1
linux/net/key/af_key.c
Jamal Hadi Salim 99c6f60e72 ipsec: pfkey should ignore events when no listeners
When pfkey has no km listeners, it still does a lot of work
before finding out there aint nobody out there.
If a tree falls in a forest and no one is around to hear it, does it make
a sound? In this case it makes a lot of noise:
With this short-circuit adding 10s of thousands of SAs using
netlink improves performance by ~10%.

Signed-off-by: Jamal Hadi Salim <hadi@cyberus.ca>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-06-10 14:25:34 -07:00

3968 lines
103 KiB
C

/*
* net/key/af_key.c An implementation of PF_KEYv2 sockets.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Authors: Maxim Giryaev <gem@asplinux.ru>
* David S. Miller <davem@redhat.com>
* Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
* Kunihiro Ishiguro <kunihiro@ipinfusion.com>
* Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org>
* Derek Atkins <derek@ihtfp.com>
*/
#include <linux/capability.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/socket.h>
#include <linux/pfkeyv2.h>
#include <linux/ipsec.h>
#include <linux/skbuff.h>
#include <linux/rtnetlink.h>
#include <linux/in.h>
#include <linux/in6.h>
#include <linux/proc_fs.h>
#include <linux/init.h>
#include <net/net_namespace.h>
#include <net/xfrm.h>
#include <net/sock.h>
#define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x))
#define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x))
/* List of all pfkey sockets. */
static HLIST_HEAD(pfkey_table);
static DECLARE_WAIT_QUEUE_HEAD(pfkey_table_wait);
static DEFINE_RWLOCK(pfkey_table_lock);
static atomic_t pfkey_table_users = ATOMIC_INIT(0);
static atomic_t pfkey_socks_nr = ATOMIC_INIT(0);
struct pfkey_sock {
/* struct sock must be the first member of struct pfkey_sock */
struct sock sk;
int registered;
int promisc;
struct {
uint8_t msg_version;
uint32_t msg_pid;
int (*dump)(struct pfkey_sock *sk);
void (*done)(struct pfkey_sock *sk);
union {
struct xfrm_policy_walk policy;
struct xfrm_state_walk state;
} u;
} dump;
};
static inline struct pfkey_sock *pfkey_sk(struct sock *sk)
{
return (struct pfkey_sock *)sk;
}
static int pfkey_can_dump(struct sock *sk)
{
if (3 * atomic_read(&sk->sk_rmem_alloc) <= 2 * sk->sk_rcvbuf)
return 1;
return 0;
}
static int pfkey_do_dump(struct pfkey_sock *pfk)
{
int rc;
rc = pfk->dump.dump(pfk);
if (rc == -ENOBUFS)
return 0;
pfk->dump.done(pfk);
pfk->dump.dump = NULL;
pfk->dump.done = NULL;
return rc;
}
static void pfkey_sock_destruct(struct sock *sk)
{
skb_queue_purge(&sk->sk_receive_queue);
if (!sock_flag(sk, SOCK_DEAD)) {
printk("Attempt to release alive pfkey socket: %p\n", sk);
return;
}
BUG_TRAP(!atomic_read(&sk->sk_rmem_alloc));
BUG_TRAP(!atomic_read(&sk->sk_wmem_alloc));
atomic_dec(&pfkey_socks_nr);
}
static void pfkey_table_grab(void)
{
write_lock_bh(&pfkey_table_lock);
if (atomic_read(&pfkey_table_users)) {
DECLARE_WAITQUEUE(wait, current);
add_wait_queue_exclusive(&pfkey_table_wait, &wait);
for(;;) {
set_current_state(TASK_UNINTERRUPTIBLE);
if (atomic_read(&pfkey_table_users) == 0)
break;
write_unlock_bh(&pfkey_table_lock);
schedule();
write_lock_bh(&pfkey_table_lock);
}
__set_current_state(TASK_RUNNING);
remove_wait_queue(&pfkey_table_wait, &wait);
}
}
static __inline__ void pfkey_table_ungrab(void)
{
write_unlock_bh(&pfkey_table_lock);
wake_up(&pfkey_table_wait);
}
static __inline__ void pfkey_lock_table(void)
{
/* read_lock() synchronizes us to pfkey_table_grab */
read_lock(&pfkey_table_lock);
atomic_inc(&pfkey_table_users);
read_unlock(&pfkey_table_lock);
}
static __inline__ void pfkey_unlock_table(void)
{
if (atomic_dec_and_test(&pfkey_table_users))
