1
linux/drivers/scsi/qla2xxx/qla_sup.c
Madhuranath Iyengar 0f2d962f4d [SCSI] qla2xxx: Check for golden firmware and show version if available
Signed-off-by: Giridhar Malavali <giridhar.malavali@qlogic.com>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-07-28 09:06:09 -05:00

2879 lines
74 KiB
C

/*
* QLogic Fibre Channel HBA Driver
* Copyright (c) 2003-2008 QLogic Corporation
*
* See LICENSE.qla2xxx for copyright and licensing details.
*/
#include "qla_def.h"
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <asm/uaccess.h>
/*
* NVRAM support routines
*/
/**
* qla2x00_lock_nvram_access() -
* @ha: HA context
*/
static void
qla2x00_lock_nvram_access(struct qla_hw_data *ha)
{
uint16_t data;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
data = RD_REG_WORD(&reg->nvram);
while (data & NVR_BUSY) {
udelay(100);
data = RD_REG_WORD(&reg->nvram);
}
/* Lock resource */
WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
RD_REG_WORD(&reg->u.isp2300.host_semaphore);
udelay(5);
data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
while ((data & BIT_0) == 0) {
/* Lock failed */
udelay(100);
WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
RD_REG_WORD(&reg->u.isp2300.host_semaphore);
udelay(5);
data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
}
}
}
/**
* qla2x00_unlock_nvram_access() -
* @ha: HA context
*/
static void
qla2x00_unlock_nvram_access(struct qla_hw_data *ha)
{
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0);
RD_REG_WORD(&reg->u.isp2300.host_semaphore);
}
}
/**
* qla2x00_nv_write() - Prepare for NVRAM read/write operation.
* @ha: HA context
* @data: Serial interface selector
*/
static void
qla2x00_nv_write(struct qla_hw_data *ha, uint16_t data)
{
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
RD_REG_WORD(&reg->nvram); /* PCI Posting. */
NVRAM_DELAY();
WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_CLOCK |
NVR_WRT_ENABLE);
RD_REG_WORD(&reg->nvram); /* PCI Posting. */
NVRAM_DELAY();
WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
RD_REG_WORD(&reg->nvram); /* PCI Posting. */
NVRAM_DELAY();
}
/**
* qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
* NVRAM.
* @ha: HA context
* @nv_cmd: NVRAM command
*
* Bit definitions for NVRAM command:
*
* Bit 26 = start bit
* Bit 25, 24 = opcode
* Bit 23-16 = address
* Bit 15-0 = write data
*
* Returns the word read from nvram @addr.
*/
static uint16_t
qla2x00_nvram_request(struct qla_hw_data *ha, uint32_t nv_cmd)
{
uint8_t cnt;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
uint16_t data = 0;
uint16_t reg_data;
/* Send command to NVRAM. */
nv_cmd <<= 5;
for (cnt = 0; cnt < 11; cnt++) {
if (nv_cmd & BIT_31)
qla2x00_nv_write(ha, NVR_DATA_OUT);
else
qla2x00_nv_write(ha, 0);
nv_cmd <<= 1;
}
/* Read data from NVRAM. */
for (cnt = 0; cnt < 16; cnt++) {
WRT_REG_WORD(&reg->nvram, NVR_SELECT | NVR_CLOCK);
RD_REG_WORD(&reg->nvram); /* PCI Posting. */
NVRAM_DELAY();
data <<= 1;
reg_data = RD_REG_WORD(&reg->nvram);
if (reg_data & NVR_DATA_IN)
data |= BIT_0;
WRT_REG_WORD(&reg->nvram, NVR_SELECT);
RD_REG_WORD(&reg->nvram); /* PCI Posting. */
NVRAM_DELAY();
}
/* Deselect chip. */
WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
RD_REG_WORD(&reg->nvram); /* PCI Posting. */
NVRAM_DELAY();
return data;
}
/**
* qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
* request routine to get the word from NVRAM.
* @ha: HA context
* @addr: Address in NVRAM to read
*
* Returns the word read from nvram @addr.
*/
static uint16_t
qla2x00_get_nvram_word(struct qla_hw_data *ha, uint32_t addr)
{
uint16_t data;
uint32_t nv_cmd;
nv_cmd = addr << 16;
nv_cmd |= NV_READ_OP;
data = qla2x00_nvram_request(ha, nv_cmd);
return (data);
}
/**
* qla2x00_nv_deselect() - Deselect NVRAM operations.
* @ha: HA context
*/
static void
qla2x00_nv_deselect(struct qla_hw_data *ha)
{
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
RD_REG_WORD(&reg->nvram); /* PCI Posting. */
NVRAM_DELAY();
}
/**
* qla2x00_write_nvram_word() - Write NVRAM data.
* @ha: HA context
* @addr: Address in NVRAM to write
* @data: word to program
*/
static void
qla2x00_write_nvram_word(struct qla_hw_data *ha, uint32_t addr, uint16_t data)
{
int count;
uint16_t word;
uint32_t nv_cmd, wait_cnt;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
qla2x00_nv_write(ha, NVR_DATA_OUT);
qla2x00_nv_write(ha, 0);
qla2x00_nv_write(ha, 0);
for (word = 0; word < 8; word++)
qla2x00_nv_write(ha, NVR_DATA_OUT);
qla2x00_nv_deselect(ha);
/* Write data */
nv_cmd = (addr << 16) | NV_WRITE_OP;
nv_cmd |= data;
nv_cmd <<= 5;
for (count = 0; count < 27; count++) {
if (nv_cmd & BIT_31)
qla2x00_nv_write(ha, NVR_DATA_OUT);
else
qla2x00_nv_write(ha, 0);
nv_cmd <<= 1;
}
qla2x00_nv_deselect(ha);
/* Wait for NVRAM to become ready */
WRT_REG_WORD(&reg->nvram, NVR_SELECT);
RD_REG_WORD(&reg->nvram); /* PCI Posting. */
wait_cnt = NVR_WAIT_CNT;
do {
if (!--wait_cnt) {
DEBUG9_10(qla_printk(KERN_WARNING, ha,
"NVRAM didn't go ready...\n"));
break;
}
NVRAM_DELAY();
word = RD_REG_WORD(&reg->nvram);
} while ((word & NVR_DATA_IN) == 0);
qla2x00_nv_deselect(ha);
/* Disable writes */
qla2x00_nv_write(ha, NVR_DATA_OUT);
for (count = 0; count < 10; count++)
qla2x00_nv_write(ha, 0);
qla2x00_nv_deselect(ha);
}
static int
qla2x00_write_nvram_word_tmo(struct qla_hw_data *ha, uint32_t addr,
uint16_t data, uint32_t tmo)
{
int ret, count;
uint16_t word;
uint32_t nv_cmd;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
ret = QLA_SUCCESS;
qla2x00_nv_write(ha, NVR_DATA_OUT);
qla2x00_nv_write(ha, 0);
qla2x00_nv_write(ha, 0);
for (word = 0; word < 8; word++)
qla2x00_nv_write(ha, NVR_DATA_OUT);
qla2x00_nv_deselect(ha);
/* Write data */
nv_cmd = (addr << 16) | NV_WRITE_OP;
nv_cmd |= data;
nv_cmd <<= 5;
for (count = 0; count < 27; count++) {
if (nv_cmd & BIT_31)
qla2x00_nv_write(ha, NVR_DATA_OUT);
else
qla2x00_nv_write(ha, 0);
nv_cmd <<= 1;
}
qla2x00_nv_deselect(ha);
/* Wait for NVRAM to become ready */
WRT_REG_WORD(&reg->nvram, NVR_SELECT);
RD_REG_WORD(&reg->nvram); /* PCI Posting. */
do {
NVRAM_DELAY();
word = RD_REG_WORD(&reg->nvram);
if (!--tmo) {
ret = QLA_FUNCTION_FAILED;
break;
}
} while ((word & NVR_DATA_IN) == 0);
qla2x00_nv_deselect(ha);
/* Disable writes */
qla2x00_nv_write(ha, NVR_DATA_OUT);
for (count = 0; count < 10; count++)
qla2x00_nv_write(ha, 0);
qla2x00_nv_deselect(ha);
return ret;
}
/**
* qla2x00_clear_nvram_protection() -
* @ha: HA context
*/
static int
qla2x00_clear_nvram_protection(struct qla_hw_data *ha)
{
int ret, stat;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
uint32_t word, wait_cnt;
uint16_t wprot, wprot_old;
/* Clear NVRAM write protection. */
ret = QLA_FUNCTION_FAILED;
wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base,
__constant_cpu_to_le16(0x1234), 100000);
wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
if (stat != QLA_SUCCESS || wprot != 0x1234) {
/* Write enable. */
qla2x00_nv_write(ha, NVR_DATA_OUT);
qla2x00_nv_write(ha, 0);
qla2x00_nv_write(ha, 0);
for (word = 0; word < 8; word++)
qla2x00_nv_write(ha, NVR_DATA_OUT);
qla2x00_nv_deselect(ha);
/* Enable protection register. */
qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
qla2x00_nv_write(ha, NVR_PR_ENABLE);
qla2x00_nv_write(ha, NVR_PR_ENABLE);
for (word = 0; word < 8; word++)
qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
qla2x00_nv_deselect(ha);
/* Clear protection register (ffff is cleared). */
qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
for (word = 0; word < 8; word++)
qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
qla2x00_nv_deselect(ha);
/* Wait for NVRAM to become ready. */
WRT_REG_WORD(&reg->nvram, NVR_SELECT);
RD_REG_WORD(&reg->nvram); /* PCI Posting. */
wait_cnt = NVR_WAIT_CNT;
do {
if (!--wait_cnt) {
DEBUG9_10(qla_printk(KERN_WARNING, ha,
"NVRAM didn't go ready...\n"));
break;
}
NVRAM_DELAY();
word = RD_REG_WORD(&reg->nvram);
} while ((word & NVR_DATA_IN) == 0);
if (wait_cnt)
ret = QLA_SUCCESS;
} else
qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old);
return ret;
}
static void
qla2x00_set_nvram_protection(struct qla_hw_data *ha, int stat)
{
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
uint32_t word, wait_cnt;
if (stat != QLA_SUCCESS)
return;
/* Set NVRAM write protection. */
/* Write enable. */
qla2x00_nv_write(ha, NVR_DATA_OUT);
qla2x00_nv_write(ha, 0);
qla2x00_nv_write(ha, 0);
for (word = 0; word < 8; word++)
qla2x00_nv_write(ha, NVR_DATA_OUT);
qla2x00_nv_deselect(ha);
