1
linux/include/asm-ia64/sn/bte.h
Russ Anderson 64135fa97c [IA64] Fix Altix BTE error return status
The Altix shub2 BTE error detail bits are in a different location
than on shub1.  The current code does not take this into account
resulting in all shub2 BTE failures mapping to "unknown".

This patch reads the error detail bits from the proper location,
so the correct BTE failure reason is returned for both shub1
and shub2.

Signed-off-by: Russ Anderson <rja@sgi.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
2007-12-19 11:19:19 -08:00

234 lines
7.6 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (c) 2000-2007 Silicon Graphics, Inc. All Rights Reserved.
*/
#ifndef _ASM_IA64_SN_BTE_H
#define _ASM_IA64_SN_BTE_H
#include <linux/timer.h>
#include <linux/spinlock.h>
#include <linux/cache.h>
#include <asm/sn/pda.h>
#include <asm/sn/types.h>
#include <asm/sn/shub_mmr.h>
#define IBCT_NOTIFY (0x1UL << 4)
#define IBCT_ZFIL_MODE (0x1UL << 0)
/* #define BTE_DEBUG */
/* #define BTE_DEBUG_VERBOSE */
#ifdef BTE_DEBUG
# define BTE_PRINTK(x) printk x /* Terse */
# ifdef BTE_DEBUG_VERBOSE
# define BTE_PRINTKV(x) printk x /* Verbose */
# else
# define BTE_PRINTKV(x)
# endif /* BTE_DEBUG_VERBOSE */
#else
# define BTE_PRINTK(x)
# define BTE_PRINTKV(x)
#endif /* BTE_DEBUG */
/* BTE status register only supports 16 bits for length field */
#define BTE_LEN_BITS (16)
#define BTE_LEN_MASK ((1 << BTE_LEN_BITS) - 1)
#define BTE_MAX_XFER ((1 << BTE_LEN_BITS) * L1_CACHE_BYTES)
/* Define hardware */
#define BTES_PER_NODE (is_shub2() ? 4 : 2)
#define MAX_BTES_PER_NODE 4
#define BTE2OFF_CTRL 0
#define BTE2OFF_SRC (SH2_BT_ENG_SRC_ADDR_0 - SH2_BT_ENG_CSR_0)
#define BTE2OFF_DEST (SH2_BT_ENG_DEST_ADDR_0 - SH2_BT_ENG_CSR_0)
#define BTE2OFF_NOTIFY (SH2_BT_ENG_NOTIF_ADDR_0 - SH2_BT_ENG_CSR_0)
#define BTE_BASE_ADDR(interface) \
(is_shub2() ? (interface == 0) ? SH2_BT_ENG_CSR_0 : \
(interface == 1) ? SH2_BT_ENG_CSR_1 : \
(interface == 2) ? SH2_BT_ENG_CSR_2 : \
SH2_BT_ENG_CSR_3 \
: (interface == 0) ? IIO_IBLS0 : IIO_IBLS1)
#define BTE_SOURCE_ADDR(base) \
(is_shub2() ? base + (BTE2OFF_SRC/8) \
: base + (BTEOFF_SRC/8))
#define BTE_DEST_ADDR(base) \
(is_shub2() ? base + (BTE2OFF_DEST/8) \
: base + (BTEOFF_DEST/8))
#define BTE_CTRL_ADDR(base) \
(is_shub2() ? base + (BTE2OFF_CTRL/8) \
: base + (BTEOFF_CTRL/8))
#define BTE_NOTIF_ADDR(base) \
(is_shub2() ? base + (BTE2OFF_NOTIFY/8) \
: base + (BTEOFF_NOTIFY/8))
/* Define hardware modes */
#define BTE_NOTIFY IBCT_NOTIFY
#define BTE_NORMAL BTE_NOTIFY
#define BTE_ZERO_FILL (BTE_NOTIFY | IBCT_ZFIL_MODE)
/* Use a reserved bit to let the caller specify a wait for any BTE */
#define BTE_WACQUIRE 0x4000
/* Use the BTE on the node with the destination memory */
#define BTE_USE_DEST (BTE_WACQUIRE << 1)
/* Use any available BTE interface on any node for the transfer */
#define BTE_USE_ANY (BTE_USE_DEST << 1)
/* macro to force the IBCT0 value valid */
#define BTE_VALID_MODE(x) ((x) & (IBCT_NOTIFY | IBCT_ZFIL_MODE))
#define BTE_ACTIVE (IBLS_BUSY | IBLS_ERROR)
#define BTE_WORD_AVAILABLE (IBLS_BUSY << 1)
#define BTE_WORD_BUSY (~BTE_WORD_AVAILABLE)
/*
* Some macros to simplify reading.
* Start with macros to locate the BTE control registers.
*/
#define BTE_LNSTAT_LOAD(_bte) \
HUB_L(_bte->bte_base_addr)
#define BTE_LNSTAT_STORE(_bte, _x) \
HUB_S(_bte->bte_base_addr, (_x))
#define BTE_SRC_STORE(_bte, _x) \
({ \
u64 __addr = ((_x) & ~AS_MASK); \
if (is_shub2()) \
__addr = SH2_TIO_PHYS_TO_DMA(__addr); \
HUB_S(_bte->bte_source_addr, __addr); \
})
#define BTE_DEST_STORE(_bte, _x) \
({ \
u64 __addr = ((_x) & ~AS_MASK); \
if (is_shub2()) \
__addr = SH2_TIO_PHYS_TO_DMA(__addr); \
HUB_S(_bte->bte_destination_addr, __addr); \
})
#define BTE_CTRL_STORE(_bte, _x) \
HUB_S(_bte->bte_control_addr, (_x))
#define BTE_NOTIF_STORE(_bte, _x) \
({ \
u64 __addr = ia64_tpa((_x) & ~AS_MASK); \
if (is_shub2()) \