wake_up(&pfkey_table_wait);
}
static const struct proto_ops pfkey_ops;
static void pfkey_insert(struct sock *sk)
{
pfkey_table_grab();
sk_add_node(sk, &pfkey_table);
pfkey_table_ungrab();
}
static void pfkey_remove(struct sock *sk)
{
pfkey_table_grab();
sk_del_node_init(sk);
pfkey_table_ungrab();
}
static struct proto key_proto = {
.name = "KEY",
.owner = THIS_MODULE,
.obj_size = sizeof(struct pfkey_sock),
};
static int pfkey_create(struct net *net, struct socket *sock, int protocol)
{
struct sock *sk;
int err;
if (net != &init_net)
return -EAFNOSUPPORT;
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (sock->type != SOCK_RAW)
return -ESOCKTNOSUPPORT;
if (protocol != PF_KEY_V2)
return -EPROTONOSUPPORT;
err = -ENOMEM;
sk = sk_alloc(net, PF_KEY, GFP_KERNEL, &key_proto);
if (sk == NULL)
goto out;
sock->ops = &pfkey_ops;
sock_init_data(sock, sk);
sk->sk_family = PF_KEY;
sk->sk_destruct = pfkey_sock_destruct;
atomic_inc(&pfkey_socks_nr);
pfkey_insert(sk);
return 0;
out:
return err;
}
static int pfkey_release(struct socket *sock)
{
struct sock *sk = sock->sk;
if (!sk)
return 0;
pfkey_remove(sk);
sock_orphan(sk);
sock->sk = NULL;
skb_queue_purge(&sk->sk_write_queue);
sock_put(sk);
return 0;
}
static int pfkey_broadcast_one(struct sk_buff *skb, struct sk_buff **skb2,
gfp_t allocation, struct sock *sk)
{
int err = -ENOBUFS;
sock_hold(sk);
if (*skb2 == NULL) {
if (atomic_read(&skb->users) != 1) {
*skb2 = skb_clone(skb, allocation);
} else {
*skb2 = skb;
atomic_inc(&skb->users);
}
}
if (*skb2 != NULL) {
if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
skb_orphan(*skb2);
skb_set_owner_r(*skb2, sk);
skb_queue_tail(&sk->sk_receive_queue, *skb2);
sk->sk_data_ready(sk, (*skb2)->len);
*skb2 = NULL;
err = 0;
}
}
sock_put(sk);
return err;
}
/* Send SKB to all pfkey sockets matching selected criteria. */
#define BROADCAST_ALL 0
#define BROADCAST_ONE 1
#define BROADCAST_REGISTERED 2
#define BROADCAST_PROMISC_ONLY 4
static int pfkey_broadcast(struct sk_buff *skb, gfp_t allocation,
int broadcast_flags, struct sock *one_sk)
{
struct sock *sk;
struct hlist_node *node;
struct sk_buff *skb2 = NULL;
int err = -ESRCH;
/* XXX Do we need something like netlink_overrun? I think
* XXX PF_KEY socket apps will not mind current behavior.
*/
if (!skb)
return -ENOMEM;
pfkey_lock_table();
sk_for_each(sk, node, &pfkey_table) {
struct pfkey_sock *pfk = pfkey_sk(sk);
int err2;
/* Yes, it means that if you are meant to receive this
* pfkey message you receive it twice as promiscuous
* socket.
*/
if (pfk->promisc)
pfkey_broadcast_one(skb, &skb2, allocation, sk);
/* the exact target will be processed later */
if (sk == one_sk)
continue;
if (broadcast_flags != BROADCAST_ALL) {
if (broadcast_flags & BROADCAST_PROMISC_ONLY)
continue;
if ((broadcast_flags & BROADCAST_REGISTERED) &&
!pfk->registered)
continue;
if (broadcast_flags & BROADCAST_ONE)
continue;
}
err2 = pfkey_broadcast_one(skb, &skb2, allocation, sk);
/* Error is cleare after succecful sending to at least one
* registered KM */
if ((broadcast_flags & BROADCAST_REGISTERED) && err)
err = err2;
}
pfkey_unlock_table();
if (one_sk != NULL)
err = pfkey_broadcast_one(skb, &skb2, allocation, one_sk);
if (skb2)
kfree_skb(skb2);
kfree_skb(skb);
return err;
}
static inline void pfkey_hdr_dup(struct sadb_msg *new, struct sadb_msg *orig)
{
*new = *orig;
}
static int pfkey_error(struct sadb_msg *orig, int err, struct sock *sk)
{
struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL);
struct sadb_msg *hdr;
if (!skb)
return -ENOBUFS;
/* Woe be to the platform trying to support PFKEY yet
* having normal errnos outside the 1-255 range, inclusive.