/* Enable protection register. */
qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
qla2x00_nv_write(ha, NVR_PR_ENABLE);
qla2x00_nv_write(ha, NVR_PR_ENABLE);
for (word = 0; word < 8; word++)
qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
qla2x00_nv_deselect(ha);
/* Enable protection register. */
qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
qla2x00_nv_write(ha, NVR_PR_ENABLE);
qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
for (word = 0; word < 8; word++)
qla2x00_nv_write(ha, NVR_PR_ENABLE);
qla2x00_nv_deselect(ha);
/* Wait for NVRAM to become ready. */
WRT_REG_WORD(&reg->nvram, NVR_SELECT);
RD_REG_WORD(&reg->nvram); /* PCI Posting. */
wait_cnt = NVR_WAIT_CNT;
do {
if (!--wait_cnt) {
DEBUG9_10(qla_printk(KERN_WARNING, ha,
"NVRAM didn't go ready...\n"));
break;
}
NVRAM_DELAY();
word = RD_REG_WORD(&reg->nvram);
} while ((word & NVR_DATA_IN) == 0);
}
/*****************************************************************************/
/* Flash Manipulation Routines */
/*****************************************************************************/
static inline uint32_t
flash_conf_addr(struct qla_hw_data *ha, uint32_t faddr)
{
return ha->flash_conf_off | faddr;
}
static inline uint32_t
flash_data_addr(struct qla_hw_data *ha, uint32_t faddr)
{
return ha->flash_data_off | faddr;
}
static inline uint32_t
nvram_conf_addr(struct qla_hw_data *ha, uint32_t naddr)
{
return ha->nvram_conf_off | naddr;
}
static inline uint32_t
nvram_data_addr(struct qla_hw_data *ha, uint32_t naddr)
{
return ha->nvram_data_off | naddr;
}
static uint32_t
qla24xx_read_flash_dword(struct qla_hw_data *ha, uint32_t addr)
{
int rval;
uint32_t cnt, data;
struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
WRT_REG_DWORD(&reg->flash_addr, addr & ~FARX_DATA_FLAG);
/* Wait for READ cycle to complete. */
rval = QLA_SUCCESS;
for (cnt = 3000;
(RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) == 0 &&
rval == QLA_SUCCESS; cnt--) {
if (cnt)
udelay(10);
else
rval = QLA_FUNCTION_TIMEOUT;
cond_resched();
}
/* TODO: What happens if we time out? */
data = 0xDEADDEAD;
if (rval == QLA_SUCCESS)
data = RD_REG_DWORD(&reg->flash_data);
return data;
}
uint32_t *
qla24xx_read_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
uint32_t dwords)
{
uint32_t i;
struct qla_hw_data *ha = vha->hw;
/* Dword reads to flash. */
for (i = 0; i < dwords; i++, faddr++)
dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
flash_data_addr(ha, faddr)));
return dwptr;
}
static int
qla24xx_write_flash_dword(struct qla_hw_data *ha, uint32_t addr, uint32_t data)
{
int rval;
uint32_t cnt;
struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
WRT_REG_DWORD(&reg->flash_data, data);
RD_REG_DWORD(&reg->flash_data); /* PCI Posting. */
WRT_REG_DWORD(&reg->flash_addr, addr | FARX_DATA_FLAG);
/* Wait for Write cycle to complete. */
rval = QLA_SUCCESS;
for (cnt = 500000; (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) &&
rval == QLA_SUCCESS; cnt--) {
if (cnt)
udelay(10);
else
rval = QLA_FUNCTION_TIMEOUT;
cond_resched();
}
return rval;
}
static void
qla24xx_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
uint8_t *flash_id)
{
uint32_t ids;
ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x03ab));
*man_id = LSB(ids);
*flash_id = MSB(ids);
/* Check if man_id and flash_id are valid. */
if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) {
/* Read information using 0x9f opcode
* Device ID, Mfg ID would be read in the format:
* <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
* Example: ATMEL 0x00 01 45 1F
* Extract MFG and Dev ID from last two bytes.
*/
ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x009f));
*man_id = LSB(ids);
*flash_id = MSB(ids);
}
}
static int
qla2xxx_find_flt_start(scsi_qla_host_t *vha, uint32_t *start)
{
const char *loc, *locations[] = { "DEF", "PCI" };
uint32_t pcihdr, pcids;
uint32_t *dcode;
uint8_t *buf, *bcode, last_image;
uint16_t cnt, chksum, *wptr;
struct qla_flt_location *fltl;
struct qla_hw_data *ha = vha->hw;
struct req_que *req = ha->req_q_map[0];
/*
* FLT-location structure resides after the last PCI region.
*/
/* Begin with sane defaults. */
loc = locations[0];
*start = 0;
if (IS_QLA24XX_TYPE(ha))
*start = FA_FLASH_LAYOUT_ADDR_24;
else if (IS_QLA25XX(ha))
*start = FA_FLASH_LAYOUT_ADDR;
else if (IS_QLA81XX(ha))
*start = FA_FLASH_LAYOUT_ADDR_81;
else if (IS_QLA82XX(ha)) {
*start = FA_FLASH_LAYOUT_ADDR_82;
goto end;
}
/* Begin with first PCI expansion ROM header. */
buf = (uint8_t *)req->ring;
dcode = (uint32_t *)req->ring;
pcihdr = 0;
last_image = 1;
do {
/* Verify PCI expansion ROM header. */
qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
bcode = buf + (pcihdr % 4);
if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa)
goto end;
/* Locate PCI data structure. */
pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
bcode = buf + (pcihdr % 4);
/* Validate signature of PCI data structure. */
if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
bcode[0x2] != 'I' || bcode[0x3] != 'R')
goto end;
last_image = bcode[0x15] & BIT_7;
/* Locate next PCI expansion ROM. */
pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
} while (!last_image);
/* Now verify FLT-location structure. */
fltl = (struct qla_flt_location *)req->ring;
qla24xx_read_flash_data(vha, dcode, pcihdr >> 2,
sizeof(struct qla_flt_location) >> 2);
if (fltl->sig[0] != 'Q' || fltl->sig[1] != 'F' ||
fltl->sig[2] != 'L' || fltl->sig[3] != 'T')
goto end;
wptr = (uint16_t *)req->ring;
cnt = sizeof(struct qla_flt_location) >> 1;
for (chksum = 0; cnt; cnt--)
chksum += le16_to_cpu(*wptr++);
if (chksum) {
qla_printk(KERN_ERR, ha,
"Inconsistent FLTL detected: checksum=0x%x.\n", chksum);
qla2x00_dump_buffer(buf, sizeof(struct qla_flt_location));
return QLA_FUNCTION_FAILED;
}
/* Good data. Use specified location. */
loc = locations[1];
*start = (le16_to_cpu(fltl->start_hi) << 16 |
le16_to_cpu(fltl->start_lo)) >> 2;
end:
DEBUG2(qla_printk(KERN_DEBUG, ha, "FLTL[%s] = 0x%x.\n", loc, *start));
return QLA_SUCCESS;
}
static void
qla2xxx_get_flt_info(scsi_qla_host_t *vha, uint32_t flt_addr)
{
const char *loc, *locations[] = { "DEF", "FLT" };
const uint32_t def_fw[] =
{ FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR_81 };
const uint32_t def_boot[] =
{ FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR_81 };
const uint32_t def_vpd_nvram[] =
{ FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR_81 };
const uint32_t def_vpd0[] =
{ 0, 0, FA_VPD0_ADDR_81 };
const uint32_t def_vpd1[] =
{ 0, 0, FA_VPD1_ADDR_81 };
const uint32_t def_nvram0[] =
{ 0, 0, FA_NVRAM0_ADDR_81 };
const uint32_t def_nvram1[] =
{ 0, 0, FA_NVRAM1_ADDR_81 };
const uint32_t def_fdt[] =
{ FA_FLASH_DESCR_ADDR_24, FA_FLASH_DESCR_ADDR,
FA_FLASH_DESCR_ADDR_81 };
const uint32_t def_npiv_conf0[] =
{ FA_NPIV_CONF0_ADDR_24, FA_NPIV_CONF0_ADDR,
FA_NPIV_CONF0_ADDR_81 };
const uint32_t def_npiv_conf1[] =
{ FA_NPIV_CONF1_ADDR_24, FA_NPIV_CONF1_ADDR,
FA_NPIV_CONF1_ADDR_81 };
const uint32_t fcp_prio_cfg0[] =
{ FA_FCP_PRIO0_ADDR, FA_FCP_PRIO0_ADDR_25,
0 };
const uint32_t fcp_prio_cfg1[] =
{ FA_FCP_PRIO1_ADDR, FA_FCP_PRIO1_ADDR_25,
0 };
uint32_t def;
uint16_t *wptr;
uint16_t cnt, chksum;
uint32_t start;
struct qla_flt_header *flt;
struct qla_flt_region *region;
struct qla_hw_data *ha = vha->hw;
struct req_que *req = ha->req_q_map[0];
def = 0;
if (IS_QLA25XX(ha))
def = 1;
else if (IS_QLA81XX(ha))
def = 2;
ha->flt_region_flt = flt_addr;
wptr = (uint16_t *)req->ring;
flt = (struct qla_flt_header *)req->ring;
region = (struct qla_flt_region *)&flt[1];
ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
flt_addr << 2, OPTROM_BURST_SIZE);
if (*wptr == __constant_cpu_to_le16(0xffff))
goto no_flash_data;
if (flt->version != __constant_cpu_to_le16(1)) {
DEBUG2(qla_printk(KERN_INFO, ha, "Unsupported FLT detected: "
"version=0x%x length=0x%x checksum=0x%x.\n",
le16_to_cpu(flt->version), le16_to_cpu(flt->length),
le16_to_cpu(flt->checksum)));
goto no_flash_data;
}
cnt = (sizeof(struct qla_flt_header) + le16_to_cpu(flt->length)) >> 1;
for (chksum = 0; cnt; cnt--)
chksum += le16_to_cpu(*wptr++);
if (chksum) {
DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent FLT detected: "
"version=0x%x length=0x%x checksum=0x%x.\n",
le16_to_cpu(flt->version), le16_to_cpu(flt->length),
chksum));
goto no_flash_data;
}
/* Assign FCP prio region since older FLT's may not have it */
ha->flt_region_fcp_prio = ha->flags.port0 ?