__addr = SH2_TIO_PHYS_TO_DMA(__addr); \
HUB_S(_bte->bte_notify_addr, __addr); \
})
#define BTE_START_TRANSFER(_bte, _len, _mode) \
is_shub2() ? BTE_CTRL_STORE(_bte, IBLS_BUSY | (_mode << 24) | _len) \
: BTE_LNSTAT_STORE(_bte, _len); \
BTE_CTRL_STORE(_bte, _mode)
/* Possible results from bte_copy and bte_unaligned_copy */
/* The following error codes map into the BTE hardware codes
* IIO_ICRB_ECODE_* (in shubio.h). The hardware uses
* an error code of 0 (IIO_ICRB_ECODE_DERR), but we want zero
* to mean BTE_SUCCESS, so add one (BTEFAIL_OFFSET) to the error
* codes to give the following error codes.
*/
#define BTEFAIL_OFFSET 1
typedef enum {
BTE_SUCCESS, /* 0 is success */
BTEFAIL_DIR, /* Directory error due to IIO access*/
BTEFAIL_POISON, /* poison error on IO access (write to poison page) */
BTEFAIL_WERR, /* Write error (ie WINV to a Read only line) */
BTEFAIL_ACCESS, /* access error (protection violation) */
BTEFAIL_PWERR, /* Partial Write Error */
BTEFAIL_PRERR, /* Partial Read Error */
BTEFAIL_TOUT, /* CRB Time out */
BTEFAIL_XTERR, /* Incoming xtalk pkt had error bit */
BTEFAIL_NOTAVAIL, /* BTE not available */
} bte_result_t;
#define BTEFAIL_SH2_RESP_SHORT 0x1 /* bit 000001 */
#define BTEFAIL_SH2_RESP_LONG 0x2 /* bit 000010 */
#define BTEFAIL_SH2_RESP_DSP 0x4 /* bit 000100 */
#define BTEFAIL_SH2_RESP_ACCESS 0x8 /* bit 001000 */
#define BTEFAIL_SH2_CRB_TO 0x10 /* bit 010000 */
#define BTEFAIL_SH2_NACK_LIMIT 0x20 /* bit 100000 */
#define BTEFAIL_SH2_ALL 0x3F /* bit 111111 */
#define BTE_ERR_BITS 0x3FUL
#define BTE_ERR_SHIFT 36
#define BTE_ERR_MASK (BTE_ERR_BITS << BTE_ERR_SHIFT)
#define BTE_ERROR_RETRY(value) \
(is_shub2() ? (value != BTEFAIL_SH2_CRB_TO) \
: (value != BTEFAIL_TOUT))
/*
* On shub1 BTE_ERR_MASK will always be false, so no need for is_shub2()
*/
#define BTE_SHUB2_ERROR(_status) \
((_status & BTE_ERR_MASK) \
? (((_status >> BTE_ERR_SHIFT) & BTE_ERR_BITS) | IBLS_ERROR) \
: _status)
#define BTE_GET_ERROR_STATUS(_status) \
(BTE_SHUB2_ERROR(_status) & ~IBLS_ERROR)
#define BTE_VALID_SH2_ERROR(value) \
((value >= BTEFAIL_SH2_RESP_SHORT) && (value <= BTEFAIL_SH2_ALL))
/*
* Structure defining a bte. An instance of this
* structure is created in the nodepda for each
* bte on that node (as defined by BTES_PER_NODE)
* This structure contains everything necessary
* to work with a BTE.
*/
struct bteinfo_s {
volatile u64 notify ____cacheline_aligned;
u64 *bte_base_addr ____cacheline_aligned;
u64 *bte_source_addr;
u64 *bte_destination_addr;
u64 *bte_control_addr;
u64 *bte_notify_addr;
spinlock_t spinlock;
cnodeid_t bte_cnode; /* cnode */
int bte_error_count; /* Number of errors encountered */
int bte_num; /* 0 --> BTE0, 1 --> BTE1 */
int cleanup_active; /* Interface is locked for cleanup */
volatile bte_result_t bh_error; /* error while processing */
volatile u64 *most_rcnt_na;
struct bteinfo_s *btes_to_try[MAX_BTES_PER_NODE];
};
/*
* Function prototypes (functions defined in bte.c, used elsewhere)
*/
extern bte_result_t bte_copy(u64, u64, u64, u64, void *);
extern bte_result_t bte_unaligned_copy(u64, u64, u64, u64);
extern void bte_error_handler(unsigned long);
#define bte_zero(dest, len, mode, notification) \
bte_copy(0, dest, len, ((mode) | BTE_ZERO_FILL), notification)
/*
* The following is the prefered way of calling bte_unaligned_copy
* If the copy is fully cache line aligned, then bte_copy is
* used instead. Since bte_copy is inlined, this saves a call
* stack. NOTE: bte_copy is called synchronously and does block
* until the transfer is complete. In order to get the asynch
* version of bte_copy, you must perform this check yourself.
*/
#define BTE_UNALIGNED_COPY(src, dest, len, mode) \
(((len & L1_CACHE_MASK) || (src & L1_CACHE_MASK) || \
(dest & L1_CACHE_MASK)) ? \
bte_unaligned_copy(src, dest, len, mode) : \
bte_copy(src, dest, len, mode, NULL))
#endif /* _ASM_IA64_SN_BTE_H */