*/
err = -err;
if (err == ERESTARTSYS ||
err == ERESTARTNOHAND ||
err == ERESTARTNOINTR)
err = EINTR;
if (err >= 512)
err = EINVAL;
BUG_ON(err <= 0 || err >= 256);
hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
pfkey_hdr_dup(hdr, orig);
hdr->sadb_msg_errno = (uint8_t) err;
hdr->sadb_msg_len = (sizeof(struct sadb_msg) /
sizeof(uint64_t));
pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk);
return 0;
}
static u8 sadb_ext_min_len[] = {
[SADB_EXT_RESERVED] = (u8) 0,
[SADB_EXT_SA] = (u8) sizeof(struct sadb_sa),
[SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime),
[SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime),
[SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime),
[SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address),
[SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address),
[SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address),
[SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key),
[SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key),
[SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident),
[SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident),
[SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens),
[SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop),
[SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported),
[SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported),
[SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange),
[SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate),
[SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy),
[SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2),
[SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type),
[SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
[SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
[SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address),
[SADB_X_EXT_SEC_CTX] = (u8) sizeof(struct sadb_x_sec_ctx),
};
/* Verify sadb_address_{len,prefixlen} against sa_family. */
static int verify_address_len(void *p)
{
struct sadb_address *sp = p;
struct sockaddr *addr = (struct sockaddr *)(sp + 1);
struct sockaddr_in *sin;
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
struct sockaddr_in6 *sin6;
#endif
int len;
switch (addr->sa_family) {
case AF_INET:
len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin), sizeof(uint64_t));
if (sp->sadb_address_len != len ||
sp->sadb_address_prefixlen > 32)
return -EINVAL;
break;
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
case AF_INET6:
len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin6), sizeof(uint64_t));
if (sp->sadb_address_len != len ||
sp->sadb_address_prefixlen > 128)
return -EINVAL;
break;
#endif
default:
/* It is user using kernel to keep track of security
* associations for another protocol, such as
* OSPF/RSVP/RIPV2/MIP. It is user's job to verify
* lengths.
*
* XXX Actually, association/policy database is not yet
* XXX able to cope with arbitrary sockaddr families.
* XXX When it can, remove this -EINVAL. -DaveM
*/
return -EINVAL;
break;
}
return 0;
}
static inline int pfkey_sec_ctx_len(struct sadb_x_sec_ctx *sec_ctx)
{
return DIV_ROUND_UP(sizeof(struct sadb_x_sec_ctx) +
sec_ctx->sadb_x_ctx_len,
sizeof(uint64_t));
}
static inline int verify_sec_ctx_len(void *p)
{
struct sadb_x_sec_ctx *sec_ctx = (struct sadb_x_sec_ctx *)p;
int len = sec_ctx->sadb_x_ctx_len;
if (len > PAGE_SIZE)
return -EINVAL;
len = pfkey_sec_ctx_len(sec_ctx);
if (sec_ctx->sadb_x_sec_len != len)
return -EINVAL;
return 0;
}
static inline struct xfrm_user_sec_ctx *pfkey_sadb2xfrm_user_sec_ctx(struct sadb_x_sec_ctx *sec_ctx)
{
struct xfrm_user_sec_ctx *uctx = NULL;
int ctx_size = sec_ctx->sadb_x_ctx_len;
uctx = kmalloc((sizeof(*uctx)+ctx_size), GFP_KERNEL);
if (!uctx)
return NULL;
uctx->len = pfkey_sec_ctx_len(sec_ctx);
uctx->exttype = sec_ctx->sadb_x_sec_exttype;
uctx->ctx_doi = sec_ctx->sadb_x_ctx_doi;
uctx->ctx_alg = sec_ctx->sadb_x_ctx_alg;
uctx->ctx_len = sec_ctx->sadb_x_ctx_len;
memcpy(uctx + 1, sec_ctx + 1,
uctx->ctx_len);
return uctx;
}
static int present_and_same_family(struct sadb_address *src,
struct sadb_address *dst)
{
struct sockaddr *s_addr, *d_addr;
if (!src || !dst)
return 0;
s_addr = (struct sockaddr *)(src + 1);
d_addr = (struct sockaddr *)(dst + 1);
if (s_addr->sa_family != d_addr->sa_family)
return 0;
if (s_addr->sa_family != AF_INET
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
&& s_addr->sa_family != AF_INET6
#endif
)
return 0;
return 1;
}
static int parse_exthdrs(struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
{
char *p = (char *) hdr;
int len = skb->len;
len -= sizeof(*hdr);
p += sizeof(*hdr);
while (len > 0) {
struct sadb_ext *ehdr = (struct sadb_ext *) p;
uint16_t ext_type;
int ext_len;
ext_len = ehdr->sadb_ext_len;
ext_len *= sizeof(uint64_t);
ext_type = ehdr->sadb_ext_type;
if (ext_len < sizeof(uint64_t) ||
ext_len > len ||
ext_type == SADB_EXT_RESERVED)
return -EINVAL;
if (ext_type <= SADB_EXT_MAX) {
int min = (int) sadb_ext_min_len[ext_type];
if (ext_len < min)
return -EINVAL;
if (ext_hdrs[ext_type-1] != NULL)
return -EINVAL;
if (ext_type == SADB_EXT_ADDRESS_SRC ||
ext_type == SADB_EXT_ADDRESS_DST ||
ext_type == SADB_EXT_ADDRESS_PROXY ||
ext_type == SADB_X_EXT_NAT_T_OA) {
if (verify_address_len(p))
return -EINVAL;
}
if (ext_type == SADB_X_EXT_SEC_CTX) {
if (verify_sec_ctx_len(p))
return -EINVAL;
}
ext_hdrs[ext_type-1] = p;
}
p += ext_len;
len -= ext_len;
}
return 0;
}
static uint16_t
pfkey_satype2proto(uint8_t satype)
{
switch (satype) {
case SADB_SATYPE_UNSPEC:
return IPSEC_PROTO_ANY;
case SADB_SATYPE_AH:
return IPPROTO_AH;
case SADB_SATYPE_ESP:
return IPPROTO_ESP;
case SADB_X_SATYPE_IPCOMP:
return IPPROTO_COMP;
break;
default:
return 0;
}
/* NOTREACHED */
}
static uint8_t
pfkey_proto2satype(uint16_t proto)
{
switch (proto) {
case IPPROTO_AH:
return SADB_SATYPE_AH;
case IPPROTO_ESP:
return SADB_SATYPE_ESP;
case IPPROTO_COMP:
return SADB_X_SATYPE_IPCOMP;
break;
default:
return 0;
}
/* NOTREACHED */
}
/* BTW, this scheme means that there is no way with PFKEY2 sockets to
* say specifically 'just raw sockets' as we encode them as 255.