fcp_prio_cfg0[def] : fcp_prio_cfg1[def];
loc = locations[1];
cnt = le16_to_cpu(flt->length) / sizeof(struct qla_flt_region);
for ( ; cnt; cnt--, region++) {
/* Store addresses as DWORD offsets. */
start = le32_to_cpu(region->start) >> 2;
DEBUG3(qla_printk(KERN_DEBUG, ha, "FLT[%02x]: start=0x%x "
"end=0x%x size=0x%x.\n", le32_to_cpu(region->code), start,
le32_to_cpu(region->end) >> 2, le32_to_cpu(region->size)));
switch (le32_to_cpu(region->code) & 0xff) {
case FLT_REG_FW:
ha->flt_region_fw = start;
break;
case FLT_REG_BOOT_CODE:
ha->flt_region_boot = start;
break;
case FLT_REG_VPD_0:
ha->flt_region_vpd_nvram = start;
if (IS_QLA82XX(ha))
break;
if (ha->flags.port0)
ha->flt_region_vpd = start;
break;
case FLT_REG_VPD_1:
if (IS_QLA82XX(ha))
break;
if (!ha->flags.port0)
ha->flt_region_vpd = start;
break;
case FLT_REG_NVRAM_0:
if (ha->flags.port0)
ha->flt_region_nvram = start;
break;
case FLT_REG_NVRAM_1:
if (!ha->flags.port0)
ha->flt_region_nvram = start;
break;
case FLT_REG_FDT:
ha->flt_region_fdt = start;
break;
case FLT_REG_NPIV_CONF_0:
if (ha->flags.port0)
ha->flt_region_npiv_conf = start;
break;
case FLT_REG_NPIV_CONF_1:
if (!ha->flags.port0)
ha->flt_region_npiv_conf = start;
break;
case FLT_REG_GOLD_FW:
ha->flt_region_gold_fw = start;
break;
case FLT_REG_FCP_PRIO_0:
if (ha->flags.port0)
ha->flt_region_fcp_prio = start;
break;
case FLT_REG_FCP_PRIO_1:
if (!ha->flags.port0)
ha->flt_region_fcp_prio = start;
break;
case FLT_REG_BOOT_CODE_82XX:
ha->flt_region_boot = start;
break;
case FLT_REG_FW_82XX:
ha->flt_region_fw = start;
break;
case FLT_REG_GOLD_FW_82XX:
ha->flt_region_gold_fw = start;
break;
case FLT_REG_BOOTLOAD_82XX:
ha->flt_region_bootload = start;
break;
case FLT_REG_VPD_82XX:
ha->flt_region_vpd = start;
break;
}
}
goto done;
no_flash_data:
/* Use hardcoded defaults. */
loc = locations[0];
ha->flt_region_fw = def_fw[def];
ha->flt_region_boot = def_boot[def];
ha->flt_region_vpd_nvram = def_vpd_nvram[def];
ha->flt_region_vpd = ha->flags.port0 ?
def_vpd0[def] : def_vpd1[def];
ha->flt_region_nvram = ha->flags.port0 ?
def_nvram0[def] : def_nvram1[def];
ha->flt_region_fdt = def_fdt[def];
ha->flt_region_npiv_conf = ha->flags.port0 ?
def_npiv_conf0[def] : def_npiv_conf1[def];
done:
DEBUG2(qla_printk(KERN_DEBUG, ha, "FLT[%s]: boot=0x%x fw=0x%x "
"vpd_nvram=0x%x vpd=0x%x nvram=0x%x fdt=0x%x flt=0x%x "
"npiv=0x%x. fcp_prio_cfg=0x%x\n", loc, ha->flt_region_boot,
ha->flt_region_fw, ha->flt_region_vpd_nvram, ha->flt_region_vpd,
ha->flt_region_nvram, ha->flt_region_fdt, ha->flt_region_flt,
ha->flt_region_npiv_conf, ha->flt_region_fcp_prio));
}
static void
qla2xxx_get_fdt_info(scsi_qla_host_t *vha)
{
#define FLASH_BLK_SIZE_4K 0x1000
#define FLASH_BLK_SIZE_32K 0x8000
#define FLASH_BLK_SIZE_64K 0x10000
const char *loc, *locations[] = { "MID", "FDT" };
uint16_t cnt, chksum;
uint16_t *wptr;
struct qla_fdt_layout *fdt;
uint8_t man_id, flash_id;
uint16_t mid = 0, fid = 0;
struct qla_hw_data *ha = vha->hw;
struct req_que *req = ha->req_q_map[0];
wptr = (uint16_t *)req->ring;
fdt = (struct qla_fdt_layout *)req->ring;
ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
ha->flt_region_fdt << 2, OPTROM_BURST_SIZE);
if (*wptr == __constant_cpu_to_le16(0xffff))
goto no_flash_data;
if (fdt->sig[0] != 'Q' || fdt->sig[1] != 'L' || fdt->sig[2] != 'I' ||
fdt->sig[3] != 'D')
goto no_flash_data;
for (cnt = 0, chksum = 0; cnt < sizeof(struct qla_fdt_layout) >> 1;
cnt++)
chksum += le16_to_cpu(*wptr++);
if (chksum) {
DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent FDT detected: "
"checksum=0x%x id=%c version=0x%x.\n", chksum, fdt->sig[0],
le16_to_cpu(fdt->version)));
DEBUG9(qla2x00_dump_buffer((uint8_t *)fdt, sizeof(*fdt)));
goto no_flash_data;
}
loc = locations[1];
mid = le16_to_cpu(fdt->man_id);
fid = le16_to_cpu(fdt->id);
ha->fdt_wrt_disable = fdt->wrt_disable_bits;
ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0300 | fdt->erase_cmd);
ha->fdt_block_size = le32_to_cpu(fdt->block_size);
if (fdt->unprotect_sec_cmd) {
ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0300 |
fdt->unprotect_sec_cmd);
ha->fdt_protect_sec_cmd = fdt->protect_sec_cmd ?
flash_conf_addr(ha, 0x0300 | fdt->protect_sec_cmd):
flash_conf_addr(ha, 0x0336);
}
goto done;
no_flash_data:
loc = locations[0];
if (IS_QLA82XX(ha)) {
ha->fdt_block_size = FLASH_BLK_SIZE_64K;
goto done;
}
qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
mid = man_id;
fid = flash_id;
ha->fdt_wrt_disable = 0x9c;
ha->fdt_erase_cmd = flash_conf_addr(ha, 0x03d8);
switch (man_id) {
case 0xbf: /* STT flash. */
if (flash_id == 0x8e)
ha->fdt_block_size = FLASH_BLK_SIZE_64K;
else
ha->fdt_block_size = FLASH_BLK_SIZE_32K;
if (flash_id == 0x80)
ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0352);
break;
case 0x13: /* ST M25P80. */
ha->fdt_block_size = FLASH_BLK_SIZE_64K;
break;
case 0x1f: /* Atmel 26DF081A. */
ha->fdt_block_size = FLASH_BLK_SIZE_4K;
ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0320);
ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0339);
ha->fdt_protect_sec_cmd = flash_conf_addr(ha, 0x0336);
break;
default:
/* Default to 64 kb sector size. */
ha->fdt_block_size = FLASH_BLK_SIZE_64K;
break;
}
done:
DEBUG2(qla_printk(KERN_DEBUG, ha, "FDT[%s]: (0x%x/0x%x) erase=0x%x "
"pro=%x upro=%x wrtd=0x%x blk=0x%x.\n", loc, mid, fid,
ha->fdt_erase_cmd, ha->fdt_protect_sec_cmd,
ha->fdt_unprotect_sec_cmd, ha->fdt_wrt_disable,
ha->fdt_block_size));
}
static void
qla2xxx_get_idc_param(scsi_qla_host_t *vha)
{
#define QLA82XX_IDC_PARAM_ADDR 0x003e885c
uint32_t *wptr;
struct qla_hw_data *ha = vha->hw;
struct req_que *req = ha->req_q_map[0];
if (!IS_QLA82XX(ha))
return;
wptr = (uint32_t *)req->ring;
ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
QLA82XX_IDC_PARAM_ADDR , 8);
if (*wptr == __constant_cpu_to_le32(0xffffffff)) {
ha->nx_dev_init_timeout = QLA82XX_ROM_DEV_INIT_TIMEOUT;
ha->nx_reset_timeout = QLA82XX_ROM_DRV_RESET_ACK_TIMEOUT;
} else {
ha->nx_dev_init_timeout = le32_to_cpu(*wptr++);
ha->nx_reset_timeout = le32_to_cpu(*wptr);
}
return;
}
int
qla2xxx_get_flash_info(scsi_qla_host_t *vha)
{
int ret;
uint32_t flt_addr;
struct qla_hw_data *ha = vha->hw;
if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) && !IS_QLA8XXX_TYPE(ha))
return QLA_SUCCESS;
ret = qla2xxx_find_flt_start(vha, &flt_addr);
if (ret != QLA_SUCCESS)
return ret;
qla2xxx_get_flt_info(vha, flt_addr);
qla2xxx_get_fdt_info(vha);
qla2xxx_get_idc_param(vha);
return QLA_SUCCESS;
}
void
qla2xxx_flash_npiv_conf(scsi_qla_host_t *vha)
{
#define NPIV_CONFIG_SIZE (16*1024)
void *data;
uint16_t *wptr;
uint16_t cnt, chksum;
int i;
struct qla_npiv_header hdr;
struct qla_npiv_entry *entry;
struct qla_hw_data *ha = vha->hw;
if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) && !IS_QLA8XXX_TYPE(ha))
return;
ha->isp_ops->read_optrom(vha, (uint8_t *)&hdr,
ha->flt_region_npiv_conf << 2, sizeof(struct qla_npiv_header));
if (hdr.version == __constant_cpu_to_le16(0xffff))
return;
if (hdr.version != __constant_cpu_to_le16(1)) {
DEBUG2(qla_printk(KERN_INFO, ha, "Unsupported NPIV-Config "
"detected: version=0x%x entries=0x%x checksum=0x%x.\n",
le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
le16_to_cpu(hdr.checksum)));
return;
}
data = kmalloc(NPIV_CONFIG_SIZE, GFP_KERNEL);
if (!data) {
DEBUG2(qla_printk(KERN_INFO, ha, "NPIV-Config: Unable to "
"allocate memory.\n"));
return;
}
ha->isp_ops->read_optrom(vha, (uint8_t *)data,
ha->flt_region_npiv_conf << 2, NPIV_CONFIG_SIZE);
cnt = (sizeof(struct qla_npiv_header) + le16_to_cpu(hdr.entries) *
sizeof(struct qla_npiv_entry)) >> 1;
for (wptr = data, chksum = 0; cnt; cnt--)
chksum += le16_to_cpu(*wptr++);
if (chksum) {
DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent NPIV-Config "
"detected: version=0x%x entries=0x%x checksum=0x%x.\n",
le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
chksum));
goto done;
}
entry = data + sizeof(struct qla_npiv_header);
cnt = le16_to_cpu(hdr.entries);
for (i = 0; cnt; cnt--, entry++, i++) {
uint16_t flags;
struct fc_vport_identifiers vid;
struct fc_vport *vport;
memcpy(&ha->npiv_info[i], entry, sizeof(struct qla_npiv_entry));
flags = le16_to_cpu(entry->flags);
if (flags == 0xffff)
continue;
if ((flags & BIT_0) == 0)
continue;
memset(&vid, 0, sizeof(vid));
vid.roles = FC_PORT_ROLE_FCP_INITIATOR;
vid.vport_type = FC_PORTTYPE_NPIV;
vid.disable = false;
