR, bmcr);
mdelay(1);
} else {
/* Force speed setting */
/* PHY Reset */
bmcr = BMCR_RESET;
mii_write (dev, phy_addr, MII_BMCR, bmcr);
mdelay(10);
if (np->full_duplex) {
bmcr = BMCR_FULLDPLX;
printk (KERN_INFO "Manual full duplex\n");
} else {
bmcr = 0;
printk (KERN_INFO "Manual half duplex\n");
}
mii_write (dev, phy_addr, MII_BMCR, bmcr);
mdelay(10);
/* Advertise nothing */
mii_write (dev, phy_addr, MII_ADVERTISE, 0);
}
return 0;
}
static int
rio_close (struct net_device *dev)
{
struct netdev_private *np = netdev_priv(dev);
void __iomem *ioaddr = np->ioaddr;
struct pci_dev *pdev = np->pdev;
struct sk_buff *skb;
int i;
netif_stop_queue (dev);
/* Disable interrupts */
dw16(IntEnable, 0);
/* Stop Tx and Rx logics */
dw32(MACCtrl, TxDisable | RxDisable | StatsDisable);
free_irq(pdev->irq, dev);
del_timer_sync (&np->timer);
/* Free all the skbuffs in the queue. */
for (i = 0; i < RX_RING_SIZE; i++) {
skb = np->rx_skbuff[i];
if (skb) {
pci_unmap_single(pdev, desc_to_dma(&np->rx_ring[i]),
skb->len, PCI_DMA_FROMDEVICE);
dev_kfree_skb (skb);
np->rx_skbuff[i] = NULL;
}
np->rx_ring[i].status = 0;
np->rx_ring[i].fraginfo = 0;
}
for (i = 0; i < TX_RING_SIZE; i++) {
skb = np->tx_skbuff[i];
if (skb) {
pci_unmap_single(pdev, desc_to_dma(&np->tx_ring[i]),
skb->len, PCI_DMA_TODEVICE);
dev_kfree_skb (skb);
np->tx_skbuff[i] = NULL;
}
}
return 0;
}
static void __devexit
rio_remove1 (struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata (pdev);
if (dev) {
struct netdev_private *np = netdev_priv(dev);
unregister_netdev (dev);
pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring,
np->rx_ring_dma);
pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring,
np->tx_ring_dma);
#ifdef MEM_MAPPING
pci_iounmap(pdev, np->ioaddr);
#endif
pci_iounmap(pdev, np->eeprom_addr);
free_netdev (dev);
pci_release_regions (pdev);
pci_disable_device (pdev);
}
pci_set_drvdata (pdev, NULL);
}
static struct pci_driver rio_driver = {
.name = "dl2k",
.id_table = rio_pci_tbl,
.probe = rio_probe1,
.remove = __devexit_p(rio_remove1),
};
static int __init
rio_init (void)
{
return pci_register_driver(&rio_driver);
}
static void __exit
rio_exit (void)
{
pci_unregister_driver (&rio_driver);
}
module_init (rio_init);
module_exit (rio_exit);
/*
Compile command:
gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c
Read Documentation/networking/dl2k.txt for details.
*/