*/
static uint8_t pfkey_proto_to_xfrm(uint8_t proto)
{
return (proto == IPSEC_PROTO_ANY ? 0 : proto);
}
static uint8_t pfkey_proto_from_xfrm(uint8_t proto)
{
return (proto ? proto : IPSEC_PROTO_ANY);
}
static int pfkey_sadb_addr2xfrm_addr(struct sadb_address *addr,
xfrm_address_t *xaddr)
{
switch (((struct sockaddr*)(addr + 1))->sa_family) {
case AF_INET:
xaddr->a4 =
((struct sockaddr_in *)(addr + 1))->sin_addr.s_addr;
return AF_INET;
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
case AF_INET6:
memcpy(xaddr->a6,
&((struct sockaddr_in6 *)(addr + 1))->sin6_addr,
sizeof(struct in6_addr));
return AF_INET6;
#endif
default:
return 0;
}
/* NOTREACHED */
}
static struct xfrm_state *pfkey_xfrm_state_lookup(struct sadb_msg *hdr, void **ext_hdrs)
{
struct sadb_sa *sa;
struct sadb_address *addr;
uint16_t proto;
unsigned short family;
xfrm_address_t *xaddr;
sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
if (sa == NULL)
return NULL;
proto = pfkey_satype2proto(hdr->sadb_msg_satype);
if (proto == 0)
return NULL;
/* sadb_address_len should be checked by caller */
addr = (struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1];
if (addr == NULL)
return NULL;
family = ((struct sockaddr *)(addr + 1))->sa_family;
switch (family) {
case AF_INET:
xaddr = (xfrm_address_t *)&((struct sockaddr_in *)(addr + 1))->sin_addr;
break;
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
case AF_INET6:
xaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(addr + 1))->sin6_addr;
break;
#endif
default:
xaddr = NULL;
}
if (!xaddr)
return NULL;
return xfrm_state_lookup(xaddr, sa->sadb_sa_spi, proto, family);
}
#define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1)))
static int
pfkey_sockaddr_size(sa_family_t family)
{
switch (family) {
case AF_INET:
return PFKEY_ALIGN8(sizeof(struct sockaddr_in));
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
case AF_INET6:
return PFKEY_ALIGN8(sizeof(struct sockaddr_in6));
#endif
default:
return 0;
}
/* NOTREACHED */
}
static inline int pfkey_mode_from_xfrm(int mode)
{
switch(mode) {
case XFRM_MODE_TRANSPORT:
return IPSEC_MODE_TRANSPORT;
case XFRM_MODE_TUNNEL:
return IPSEC_MODE_TUNNEL;
case XFRM_MODE_BEET:
return IPSEC_MODE_BEET;
default:
return -1;
}
}
static inline int pfkey_mode_to_xfrm(int mode)
{
switch(mode) {
case IPSEC_MODE_ANY: /*XXX*/
case IPSEC_MODE_TRANSPORT:
return XFRM_MODE_TRANSPORT;
case IPSEC_MODE_TUNNEL:
return XFRM_MODE_TUNNEL;
case IPSEC_MODE_BEET:
return XFRM_MODE_BEET;
default:
return -1;
}
}
static struct sk_buff *__pfkey_xfrm_state2msg(struct xfrm_state *x,
int add_keys, int hsc)
{
struct sk_buff *skb;
struct sadb_msg *hdr;
struct sadb_sa *sa;
struct sadb_lifetime *lifetime;
struct sadb_address *addr;
struct sadb_key *key;
struct sadb_x_sa2 *sa2;
struct sockaddr_in *sin;
struct sadb_x_sec_ctx *sec_ctx;
struct xfrm_sec_ctx *xfrm_ctx;
int ctx_size = 0;
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
struct sockaddr_in6 *sin6;
#endif
int size;
int auth_key_size = 0;
int encrypt_key_size = 0;
int sockaddr_size;
struct xfrm_encap_tmpl *natt = NULL;
int mode;
/* address family check */
sockaddr_size = pfkey_sockaddr_size(x->props.family);
if (!sockaddr_size)
return ERR_PTR(-EINVAL);
/* base, SA, (lifetime (HSC),) address(SD), (address(P),)
key(AE), (identity(SD),) (sensitivity)> */
size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) +
sizeof(struct sadb_lifetime) +
((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) +
((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) +
sizeof(struct sadb_address)*2 +
sockaddr_size*2 +
sizeof(struct sadb_x_sa2);
if ((xfrm_ctx = x->security)) {
ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
}
/* identity & sensitivity */
if ((x->props.family == AF_INET &&
x->sel.saddr.a4 != x->props.saddr.a4)
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
|| (x->props.family == AF_INET6 &&
memcmp (x->sel.saddr.a6, x->props.saddr.a6, sizeof (struct in6_addr)))
#endif
)
size += sizeof(struct sadb_address) + sockaddr_size;
if (add_keys) {
if (x->aalg && x->aalg->alg_key_len) {
auth_key_size =
PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8);
size += sizeof(struct sadb_key) + auth_key_size;
}
if (x->ealg && x->ealg->alg_key_len) {
encrypt_key_size =
PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8);
size += sizeof(struct sadb_key) + encrypt_key_size;
}
}
if (x->encap)
natt = x->encap;
if (natt && natt->encap_type) {
size += sizeof(struct sadb_x_nat_t_type);