vid.port_name = wwn_to_u64(entry->port_name);
vid.node_name = wwn_to_u64(entry->node_name);
DEBUG2(qla_printk(KERN_INFO, ha, "NPIV[%02x]: wwpn=%llx "
"wwnn=%llx vf_id=0x%x Q_qos=0x%x F_qos=0x%x.\n", cnt,
(unsigned long long)vid.port_name,
(unsigned long long)vid.node_name,
le16_to_cpu(entry->vf_id),
entry->q_qos, entry->f_qos));
if (i < QLA_PRECONFIG_VPORTS) {
vport = fc_vport_create(vha->host, 0, &vid);
if (!vport)
qla_printk(KERN_INFO, ha,
"NPIV-Config: Failed to create vport [%02x]: "
"wwpn=%llx wwnn=%llx.\n", cnt,
(unsigned long long)vid.port_name,
(unsigned long long)vid.node_name);
}
}
done:
kfree(data);
}
static int
qla24xx_unprotect_flash(scsi_qla_host_t *vha)
{
struct qla_hw_data *ha = vha->hw;
struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
if (ha->flags.fac_supported)
return qla81xx_fac_do_write_enable(vha, 1);
/* Enable flash write. */
WRT_REG_DWORD(&reg->ctrl_status,
RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
if (!ha->fdt_wrt_disable)
goto done;
/* Disable flash write-protection, first clear SR protection bit */
qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
/* Then write zero again to clear remaining SR bits.*/
qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
done:
return QLA_SUCCESS;
}
static int
qla24xx_protect_flash(scsi_qla_host_t *vha)
{
uint32_t cnt;
struct qla_hw_data *ha = vha->hw;
struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
if (ha->flags.fac_supported)
return qla81xx_fac_do_write_enable(vha, 0);
if (!ha->fdt_wrt_disable)
goto skip_wrt_protect;
/* Enable flash write-protection and wait for completion. */
qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101),
ha->fdt_wrt_disable);
for (cnt = 300; cnt &&
qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x005)) & BIT_0;
cnt--) {
udelay(10);
}
skip_wrt_protect:
/* Disable flash write. */
WRT_REG_DWORD(&reg->ctrl_status,
RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
return QLA_SUCCESS;
}
static int
qla24xx_erase_sector(scsi_qla_host_t *vha, uint32_t fdata)
{
struct qla_hw_data *ha = vha->hw;
uint32_t start, finish;
if (ha->flags.fac_supported) {
start = fdata >> 2;
finish = start + (ha->fdt_block_size >> 2) - 1;
return qla81xx_fac_erase_sector(vha, flash_data_addr(ha,
start), flash_data_addr(ha, finish));
}
return qla24xx_write_flash_dword(ha, ha->fdt_erase_cmd,
(fdata & 0xff00) | ((fdata << 16) & 0xff0000) |
((fdata >> 16) & 0xff));
}
static int
qla24xx_write_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
uint32_t dwords)
{
int ret;
uint32_t liter;
uint32_t sec_mask, rest_addr;
uint32_t fdata;
dma_addr_t optrom_dma;
void *optrom = NULL;
struct qla_hw_data *ha = vha->hw;
/* Prepare burst-capable write on supported ISPs. */
if ((IS_QLA25XX(ha) || IS_QLA81XX(ha)) && !(faddr & 0xfff) &&
dwords > OPTROM_BURST_DWORDS) {
optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
&optrom_dma, GFP_KERNEL);
if (!optrom) {
qla_printk(KERN_DEBUG, ha,
"Unable to allocate memory for optrom burst write "
"(%x KB).\n", OPTROM_BURST_SIZE / 1024);
}
}
rest_addr = (ha->fdt_block_size >> 2) - 1;
sec_mask = ~rest_addr;
ret = qla24xx_unprotect_flash(vha);
if (ret != QLA_SUCCESS) {
qla_printk(KERN_WARNING, ha,
"Unable to unprotect flash for update.\n");
goto done;
}
for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
fdata = (faddr & sec_mask) << 2;
/* Are we at the beginning of a sector? */
if ((faddr & rest_addr) == 0) {
/* Do sector unprotect. */
if (ha->fdt_unprotect_sec_cmd)
qla24xx_write_flash_dword(ha,
ha->fdt_unprotect_sec_cmd,
(fdata & 0xff00) | ((fdata << 16) &
0xff0000) | ((fdata >> 16) & 0xff));
ret = qla24xx_erase_sector(vha, fdata);
if (ret != QLA_SUCCESS) {
DEBUG9(qla_printk(KERN_WARNING, ha,
"Unable to erase sector: address=%x.\n",
faddr));
break;
}
}
/* Go with burst-write. */
if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) {
/* Copy data to DMA'ble buffer. */
memcpy(optrom, dwptr, OPTROM_BURST_SIZE);
ret = qla2x00_load_ram(vha, optrom_dma,
flash_data_addr(ha, faddr),
OPTROM_BURST_DWORDS);
if (ret != QLA_SUCCESS) {
qla_printk(KERN_WARNING, ha,
"Unable to burst-write optrom segment "
"(%x/%x/%llx).\n", ret,
flash_data_addr(ha, faddr),
(unsigned long long)optrom_dma);
qla_printk(KERN_WARNING, ha,
"Reverting to slow-write.\n");
dma_free_coherent(&ha->pdev->dev,
OPTROM_BURST_SIZE, optrom, optrom_dma);
optrom = NULL;
} else {
liter += OPTROM_BURST_DWORDS - 1;
faddr += OPTROM_BURST_DWORDS - 1;
dwptr += OPTROM_BURST_DWORDS - 1;
continue;
}
}
ret = qla24xx_write_flash_dword(ha,
flash_data_addr(ha, faddr), cpu_to_le32(*dwptr));
if (ret != QLA_SUCCESS) {
DEBUG9(printk("%s(%ld) Unable to program flash "
"address=%x data=%x.\n", __func__,
vha->host_no, faddr, *dwptr));
break;
}
/* Do sector protect. */
if (ha->fdt_unprotect_sec_cmd &&
((faddr & rest_addr) == rest_addr))
qla24xx_write_flash_dword(ha,
ha->fdt_protect_sec_cmd,
(fdata & 0xff00) | ((fdata << 16) &
0xff0000) | ((fdata >> 16) & 0xff));
}
ret = qla24xx_protect_flash(vha);
if (ret != QLA_SUCCESS)
qla_printk(KERN_WARNING, ha,
"Unable to protect flash after update.\n");
done:
if (optrom)
dma_free_coherent(&ha->pdev->dev,
OPTROM_BURST_SIZE, optrom, optrom_dma);
return ret;
}
uint8_t *
qla2x00_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
uint32_t bytes)
{
uint32_t i;
uint16_t *wptr;
struct qla_hw_data *ha = vha->hw;
/* Word reads to NVRAM via registers. */
wptr = (uint16_t *)buf;
qla2x00_lock_nvram_access(ha);
for (i = 0; i < bytes >> 1; i++, naddr++)
wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
naddr));
qla2x00_unlock_nvram_access(ha);
return buf;
}
uint8_t *
qla24xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
uint32_t bytes)
{
uint32_t i;
uint32_t *dwptr;
struct qla_hw_data *ha = vha->hw;
if (IS_QLA82XX(ha))
return buf;
/* Dword reads to flash. */
dwptr = (uint32_t *)buf;
for (i = 0; i < bytes >> 2; i++, naddr++)
dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
nvram_data_addr(ha, naddr)));
return buf;
}
int
qla2x00_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
uint32_t bytes)
{
int ret, stat;
uint32_t i;
uint16_t *wptr;
unsigned long flags;
struct qla_hw_data *ha = vha->hw;
ret = QLA_SUCCESS;
spin_lock_irqsave(&ha->hardware_lock, flags);
qla2x00_lock_nvram_access(ha);
/* Disable NVRAM write-protection. */
stat = qla2x00_clear_nvram_protection(ha);
wptr = (uint16_t *)buf;
for (i = 0; i < bytes >> 1; i++, naddr++) {
qla2x00_write_nvram_word(ha, naddr,
cpu_to_le16(*wptr));
wptr++;
}
/* Enable NVRAM write-protection. */
qla2x00_set_nvram_protection(ha, stat);
qla2x00_unlock_nvram_access(ha);
spin_unlock_irqrestore(&ha->hardware_lock, flags);
return ret;
}
int
qla24xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
uint32_t bytes)
{
int ret;
uint32_t i;
uint32_t *dwptr;
struct qla_hw_data *ha = vha->hw;
struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
ret = QLA_SUCCESS;
if (IS_QLA82XX(ha))
return ret;
/* Enable flash write. */
WRT_REG_DWORD(&reg->ctrl_status,
RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
/* Disable NVRAM write-protection. */
qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
/* Dword writes to flash. */
dwptr = (uint32_t *)buf;
for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
ret = qla24xx_write_flash_dword(ha,
nvram_data_addr(ha, naddr), cpu_to_le32(*dwptr));
if (ret != QLA_SUCCESS) {
DEBUG9(qla_printk(KERN_WARNING, ha,
"Unable to program nvram address=%x data=%x.\n",
naddr, *dwptr));
break;
}
}
/* Enable NVRAM write-protection. */
qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0x8c);
/* Disable flash write. */
WRT_REG_DWORD(&reg->ctrl_status,
RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
return ret;
}
uint8_t *
qla25xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
uint32_t bytes)
{
uint32_t i;
uint32_t *dwptr;
struct qla_hw_data *ha = vha->hw;
/* Dword reads to flash. */
dwptr = (uint32_t *)buf;
for (i = 0; i < bytes >> 2; i++, naddr++)
dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
flash_data_addr(ha, ha->flt_region_vpd_nvram | naddr)));
return buf;
}
int
qla25xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
uint32_t bytes)
{
struct qla_hw_data *ha = vha->hw;
#define RMW_BUFFER_SIZE (64 * 1024)
uint8_t *dbuf;
dbuf = vmalloc(RMW_BUFFER_SIZE);
if (!dbuf)
return QLA_MEMORY_ALLOC_FAILED;
ha->isp_ops->read_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