size += sizeof(struct sadb_x_nat_t_port);
size += sizeof(struct sadb_x_nat_t_port);
}
skb = alloc_skb(size + 16, GFP_ATOMIC);
if (skb == NULL)
return ERR_PTR(-ENOBUFS);
/* call should fill header later */
hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
memset(hdr, 0, size); /* XXX do we need this ? */
hdr->sadb_msg_len = size / sizeof(uint64_t);
/* sa */
sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
sa->sadb_sa_exttype = SADB_EXT_SA;
sa->sadb_sa_spi = x->id.spi;
sa->sadb_sa_replay = x->props.replay_window;
switch (x->km.state) {
case XFRM_STATE_VALID:
sa->sadb_sa_state = x->km.dying ?
SADB_SASTATE_DYING : SADB_SASTATE_MATURE;
break;
case XFRM_STATE_ACQ:
sa->sadb_sa_state = SADB_SASTATE_LARVAL;
break;
default:
sa->sadb_sa_state = SADB_SASTATE_DEAD;
break;
}
sa->sadb_sa_auth = 0;
if (x->aalg) {
struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
sa->sadb_sa_auth = a ? a->desc.sadb_alg_id : 0;
}
sa->sadb_sa_encrypt = 0;
BUG_ON(x->ealg && x->calg);
if (x->ealg) {
struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0);
sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
}
/* KAME compatible: sadb_sa_encrypt is overloaded with calg id */
if (x->calg) {
struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0);
sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
}
sa->sadb_sa_flags = 0;
if (x->props.flags & XFRM_STATE_NOECN)
sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN;
if (x->props.flags & XFRM_STATE_DECAP_DSCP)
sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP;
if (x->props.flags & XFRM_STATE_NOPMTUDISC)
sa->sadb_sa_flags |= SADB_SAFLAGS_NOPMTUDISC;
/* hard time */
if (hsc & 2) {
lifetime = (struct sadb_lifetime *) skb_put(skb,
sizeof(struct sadb_lifetime));
lifetime->sadb_lifetime_len =
sizeof(struct sadb_lifetime)/sizeof(uint64_t);
lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit);
lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit);
lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds;
lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds;
}
/* soft time */
if (hsc & 1) {
lifetime = (struct sadb_lifetime *) skb_put(skb,
sizeof(struct sadb_lifetime));
lifetime->sadb_lifetime_len =
sizeof(struct sadb_lifetime)/sizeof(uint64_t);
lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit);
lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit);
lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds;
lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds;
}
/* current time */
lifetime = (struct sadb_lifetime *) skb_put(skb,
sizeof(struct sadb_lifetime));
lifetime->sadb_lifetime_len =
sizeof(struct sadb_lifetime)/sizeof(uint64_t);
lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
lifetime->sadb_lifetime_allocations = x->curlft.packets;
lifetime->sadb_lifetime_bytes = x->curlft.bytes;
lifetime->sadb_lifetime_addtime = x->curlft.add_time;
lifetime->sadb_lifetime_usetime = x->curlft.use_time;
/* src address */
addr = (struct sadb_address*) skb_put(skb,
sizeof(struct sadb_address)+sockaddr_size);
addr->sadb_address_len =
(sizeof(struct sadb_address)+sockaddr_size)/
sizeof(uint64_t);
addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
/* "if the ports are non-zero, then the sadb_address_proto field,
normally zero, MUST be filled in with the transport
protocol's number." - RFC2367 */
addr->sadb_address_proto = 0;
addr->sadb_address_reserved = 0;
if (x->props.family == AF_INET) {
addr->sadb_address_prefixlen = 32;
sin = (struct sockaddr_in *) (addr + 1);
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = x->props.saddr.a4;
sin->sin_port = 0;
memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
}
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
else if (x->props.family == AF_INET6) {
addr->sadb_address_prefixlen = 128;
sin6 = (struct sockaddr_in6 *) (addr + 1);
sin6->sin6_family = AF_INET6;
sin6->sin6_port = 0;
sin6->sin6_flowinfo = 0;
memcpy(&sin6->sin6_addr, x->props.saddr.a6,
sizeof(struct in6_addr));
sin6->sin6_scope_id = 0;
}
#endif
else
BUG();
/* dst address */
addr = (struct sadb_address*) skb_put(skb,
sizeof(struct sadb_address)+sockaddr_size);
addr->sadb_address_len =
(sizeof(struct sadb_address)+sockaddr_size)/
sizeof(uint64_t);
addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
addr->sadb_address_proto = 0;
addr->sadb_address_prefixlen = 32; /* XXX */
addr->sadb_address_reserved = 0;
if (x->props.family == AF_INET) {
sin = (struct sockaddr_in *) (addr + 1);
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = x->id.daddr.a4;
sin->sin_port = 0;
memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
if (x->sel.saddr.a4 != x->props.saddr.a4) {
addr = (struct sadb_address*) skb_put(skb,
sizeof(struct sadb_address)+sockaddr_size);
addr->sadb_address_len =
(sizeof(struct sadb_address)+sockaddr_size)/
sizeof(uint64_t);
addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
addr->sadb_address_proto =
pfkey_proto_from_xfrm(x->sel.proto);
addr->sadb_address_prefixlen = x->sel.prefixlen_s;
addr->sadb_address_reserved = 0;
sin = (struct sockaddr_in *) (addr + 1);
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = x->sel.saddr.a4;
sin->sin_port = x->sel.sport;
memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
}
}
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
else if (x->props.family == AF_INET6) {
addr->sadb_address_prefixlen = 128;
sin6 = (struct sockaddr_in6 *) (addr + 1);
sin6->sin6_family = AF_INET6;
sin6->sin6_port = 0;
sin6->sin6_flowinfo = 0;
memcpy(&sin6->sin6_addr, x->id.daddr.a6, sizeof(struct in6_addr));
sin6->sin6_scope_id = 0;
if (memcmp (x->sel.saddr.a6, x->props.saddr.a6,
sizeof(struct in6_addr))) {
addr = (struct sadb_address *) skb_put(skb,
sizeof(struct sadb_address)+sockaddr_size);
addr->sadb_address_len =
(sizeof(struct sadb_address)+sockaddr_size)/
sizeof(uint64_t);
addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
addr->sadb_address_proto =
pfkey_proto_from_xfrm(x->sel.proto);
addr->sadb_address_prefixlen = x->sel.prefixlen_s;
addr->sadb_address_reserved = 0;
sin6 = (struct sockaddr_in6 *) (addr + 1);
sin6->sin6_family = AF_INET6;
sin6->sin6_port = x->sel.sport;
sin6->sin6_flowinfo = 0;
memcpy(&sin6->sin6_addr, x->sel.saddr.a6,
sizeof(struct in6_addr));
sin6->sin6_scope_id = 0;
}
}
#endif
else
BUG();
/* auth key */
if (add_keys && auth_key_size) {
key = (struct sadb_key *) skb_put(skb,
sizeof(struct sadb_key)+auth_key_size);
key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) /
sizeof(uint64_t);
key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
key->sadb_key_bits = x->aalg->alg_key_len;
key->sadb_key_reserved = 0;
memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8);
}
/* encrypt key */
if (add_keys && encrypt_key_size) {
key = (struct sadb_key *) skb_put(skb,
sizeof(struct sadb_key)+encrypt_key_size);
key->sadb_key_len = (sizeof(struct sadb_key) +
encrypt_key_size) / sizeof(uint64_t);
key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
key->sadb_key_bits = x->ealg->alg_key_len;
key->sadb_key_reserved = 0;
memcpy(key + 1, x->ealg->alg_key,
(x->ealg->alg_key_len+7)/8);
}
/* sa */
sa2 = (struct sadb_x_sa2 *) skb_put(skb, sizeof(struct sadb_x_sa2));
sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t);
sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
if ((mode = pfkey_mode_from_xfrm(x->props.mode)) < 0) {
kfree_skb(skb);
return ERR_PTR(-EINVAL);
}
sa2->sadb_x_sa2_mode = mode;
sa2->sadb_x_sa2_reserved1 = 0;
sa2->sadb_x_sa2_reserved2 = 0;
sa2->sadb_x_sa2_sequence = 0;
sa2->sadb_x_sa2_reqid = x->props.reqid;
if (natt && natt->encap_type) {
struct sadb_x_nat_t_type *n_type;
struct sadb_x_nat_t_port *n_port;
/* type */
n_type = (struct sadb_x_nat_t_type*) skb_put(skb, sizeof(*n_type));
n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t);
n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
n_type->sadb_x_nat_t_type_type = natt->encap_type;
n_type->sadb_x_nat_t_type_reserved[0] = 0;
n_type->sadb_x_nat_t_type_reserved[1] = 0;
n_type->sadb_x_nat_t_type_reserved[2] = 0;
/* source port */
n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
n_port->sadb_x_nat_t_port_port = natt->encap_sport;
n_port->sadb_x_nat_t_port_reserved = 0;
/* dest port */
n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
n_port->sadb_x_nat_t_port_port = natt->encap_dport;
n_port->sadb_x_nat_t_port_reserved = 0;
}
/* security context */
if (xfrm_ctx) {
sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
sizeof(struct sadb_x_sec_ctx) + ctx_size);
sec_ctx->sadb_x_sec_len =
(sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
xfrm_ctx->ctx_len);
}
return skb;
}
static inline struct sk_buff *pfkey_xfrm_state2msg(struct xfrm_state *x)
{
struct sk_buff *skb;
skb = __pfkey_xfrm_state2msg(x, 1, 3);
return skb;
}
static inline struct sk_buff *pfkey_xfrm_state2msg_expire(struct xfrm_state *x,
int hsc)
{
return __pfkey_xfrm_state2msg(x, 0, hsc);
}
static struct xfrm_state * pfkey_msg2xfrm_state(struct sadb_msg *hdr,
void **ext_hdrs)
{
struct xfrm_state *x;