RMW_BUFFER_SIZE);
memcpy(dbuf + (naddr << 2), buf, bytes);
ha->isp_ops->write_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
RMW_BUFFER_SIZE);
vfree(dbuf);
return QLA_SUCCESS;
}
static inline void
qla2x00_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
{
if (IS_QLA2322(ha)) {
/* Flip all colors. */
if (ha->beacon_color_state == QLA_LED_ALL_ON) {
/* Turn off. */
ha->beacon_color_state = 0;
*pflags = GPIO_LED_ALL_OFF;
} else {
/* Turn on. */
ha->beacon_color_state = QLA_LED_ALL_ON;
*pflags = GPIO_LED_RGA_ON;
}
} else {
/* Flip green led only. */
if (ha->beacon_color_state == QLA_LED_GRN_ON) {
/* Turn off. */
ha->beacon_color_state = 0;
*pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
} else {
/* Turn on. */
ha->beacon_color_state = QLA_LED_GRN_ON;
*pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
}
}
}
#define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r))
void
qla2x00_beacon_blink(struct scsi_qla_host *vha)
{
uint16_t gpio_enable;
uint16_t gpio_data;
uint16_t led_color = 0;
unsigned long flags;
struct qla_hw_data *ha = vha->hw;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
if (IS_QLA82XX(ha))
return;
spin_lock_irqsave(&ha->hardware_lock, flags);
/* Save the Original GPIOE. */
if (ha->pio_address) {
gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
} else {
gpio_enable = RD_REG_WORD(&reg->gpioe);
gpio_data = RD_REG_WORD(&reg->gpiod);
}
/* Set the modified gpio_enable values */
gpio_enable |= GPIO_LED_MASK;
if (ha->pio_address) {
WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
} else {
WRT_REG_WORD(&reg->gpioe, gpio_enable);
RD_REG_WORD(&reg->gpioe);
}
qla2x00_flip_colors(ha, &led_color);
/* Clear out any previously set LED color. */
gpio_data &= ~GPIO_LED_MASK;
/* Set the new input LED color to GPIOD. */
gpio_data |= led_color;
/* Set the modified gpio_data values */
if (ha->pio_address) {
WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
} else {
WRT_REG_WORD(&reg->gpiod, gpio_data);
RD_REG_WORD(&reg->gpiod);
}
spin_unlock_irqrestore(&ha->hardware_lock, flags);
}
int
qla2x00_beacon_on(struct scsi_qla_host *vha)
{
uint16_t gpio_enable;
uint16_t gpio_data;
unsigned long flags;
struct qla_hw_data *ha = vha->hw;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;
if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
qla_printk(KERN_WARNING, ha,
"Unable to update fw options (beacon on).\n");
return QLA_FUNCTION_FAILED;
}
/* Turn off LEDs. */
spin_lock_irqsave(&ha->hardware_lock, flags);
if (ha->pio_address) {
gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
} else {
gpio_enable = RD_REG_WORD(&reg->gpioe);
gpio_data = RD_REG_WORD(&reg->gpiod);
}
gpio_enable |= GPIO_LED_MASK;
/* Set the modified gpio_enable values. */
if (ha->pio_address) {
WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
} else {
WRT_REG_WORD(&reg->gpioe, gpio_enable);
RD_REG_WORD(&reg->gpioe);
}
/* Clear out previously set LED colour. */
gpio_data &= ~GPIO_LED_MASK;
if (ha->pio_address) {
WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
} else {
WRT_REG_WORD(&reg->gpiod, gpio_data);
RD_REG_WORD(&reg->gpiod);
}
spin_unlock_irqrestore(&ha->hardware_lock, flags);
/*
* Let the per HBA timer kick off the blinking process based on
* the following flags. No need to do anything else now.
*/
ha->beacon_blink_led = 1;
ha->beacon_color_state = 0;
return QLA_SUCCESS;
}
int
qla2x00_beacon_off(struct scsi_qla_host *vha)
{
int rval = QLA_SUCCESS;
struct qla_hw_data *ha = vha->hw;
ha->beacon_blink_led = 0;
/* Set the on flag so when it gets flipped it will be off. */
if (IS_QLA2322(ha))
ha->beacon_color_state = QLA_LED_ALL_ON;
else
ha->beacon_color_state = QLA_LED_GRN_ON;
ha->isp_ops->beacon_blink(vha); /* This turns green LED off */
ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;
rval = qla2x00_set_fw_options(vha, ha->fw_options);
if (rval != QLA_SUCCESS)
qla_printk(KERN_WARNING, ha,
"Unable to update fw options (beacon off).\n");
return rval;
}
static inline void
qla24xx_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
{
/* Flip all colors. */
if (ha->beacon_color_state == QLA_LED_ALL_ON) {
/* Turn off. */
ha->beacon_color_state = 0;
*pflags = 0;
} else {
/* Turn on. */
ha->beacon_color_state = QLA_LED_ALL_ON;
*pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON;
}
}
void
qla24xx_beacon_blink(struct scsi_qla_host *vha)
{
uint16_t led_color = 0;
uint32_t gpio_data;
unsigned long flags;
struct qla_hw_data *ha = vha->hw;
struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
/* Save the Original GPIOD. */
spin_lock_irqsave(&ha->hardware_lock, flags);
gpio_data = RD_REG_DWORD(&reg->gpiod);
/* Enable the gpio_data reg for update. */
gpio_data |= GPDX_LED_UPDATE_MASK;
WRT_REG_DWORD(&reg->gpiod, gpio_data);
gpio_data = RD_REG_DWORD(&reg->gpiod);
/* Set the color bits. */
qla24xx_flip_colors(ha, &led_color);
/* Clear out any previously set LED color. */
gpio_data &= ~GPDX_LED_COLOR_MASK;
/* Set the new input LED color to GPIOD. */
gpio_data |= led_color;
/* Set the modified gpio_data values. */
WRT_REG_DWORD(&reg->gpiod, gpio_data);
gpio_data = RD_REG_DWORD(&reg->gpiod);
spin_unlock_irqrestore(&ha->hardware_lock, flags);
}
int
qla24xx_beacon_on(struct scsi_qla_host *vha)
{
uint32_t gpio_data;
unsigned long flags;
struct qla_hw_data *ha = vha->hw;
struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
if (IS_QLA82XX(ha))
return QLA_SUCCESS;
if (ha->beacon_blink_led == 0) {
/* Enable firmware for update */
ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL;
if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS)
return QLA_FUNCTION_FAILED;
if (qla2x00_get_fw_options(vha, ha->fw_options) !=
QLA_SUCCESS) {
qla_printk(KERN_WARNING, ha,
"Unable to update fw options (beacon on).\n");
return QLA_FUNCTION_FAILED;
}
spin_lock_irqsave(&ha->hardware_lock, flags);
gpio_data = RD_REG_DWORD(&reg->gpiod);
/* Enable the gpio_data reg for update. */
gpio_data |= GPDX_LED_UPDATE_MASK;
WRT_REG_DWORD(&reg->gpiod, gpio_data);
RD_REG_DWORD(&reg->gpiod);
spin_unlock_irqrestore(&ha->hardware_lock, flags);
}
/* So all colors blink together. */
ha->beacon_color_state = 0;
/* Let the per HBA timer kick off the blinking process. */
ha->beacon_blink_led = 1;
return QLA_SUCCESS;
}
int
qla24xx_beacon_off(struct scsi_qla_host *vha)
{
uint32_t gpio_data;
unsigned long flags;
struct qla_hw_data *ha = vha->hw;
struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
if (IS_QLA82XX(ha))
return QLA_SUCCESS;
ha->beacon_blink_led = 0;
ha->beacon_color_state = QLA_LED_ALL_ON;
ha->isp_ops->beacon_blink(vha); /* Will flip to all off. */
/* Give control back to firmware. */
spin_lock_irqsave(&ha->hardware_lock, flags);
gpio_data = RD_REG_DWORD(&reg->gpiod);
/* Disable the gpio_data reg for update. */
gpio_data &= ~GPDX_LED_UPDATE_MASK;
WRT_REG_DWORD(&reg->gpiod, gpio_data);
RD_REG_DWORD(&reg->gpiod);
spin_unlock_irqrestore(&ha->hardware_lock, flags);
ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL;
if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
qla_printk(KERN_WARNING, ha,
"Unable to update fw options (beacon off).\n");
return QLA_FUNCTION_FAILED;
}
if (qla2x00_get_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
qla_printk(KERN_WARNING, ha,
"Unable to get fw options (beacon off).\n");
return QLA_FUNCTION_FAILED;
}
return QLA_SUCCESS;
}
/*
* Flash support routines
*/
/**
* qla2x00_flash_enable() - Setup flash for reading and writing.
* @ha: HA context
*/
static void
qla2x00_flash_enable(struct qla_hw_data *ha)
{
uint16_t data;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
data = RD_REG_WORD(&reg->ctrl_status);
data |= CSR_FLASH_ENABLE;
WRT_REG_WORD(&reg->ctrl_status, data);
RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
}
/**
* qla2x00_flash_disable() - Disable flash and allow RISC to run.
* @ha: HA context
*/
static void
qla2x00_flash_disable(struct qla_hw_data *ha)
{
uint16_t data;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
data = RD_REG_WORD(&reg->ctrl_status);
data &= ~(CSR_FLASH_ENABLE);
WRT_REG_WORD(&reg->ctrl_status, data);
RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
}
/**
* qla2x00_read_flash_byte() - Reads a byte from flash
* @ha: HA context
* @addr: Address in flash to read
*
* A word is read from the chip, but, only the lower byte is valid.
*
* Returns the byte read from flash @addr.