struct sadb_lifetime *lifetime;
struct sadb_sa *sa;
struct sadb_key *key;
struct sadb_x_sec_ctx *sec_ctx;
uint16_t proto;
int err;
sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
if (!sa ||
!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
return ERR_PTR(-EINVAL);
if (hdr->sadb_msg_satype == SADB_SATYPE_ESP &&
!ext_hdrs[SADB_EXT_KEY_ENCRYPT-1])
return ERR_PTR(-EINVAL);
if (hdr->sadb_msg_satype == SADB_SATYPE_AH &&
!ext_hdrs[SADB_EXT_KEY_AUTH-1])
return ERR_PTR(-EINVAL);
if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] !=
!!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1])
return ERR_PTR(-EINVAL);
proto = pfkey_satype2proto(hdr->sadb_msg_satype);
if (proto == 0)
return ERR_PTR(-EINVAL);
/* default error is no buffer space */
err = -ENOBUFS;
/* RFC2367:
Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message.
SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not
sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state.
Therefore, the sadb_sa_state field of all submitted SAs MUST be
SADB_SASTATE_MATURE and the kernel MUST return an error if this is
not true.
However, KAME setkey always uses SADB_SASTATE_LARVAL.
Hence, we have to _ignore_ sadb_sa_state, which is also reasonable.
*/
if (sa->sadb_sa_auth > SADB_AALG_MAX ||
(hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP &&
sa->sadb_sa_encrypt > SADB_X_CALG_MAX) ||
sa->sadb_sa_encrypt > SADB_EALG_MAX)
return ERR_PTR(-EINVAL);
key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
if (key != NULL &&
sa->sadb_sa_auth != SADB_X_AALG_NULL &&
((key->sadb_key_bits+7) / 8 == 0 ||
(key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
return ERR_PTR(-EINVAL);
key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
if (key != NULL &&
sa->sadb_sa_encrypt != SADB_EALG_NULL &&
((key->sadb_key_bits+7) / 8 == 0 ||
(key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
return ERR_PTR(-EINVAL);
x = xfrm_state_alloc();
if (x == NULL)
return ERR_PTR(-ENOBUFS);
x->id.proto = proto;
x->id.spi = sa->sadb_sa_spi;
x->props.replay_window = sa->sadb_sa_replay;
if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN)
x->props.flags |= XFRM_STATE_NOECN;
if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP)
x->props.flags |= XFRM_STATE_DECAP_DSCP;
if (sa->sadb_sa_flags & SADB_SAFLAGS_NOPMTUDISC)
x->props.flags |= XFRM_STATE_NOPMTUDISC;
lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_HARD-1];
if (lifetime != NULL) {
x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
}
lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_SOFT-1];
if (lifetime != NULL) {
x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
}
sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
if (sec_ctx != NULL) {
struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
if (!uctx)
goto out;
err = security_xfrm_state_alloc(x, uctx);
kfree(uctx);
if (err)
goto out;
}
key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
if (sa->sadb_sa_auth) {
int keysize = 0;
struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth);
if (!a) {
err = -ENOSYS;
goto out;
}
if (key)
keysize = (key->sadb_key_bits + 7) / 8;
x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL);
if (!x->aalg)
goto out;
strcpy(x->aalg->alg_name, a->name);
x->aalg->alg_key_len = 0;
if (key) {
x->aalg->alg_key_len = key->sadb_key_bits;
memcpy(x->aalg->alg_key, key+1, keysize);
}
x->props.aalgo = sa->sadb_sa_auth;
/* x->algo.flags = sa->sadb_sa_flags; */
}
if (sa->sadb_sa_encrypt) {
if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) {
struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt);
if (!a) {
err = -ENOSYS;
goto out;
}
x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL);
if (!x->calg)
goto out;
strcpy(x->calg->alg_name, a->name);
x->props.calgo = sa->sadb_sa_encrypt;
} else {
int keysize = 0;
struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt);
if (!a) {
err = -ENOSYS;
goto out;
}
key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
if (key)
keysize = (key->sadb_key_bits + 7) / 8;
x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL);
if (!x->ealg)
goto out;
strcpy(x->ealg->alg_name, a->name);
x->ealg->alg_key_len = 0;
if (key) {
x->ealg->alg_key_len = key->sadb_key_bits;
memcpy(x->ealg->alg_key, key+1, keysize);
}
x->props.ealgo = sa->sadb_sa_encrypt;
}
}
/* x->algo.flags = sa->sadb_sa_flags; */
x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
&x->props.saddr);
if (!x->props.family) {
err = -EAFNOSUPPORT;
goto out;