*/
static uint8_t
qla2x00_read_flash_byte(struct qla_hw_data *ha, uint32_t addr)
{
uint16_t data;
uint16_t bank_select;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
bank_select = RD_REG_WORD(&reg->ctrl_status);
if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
/* Specify 64K address range: */
/* clear out Module Select and Flash Address bits [19:16]. */
bank_select &= ~0xf8;
bank_select |= addr >> 12 & 0xf0;
bank_select |= CSR_FLASH_64K_BANK;
WRT_REG_WORD(&reg->ctrl_status, bank_select);
RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
data = RD_REG_WORD(&reg->flash_data);
return (uint8_t)data;
}
/* Setup bit 16 of flash address. */
if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
bank_select |= CSR_FLASH_64K_BANK;
WRT_REG_WORD(&reg->ctrl_status, bank_select);
RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
} else if (((addr & BIT_16) == 0) &&
(bank_select & CSR_FLASH_64K_BANK)) {
bank_select &= ~(CSR_FLASH_64K_BANK);
WRT_REG_WORD(&reg->ctrl_status, bank_select);
RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
}
/* Always perform IO mapped accesses to the FLASH registers. */
if (ha->pio_address) {
uint16_t data2;
WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
do {
data = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
barrier();
cpu_relax();
data2 = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
} while (data != data2);
} else {
WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
data = qla2x00_debounce_register(&reg->flash_data);
}
return (uint8_t)data;
}
/**
* qla2x00_write_flash_byte() - Write a byte to flash
* @ha: HA context
* @addr: Address in flash to write
* @data: Data to write
*/
static void
qla2x00_write_flash_byte(struct qla_hw_data *ha, uint32_t addr, uint8_t data)
{
uint16_t bank_select;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
bank_select = RD_REG_WORD(&reg->ctrl_status);
if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
/* Specify 64K address range: */
/* clear out Module Select and Flash Address bits [19:16]. */
bank_select &= ~0xf8;
bank_select |= addr >> 12 & 0xf0;
bank_select |= CSR_FLASH_64K_BANK;
WRT_REG_WORD(&reg->ctrl_status, bank_select);
RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
return;
}
/* Setup bit 16 of flash address. */
if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
bank_select |= CSR_FLASH_64K_BANK;
WRT_REG_WORD(&reg->ctrl_status, bank_select);
RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
} else if (((addr & BIT_16) == 0) &&
(bank_select & CSR_FLASH_64K_BANK)) {
bank_select &= ~(CSR_FLASH_64K_BANK);
WRT_REG_WORD(&reg->ctrl_status, bank_select);
RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
}
/* Always perform IO mapped accesses to the FLASH registers. */
if (ha->pio_address) {
WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
WRT_REG_WORD_PIO(PIO_REG(ha, flash_data), (uint16_t)data);
} else {
WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
}
}
/**
* qla2x00_poll_flash() - Polls flash for completion.
* @ha: HA context
* @addr: Address in flash to poll
* @poll_data: Data to be polled
* @man_id: Flash manufacturer ID
* @flash_id: Flash ID
*
* This function polls the device until bit 7 of what is read matches data
* bit 7 or until data bit 5 becomes a 1. If that hapens, the flash ROM timed
* out (a fatal error). The flash book recommeds reading bit 7 again after
* reading bit 5 as a 1.
*
* Returns 0 on success, else non-zero.
*/
static int
qla2x00_poll_flash(struct qla_hw_data *ha, uint32_t addr, uint8_t poll_data,
uint8_t man_id, uint8_t flash_id)
{
int status;
uint8_t flash_data;
uint32_t cnt;
status = 1;
/* Wait for 30 seconds for command to finish. */
poll_data &= BIT_7;
for (cnt = 3000000; cnt; cnt--) {
flash_data = qla2x00_read_flash_byte(ha, addr);
if ((flash_data & BIT_7) == poll_data) {
status = 0;
break;
}
if (man_id != 0x40 && man_id != 0xda) {
if ((flash_data & BIT_5) && cnt > 2)
cnt = 2;
}
udelay(10);
barrier();
cond_resched();
}
return status;
}
/**
* qla2x00_program_flash_address() - Programs a flash address
* @ha: HA context
* @addr: Address in flash to program
* @data: Data to be written in flash
* @man_id: Flash manufacturer ID
* @flash_id: Flash ID
*
* Returns 0 on success, else non-zero.
*/
static int
qla2x00_program_flash_address(struct qla_hw_data *ha, uint32_t addr,
uint8_t data, uint8_t man_id, uint8_t flash_id)
{
/* Write Program Command Sequence. */
if (IS_OEM_001(ha)) {
qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
qla2x00_write_flash_byte(ha, 0x555, 0x55);
qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
qla2x00_write_flash_byte(ha, addr, data);
} else {
if (man_id == 0xda && flash_id == 0xc1) {
qla2x00_write_flash_byte(ha, addr, data);
if (addr & 0x7e)
return 0;
} else {
qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
qla2x00_write_flash_byte(ha, addr, data);
}
}
udelay(150);
/* Wait for write to complete. */
return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
}
/**
* qla2x00_erase_flash() - Erase the flash.
* @ha: HA context
* @man_id: Flash manufacturer ID
* @flash_id: Flash ID
*
* Returns 0 on success, else non-zero.
*/
static int
qla2x00_erase_flash(struct qla_hw_data *ha, uint8_t man_id, uint8_t flash_id)
{
/* Individual Sector Erase Command Sequence */
if (IS_OEM_001(ha)) {
qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
qla2x00_write_flash_byte(ha, 0x555, 0x55);
qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
qla2x00_write_flash_byte(ha, 0x555, 0x55);
qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
} else {
qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
qla2x00_write_flash_byte(ha, 0x5555, 0x80);
qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
qla2x00_write_flash_byte(ha, 0x5555, 0x10);
}
udelay(150);
/* Wait for erase to complete. */
return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
}
/**
* qla2x00_erase_flash_sector() - Erase a flash sector.
* @ha: HA context
* @addr: Flash sector to erase
* @sec_mask: Sector address mask
* @man_id: Flash manufacturer ID
* @flash_id: Flash ID
*
* Returns 0 on success, else non-zero.
*/
static int
qla2x00_erase_flash_sector(struct qla_hw_data *ha, uint32_t addr,
uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
{
/* Individual Sector Erase Command Sequence */
qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
qla2x00_write_flash_byte(ha, 0x5555, 0x80);
qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
if (man_id == 0x1f && flash_id == 0x13)
qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
else
qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);
udelay(150);
/* Wait for erase to complete. */
return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
}
/**
* qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
* @man_id: Flash manufacturer ID
* @flash_id: Flash ID
*/
static void
qla2x00_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
uint8_t *flash_id)
{
qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
qla2x00_write_flash_byte(ha, 0x5555, 0x90);
*man_id = qla2x00_read_flash_byte(ha, 0x0000);
*flash_id = qla2x00_read_flash_byte(ha, 0x0001);
qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
}
static void
qla2x00_read_flash_data(struct qla_hw_data *ha, uint8_t *tmp_buf,
uint32_t saddr, uint32_t length)
{
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
uint32_t midpoint, ilength;
uint8_t data;
midpoint = length / 2;
WRT_REG_WORD(&reg->nvram, 0);
RD_REG_WORD(&reg->nvram);
for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) {
if (ilength == midpoint) {
WRT_REG_WORD(&reg->nvram, NVR_SELECT);
RD_REG_WORD(&reg->nvram);
}
data = qla2x00_read_flash_byte(ha, saddr);
if (saddr % 100)
udelay(10);
*tmp_buf = data;
cond_resched();
}
}
static inline void
qla2x00_suspend_hba(struct scsi_qla_host *vha)
{
int cnt;
unsigned long flags;
struct qla_hw_data *ha = vha->hw;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
/* Suspend HBA. */
scsi_block_requests(vha->host);
ha->isp_ops->disable_intrs(ha);
set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
/* Pause RISC. */
spin_lock_irqsave(&ha->hardware_lock, flags);
WRT_REG_WORD(&reg->hccr, HCCR_PAUSE_RISC);
RD_REG_WORD(&reg->hccr);
if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
for (cnt = 0; cnt < 30000; cnt++) {
if ((RD_REG_WORD(&reg->hccr) & HCCR_RISC_PAUSE) != 0)
break;
udelay(100);
}
} else {
udelay(10);
}
spin_unlock_irqrestore(&ha->hardware_lock, flags);
}
static inline void
qla2x00_resume_hba(struct scsi_qla_host *vha)
{
struct qla_hw_data *ha = vha->hw;
/* Resume HBA. */
clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
set_bit(ISP_ABORT_NEEDED, &vha->dpc_flags);
qla2xxx_wake_dpc(vha);
qla2x00_wait_for_chip_reset(vha);
scsi_unblock_requests(vha->host);
}
uint8_t *
qla2x00_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
uint32_t offset, uint32_t length)
{
uint32_t addr, midpoint;
uint8_t *data;
struct qla_hw_data *ha = vha->hw;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
/* Suspend HBA. */
qla2x00_suspend_hba(vha);
/* Go with read. */
midpoint = ha->optrom_size / 2;
qla2x00_flash_enable(ha);
WRT_REG_WORD(&reg->nvram, 0);
RD_REG_WORD(&reg->nvram); /* PCI Posting. */
for (addr = offset, data = buf; addr < length; addr++, data++) {
if (addr == midpoint) {
WRT_REG_WORD(&reg->nvram, NVR_SELECT);
RD_REG_WORD(&reg->nvram); /* PCI Posting. */
}
*data = qla2x00_read_flash_byte(ha, addr);
}
qla2x00_flash_disable(ha);
/* Resume HBA. */
qla2x00_resume_hba(vha);
return buf;
}
int
qla2x00_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
uint32_t offset, uint32_t length)
{
int rval;
uint8_t man_id, flash_id, sec_number, data;
uint16_t wd;
uint32_t addr, liter, sec_mask, rest_addr;
struct qla_hw_data *ha = vha->hw;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
/* Suspend HBA. */
qla2x00_suspend_hba(vha);
rval = QLA_SUCCESS;
sec_number = 0;
/* Reset ISP chip. */
WRT_REG_WORD(&reg->ctrl_status, CSR_ISP_SOFT_RESET);
pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);
/* Go with write. */
qla2x00_flash_enable(ha);
do { /* Loop once to provide quick error exit */
/* Structure of flash memory based on manufacturer */
if (IS_OEM_001(ha)) {
/* OEM variant with special flash part. */
man_id = flash_id = 0;
rest_addr = 0xffff;
sec_mask = 0x10000;
goto update_flash;
}
qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
switch (man_id) {
case 0x20: /* ST flash. */
if (flash_id == 0xd2 || flash_id == 0xe3) {
/*
* ST m29w008at part - 64kb sector size with
* 32kb,8kb,8kb,16kb sectors at memory address
* 0xf0000.
*/
rest_addr = 0xffff;
sec_mask = 0x10000;
break;
}
/*
* ST m29w010b part - 16kb sector size
* Default to 16kb sectors
*/
rest_addr = 0x3fff;
sec_mask = 0x1c000;
break;
case 0x40: /* Mostel flash. */
/* Mostel v29c51001 part - 512 byte sector size. */
rest_addr = 0x1ff;
sec_mask = 0x1fe00;
break;
case 0xbf: /* SST flash. */
/* SST39sf10 part - 4kb sector size. */
rest_addr = 0xfff;
sec_mask = 0x1f000;
break;
case 0xda: /* Winbond flash. */
/* Winbond W29EE011 part - 256 byte sector size. */
rest_addr = 0x7f;
sec_mask = 0x1ff80;
break;
case 0xc2: /* Macronix flash. */
/* 64k sector size. */
if (flash_id == 0x38 || flash_id == 0x4f) {
rest_addr = 0xffff;
sec_mask = 0x10000;
break;
}
/* Fall through... */
case 0x1f: /* Atmel flash. */
/* 512k sector size. */
if (flash_id == 0x13) {
rest_addr = 0x7fffffff;
sec_mask = 0x80000000;
break;
}
/* Fall through... */
case 0x01: /* AMD flash. */
if (flash_id == 0x38 || flash_id == 0x40 ||
flash_id == 0x4f) {
/* Am29LV081 part - 64kb sector size. */
/* Am29LV002BT part - 64kb sector size. */
rest_addr = 0xffff;
sec_mask = 0x10000;
break;
} else if (flash_id == 0x3e) {
/*
* Am29LV008b part - 64kb sector size with
* 32kb,8kb,8kb,16kb sector at memory address
* h0xf0000.
*/
rest_addr = 0xffff;
sec_mask = 0x10000;
break;
} else if (flash_id == 0x20 || flash_id == 0x6e) {
/*
* Am29LV010 part or AM29f010 - 16kb sector
* size.
*/
rest_addr = 0x3fff;
sec_mask = 0x1c000;
break;
} else if (flash_id == 0x6d) {
/* Am29LV001 part - 8kb sector size. */
rest_addr = 0x1fff;
sec_mask = 0x1e000;
break;
}
default:
/* Default to 16 kb sector size. */
rest_addr = 0x3fff;
sec_mask = 0x1c000;
break;
}
update_flash:
if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
if (qla2x00_erase_flash(ha, man_id, flash_id)) {
rval = QLA_FUNCTION_FAILED;
break;
}
}
for (addr = offset, liter = 0; liter < length; liter++,
addr++) {
data = buf[liter];
/* Are we at the beginning of a sector? */
if ((addr & rest_addr) == 0) {
if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
if (addr >= 0x10000UL) {
if (((addr >> 12) & 0xf0) &&
((man_id == 0x01 &&
flash_id == 0x3e) ||
(man_id == 0x20 &&
flash_id == 0xd2))) {
sec_number++;
if (sec_number == 1) {
rest_addr =
0x7fff;
sec_mask =
0x18000;
} else if (
sec_number == 2 ||
sec_number == 3) {
rest_addr =
0x1fff;
sec_mask =
0x1e000;
} else if (
sec_number == 4) {
rest_addr =
0x3fff;
sec_mask =
0x1c000;
}
}
}
} else if (addr == ha->optrom_size / 2) {
WRT_REG_WORD(&reg->nvram, NVR_SELECT);
RD_REG_WORD(&reg->nvram);
}
if (flash_id == 0xda && man_id == 0xc1) {
qla2x00_write_flash_byte(ha, 0x5555,
0xaa);
qla2x00_write_flash_byte(ha, 0x2aaa,
0x55);
qla2x00_write_flash_byte(ha, 0x5555,
0xa0);
} else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
/* Then erase it */
if (qla2x00_erase_flash_sector(ha,
addr, sec_mask, man_id,
flash_id)) {
rval = QLA_FUNCTION_FAILED;
break;
}
if (man_id == 0x01 && flash_id == 0x6d)
sec_number++;
}
}
if (man_id == 0x01 && flash_id == 0x6d) {
if (sec_number == 1 &&
addr == (rest_addr - 1)) {
rest_addr = 0x0fff;
sec_mask = 0x1f000;
} else if (sec_number == 3 && (addr & 0x7ffe)) {
rest_addr = 0x3fff;
sec_mask = 0x1c000;
}
}
if (qla2x00_program_flash_address(ha, addr, data,
man_id, flash_id)) {
rval = QLA_FUNCTION_FAILED;
break;
}
cond_resched();
}
} while (0);
qla2x00_flash_disable(ha);
/* Resume HBA. */
qla2x00_resume_hba(vha);
return rval;
}
uint8_t *
qla24xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
uint32_t offset, uint32_t length)
{
struct qla_hw_data *ha = vha->hw;
/* Suspend HBA. */
scsi_block_requests(vha->host);
set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
/* Go with read. */
qla24xx_read_flash_data(vha, (uint32_t *)buf, offset >> 2, length >> 2);
/* Resume HBA. */
clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
scsi_unblock_requests(vha->host);
return buf;
}
int
qla24xx_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
uint32_t offset, uint32_t length)
{
int rval;
struct qla_hw_data *ha = vha->hw;
/* Suspend HBA. */
scsi_block_requests(vha->host);
set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
/* Go with write. */
rval = qla24xx_write_flash_data(vha, (uint32_t *)buf, offset >> 2,
length >> 2);
clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
scsi_unblock_requests(vha->host);
return rval;
}
uint8_t *
qla25xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
uint32_t offset, uint32_t length)
{
int rval;
dma_addr_t optrom_dma;
void *optrom;
uint8_t *pbuf;
uint32_t faddr, left, burst;
struct qla_hw_data *ha = vha->hw;
if (IS_QLA25XX(ha) || IS_QLA81XX(ha))
goto try_fast;
if (offset & 0xfff)
goto slow_read;
if (length < OPTROM_BURST_SIZE)
goto slow_read;
try_fast:
optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
&optrom_dma, GFP_KERNEL);
if (!optrom) {
qla_printk(KERN_DEBUG, ha,
"Unable to allocate memory for optrom burst read "
"(%x KB).\n", OPTROM_BURST_SIZE / 1024);
goto slow_read;
}
pbuf = buf;
faddr = offset >> 2;
left = length >> 2;
burst = OPTROM_BURST_DWORDS;
while (left != 0) {
if (burst > left)
burst = left;
rval = qla2x00_dump_ram(vha, optrom_dma,
flash_data_addr(ha, faddr), burst);
if (rval) {
qla_printk(KERN_WARNING, ha,
"Unable to burst-read optrom segment "
"(%x/%x/%llx).\n", rval,
flash_data_addr(ha, faddr),
(unsigned long long)optrom_dma);
qla_printk(KERN_WARNING, ha,
"Reverting to slow-read.\n");
dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
optrom, optrom_dma);
goto slow_read;
}
memcpy(pbuf, optrom, burst * 4);
left -= burst;
faddr += burst;
pbuf += burst * 4;
}
dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom,
optrom_dma);
return buf;
slow_read:
return qla24xx_read_optrom_data(vha, buf, offset, length);
}
/**
* qla2x00_get_fcode_version() - Determine an FCODE image's version.
* @ha: HA context
* @pcids: Pointer to the FCODE PCI data structure
*
* The process of retrieving the FCODE version information is at best
* described as interesting.
*
* Within the first 100h bytes of the image an ASCII string is present
* which contains several pieces of information including the FCODE
* version. Unfortunately it seems the only reliable way to retrieve
* the version is by scanning for another sentinel within the string,
* the FCODE build date:
*
* ... 2.00.02 10/17/02 ...
*
* Returns QLA_SUCCESS on successful retrieval of version.
*/
static void
qla2x00_get_fcode_version(struct qla_hw_data *ha, uint32_t pcids)
{
int ret = QLA_FUNCTION_FAILED;
uint32_t istart, iend, iter, vend;
uint8_t do_next, rbyte, *vbyte;
memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
/* Skip the PCI data structure. */
istart = pcids +
((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) |
qla2x00_read_flash_byte(ha, pcids + 0x0A));
iend = istart + 0x100;
do {
/* Scan for the sentinel date string...eeewww. */
do_next = 0;
iter = istart;
while ((iter < iend) && !do_next) {
iter++;
if (qla2x00_read_flash_byte(ha, iter) == '/') {
if (qla2x00_read_flash_byte(ha, iter + 2) ==
'/')
do_next++;
else if (qla2x00_read_flash_byte(ha,
iter + 3) == '/')
do_next++;
}
}
if (!do_next)
break;
/* Backtrack to previous ' ' (space). */
do_next = 0;
while ((iter > istart) && !do_next) {
iter--;
if (qla2x00_read_flash_byte(ha, iter) == ' ')
do_next++;
}
if (!do_next)
break;
/*
* Mark end of version tag, and find previous ' ' (space) or
* string length (recent FCODE images -- major hack ahead!!!).
*/
vend = iter - 1;
do_next = 0;
while ((iter > istart) && !do_next) {
iter--;
rbyte = qla2x00_read_flash_byte(ha, iter);
if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10)
do_next++;
}
if (!do_next)
break;
/* Mark beginning of version tag, and copy data. */
iter++;
if ((vend - iter) &&
((vend - iter) < sizeof(ha->fcode_revision))) {
vbyte = ha->fcode_revision;
while (iter <= vend) {
*vbyte++ = qla2x00_read_flash_byte(ha, iter);
iter++;
}
ret = QLA_SUCCESS;
}
} while (0);
if (ret != QLA_SUCCESS)
memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
}
int
qla2x00_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
{
int ret = QLA_SUCCESS;
uint8_t code_type, last_image;
uint32_t pcihdr, pcids;
uint8_t *dbyte;
uint16_t *dcode;
struct qla_hw_data *ha = vha->hw;
if (!ha->pio_address || !mbuf)
return QLA_FUNCTION_FAILED;
memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
qla2x00_flash_enable(ha);
/* Begin with first PCI expansion ROM header. */
pcihdr = 0;
last_image = 1;
do {
/* Verify PCI expansion ROM header. */
if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 ||
qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) {
/* No signature */
DEBUG2(qla_printk(KERN_DEBUG, ha, "No matching ROM "
"signature.\n"));
ret = QLA_FUNCTION_FAILED;
break;
}
/* Locate PCI data structure. */
pcids = pcihdr +
((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) |
qla2x00_read_flash_byte(ha, pcihdr + 0x18));
/* Validate signature of PCI data structure. */
if (qla2x00_read_flash_byte(ha, pcids) != 'P' ||
qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' ||
qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' ||
qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') {
/* Incorrect header. */
DEBUG2(qla_printk(KERN_INFO, ha, "PCI data struct not "
"found pcir_adr=%x.\n", pcids));
ret = QLA_FUNCTION_FAILED;
break;
}
/* Read version */
code_type = qla2x00_read_flash_byte(ha, pcids + 0x14);
switch (code_type) {
case ROM_CODE_TYPE_BIOS:
/* Intel x86, PC-AT compatible. */
ha->bios_revision[0] =
qla2x00_read_flash_byte(ha, pcids + 0x12);
ha->bios_revision[1] =
qla2x00_read_flash_byte(ha, pcids + 0x13);
DEBUG3(qla_printk(KERN_DEBUG, ha, "read BIOS %d.%d.\n",
ha->bios_revision[1], ha->bios_revision[0]));
break;
case ROM_CODE_TYPE_FCODE:
/* Open Firmware standard for PCI (FCode). */
/* Eeeewww... */
qla2x00_get_fcode_version(ha, pcids);
break;
case ROM_CODE_TYPE_EFI:
/* Extensible Firmware Interface (EFI). */
ha->efi_revision[0] =
qla2x00_read_flash_byte(ha, pcids + 0x12);
ha->efi_revision[1] =
qla2x00_read_flash_byte(ha, pcids + 0x13);
DEBUG3(qla_printk(KERN_DEBUG, ha, "read EFI %d.%d.\n",
ha->efi_revision[1], ha->efi_revision[0]));
break;
default:
DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized code "
"type %x at pcids %x.\n", code_type, pcids));
break;
}
last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7;
/* Locate next PCI expansion ROM. */
pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) |
qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512;
} while (!last_image);
if (IS_QLA2322(ha)) {
/* Read firmware image information. */
memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
dbyte = mbuf;
memset(dbyte, 0, 8);
dcode = (uint16_t *)dbyte;
qla2x00_read_flash_data(ha, dbyte, ha->flt_region_fw * 4 + 10,
8);
DEBUG3(qla_printk(KERN_DEBUG, ha, "dumping fw ver from "
"flash:\n"));
DEBUG3(qla2x00_dump_buffer((uint8_t *)dbyte, 8));
if ((dcode[0] == 0xffff && dcode[1] == 0xffff &&
dcode[2] == 0xffff && dcode[3] == 0xffff) ||
(dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
dcode[3] == 0)) {
DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized fw "
"revision at %x.\n", ha->flt_region_fw * 4));
} else {
/* values are in big endian */
ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1];
ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3];
ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5];
}
}
qla2x00_flash_disable(ha);
return ret;
}
int
qla24xx_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
{
int ret = QLA_SUCCESS;
uint32_t pcihdr, pcids;
uint32_t *dcode;
uint8_t *bcode;
uint8_t code_type, last_image;
int i;
struct qla_hw_data *ha = vha->hw;
if (IS_QLA82XX(ha))
return ret;
if (!mbuf)
return QLA_FUNCTION_FAILED;
memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
dcode = mbuf;
/* Begin with first PCI expansion ROM header. */
pcihdr = ha->flt_region_boot << 2;
last_image = 1;
do {
/* Verify PCI expansion ROM header. */
qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
bcode = mbuf + (pcihdr % 4);
if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
/* No signature */
DEBUG2(qla_printk(KERN_DEBUG, ha, "No matching ROM "
"signature.\n"));
ret = QLA_FUNCTION_FAILED;
break;
}
/* Locate PCI data structure. */
pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
bcode = mbuf + (pcihdr % 4);
/* Validate signature of PCI data structure. */
if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
bcode[0x2] != 'I' || bcode[0x3] != 'R') {
/* Incorrect header. */
DEBUG2(qla_printk(KERN_INFO, ha, "PCI data struct not "
"found pcir_adr=%x.\n", pcids));
ret = QLA_FUNCTION_FAILED;
break;
}
/* Read version */
code_type = bcode[0x14];
switch (code_type) {
case ROM_CODE_TYPE_BIOS:
/* Intel x86, PC-AT compatible. */
ha->bios_revision[0] = bcode[0x12];
ha->bios_revision[1] = bcode[0x13];
DEBUG3(qla_printk(KERN_DEBUG, ha, "read BIOS %d.%d.\n",
ha->bios_revision[1], ha->bios_revision[0]));
break;
case ROM_CODE_TYPE_FCODE:
/* Open Firmware standard for PCI (FCode). */
ha->fcode_revision[0] = bcode[0x12];
ha->fcode_revision[1] = bcode[0x13];
DEBUG3(qla_printk(KERN_DEBUG, ha, "read FCODE %d.%d.\n",
ha->fcode_revision[1], ha->fcode_revision[0]));
break;
case ROM_CODE_TYPE_EFI:
/* Extensible Firmware Interface (EFI). */
ha->efi_revision[0] = bcode[0x12];
ha->efi_revision[1] = bcode[0x13];
DEBUG3(qla_printk(KERN_DEBUG, ha, "read EFI %d.%d.\n",
ha->efi_revision[1], ha->efi_revision[0]));
break;
default:
DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized code "
"type %x at pcids %x.\n", code_type, pcids));
break;
}
last_image = bcode[0x15] & BIT_7;
/* Locate next PCI expansion ROM. */
pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
} while (!last_image);
/* Read firmware image information. */
memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
dcode = mbuf;
qla24xx_read_flash_data(vha, dcode, ha->flt_region_fw + 4, 4);
for (i = 0; i < 4; i++)
dcode[i] = be32_to_cpu(dcode[i]);
if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
(dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
dcode[3] == 0)) {
DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized fw "
"revision at %x.\n", ha->flt_region_fw * 4));
} else {
ha->fw_revision[0] = dcode[0];
ha->fw_revision[1] = dcode[1];
ha->fw_revision[2] = dcode[2];
ha->fw_revision[3] = dcode[3];
}
/* Check for golden firmware and get version if available */
if (!IS_QLA81XX(ha)) {
/* Golden firmware is not present in non 81XX adapters */
return ret;
}
memset(ha->gold_fw_version, 0, sizeof(ha->gold_fw_version));
dcode = mbuf;
ha->isp_ops->read_optrom(vha, (uint8_t *)dcode,
ha->flt_region_gold_fw << 2, 32);
if (dcode[4] == 0xFFFFFFFF && dcode[5] == 0xFFFFFFFF &&
dcode[6] == 0xFFFFFFFF && dcode[7] == 0xFFFFFFFF) {
DEBUG2(qla_printk(KERN_INFO, ha,
"%s(%ld): Unrecognized golden fw at 0x%x.\n",
__func__, vha->host_no, ha->flt_region_gold_fw * 4));
return ret;
}
for (i = 4; i < 8; i++)
ha->gold_fw_version[i-4] = be32_to_cpu(dcode[i]);
return ret;
}
static int
qla2xxx_is_vpd_valid(uint8_t *pos, uint8_t *end)
{
if (pos >= end || *pos != 0x82)
return 0;
pos += 3 + pos[1];
if (pos >= end || *pos != 0x90)
return 0;
pos += 3 + pos[1];
if (pos >= end || *pos != 0x78)
return 0;
return 1;
}
int
qla2xxx_get_vpd_field(scsi_qla_host_t *vha, char *key, char *str, size_t size)
{
struct qla_hw_data *ha = vha->hw;
uint8_t *pos = ha->vpd;
uint8_t *end = pos + ha->vpd_size;
int len = 0;
if (!IS_FWI2_CAPABLE(ha) || !qla2xxx_is_vpd_valid(pos, end))
return 0;
while (pos < end && *pos != 0x78) {
len = (*pos == 0x82) ? pos[1] : pos[2];
if (!strncmp(pos, key, strlen(key)))
break;
if (*pos != 0x90 && *pos != 0x91)
pos += len;
pos += 3;
}
if (pos < end - len && *pos != 0x78)
return snprintf(str, size, "%.*s", len, pos + 3);
return 0;
}
int
qla24xx_read_fcp_prio_cfg(scsi_qla_host_t *vha)
{
int len, max_len;
uint32_t fcp_prio_addr;
struct qla_hw_data *ha = vha->hw;
if (!ha->fcp_prio_cfg) {
ha->fcp_prio_cfg = vmalloc(FCP_PRIO_CFG_SIZE);
if (!ha->fcp_prio_cfg) {
qla_printk(KERN_WARNING, ha,
"Unable to allocate memory for fcp priority data "
"(%x).\n", FCP_PRIO_CFG_SIZE);
return QLA_FUNCTION_FAILED;
}
}
memset(ha->fcp_prio_cfg, 0, FCP_PRIO_CFG_SIZE);
fcp_prio_addr = ha->flt_region_fcp_prio;
/* first read the fcp priority data header from flash */
ha->isp_ops->read_optrom(vha, (uint8_t *)ha->fcp_prio_cfg,
fcp_prio_addr << 2, FCP_PRIO_CFG_HDR_SIZE);
if (!qla24xx_fcp_prio_cfg_valid(ha->fcp_prio_cfg, 0))
goto fail;
/* read remaining FCP CMD config data from flash */
fcp_prio_addr += (FCP_PRIO_CFG_HDR_SIZE >> 2);
len = ha->fcp_prio_cfg->num_entries * FCP_PRIO_CFG_ENTRY_SIZE;
max_len = FCP_PRIO_CFG_SIZE - FCP_PRIO_CFG_HDR_SIZE;
ha->isp_ops->read_optrom(vha, (uint8_t *)&ha->fcp_prio_cfg->entry[0],
fcp_prio_addr << 2, (len < max_len ? len : max_len));
/* revalidate the entire FCP priority config data, including entries */
if (!qla24xx_fcp_prio_cfg_valid(ha->fcp_prio_cfg, 1))
goto fail;
ha->flags.fcp_prio_enabled = 1;
return QLA_SUCCESS;
fail:
vfree(ha->fcp_prio_cfg);
ha->fcp_prio_cfg = NULL;
return QLA_FUNCTION_FAILED;
}