}
pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1],
&x->id.daddr);
if (ext_hdrs[SADB_X_EXT_SA2-1]) {
struct sadb_x_sa2 *sa2 = (void*)ext_hdrs[SADB_X_EXT_SA2-1];
int mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
if (mode < 0) {
err = -EINVAL;
goto out;
}
x->props.mode = mode;
x->props.reqid = sa2->sadb_x_sa2_reqid;
}
if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) {
struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1];
/* Nobody uses this, but we try. */
x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr);
x->sel.prefixlen_s = addr->sadb_address_prefixlen;
}
if (!x->sel.family)
x->sel.family = x->props.family;
if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) {
struct sadb_x_nat_t_type* n_type;
struct xfrm_encap_tmpl *natt;
x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL);
if (!x->encap)
goto out;
natt = x->encap;
n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1];
natt->encap_type = n_type->sadb_x_nat_t_type_type;
if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) {
struct sadb_x_nat_t_port* n_port =
ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1];
natt->encap_sport = n_port->sadb_x_nat_t_port_port;
}
if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) {
struct sadb_x_nat_t_port* n_port =
ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1];
natt->encap_dport = n_port->sadb_x_nat_t_port_port;
}
}
err = xfrm_init_state(x);
if (err)
goto out;
x->km.seq = hdr->sadb_msg_seq;
return x;
out:
x->km.state = XFRM_STATE_DEAD;
xfrm_state_put(x);
return ERR_PTR(err);
}
static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
{
return -EOPNOTSUPP;
}
static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
{
struct sk_buff *resp_skb;
struct sadb_x_sa2 *sa2;
struct sadb_address *saddr, *daddr;
struct sadb_msg *out_hdr;
struct sadb_spirange *range;
struct xfrm_state *x = NULL;
int mode;
int err;
u32 min_spi, max_spi;
u32 reqid;
u8 proto;
unsigned short family;
xfrm_address_t *xsaddr = NULL, *xdaddr = NULL;
if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
return -EINVAL;
proto = pfkey_satype2proto(hdr->sadb_msg_satype);
if (proto == 0)
return -EINVAL;
if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) {
mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
if (mode < 0)
return -EINVAL;
reqid = sa2->sadb_x_sa2_reqid;
} else {
mode = 0;
reqid = 0;
}
saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
family = ((struct sockaddr *)(saddr + 1))->sa_family;
switch (family) {
case AF_INET:
xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr;
xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr;
break;
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
case AF_INET6:
xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr;
xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr;
break;
#endif
}
if (hdr->sadb_msg_seq) {
x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
if (x && xfrm_addr_cmp(&x->id.daddr, xdaddr, family)) {
xfrm_state_put(x);
x = NULL;
}
}
if (!x)
x = xfrm_find_acq(mode, reqid, proto, xdaddr, xsaddr, 1, family);
if (x == NULL)
return -ENOENT;
min_spi = 0x100;
max_spi = 0x0fffffff;
range = ext_hdrs[SADB_EXT_SPIRANGE-1];
if (range) {
min_spi = range->sadb_spirange_min;
max_spi = range->sadb_spirange_max;
}
err = xfrm_alloc_spi(x, min_spi, max_spi);
resp_skb = err ? ERR_PTR(err) : pfkey_xfrm_state2msg(x);
if (IS_ERR(resp_skb)) {
xfrm_state_put(x);
return PTR_ERR(resp_skb);
}
out_hdr = (struct sadb_msg *) resp_skb->data;
out_hdr->sadb_msg_version = hdr->sadb_msg_version;
out_hdr->sadb_msg_type = SADB_GETSPI;
out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
out_hdr->sadb_msg_errno = 0;
out_hdr->sadb_msg_reserved = 0;
out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
xfrm_state_put(x);
pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk);
return 0;
}
static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
{
struct xfrm_state *x;
if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8)
return -EOPNOTSUPP;
if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0)
return 0;
x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
if (x == NULL)
return 0;
spin_lock_bh(&x->lock);
if (x->km.state == XFRM_STATE_ACQ) {
x->km.state = XFRM_STATE_ERROR;
wake_up(&km_waitq);
}
spin_unlock_bh(&x->lock);
xfrm_state_put(x);
return 0;
}
static inline int event2poltype(int event)
{
switch (event) {
case XFRM_MSG_DELPOLICY:
return SADB_X_SPDDELETE;
case XFRM_MSG_NEWPOLICY:
return SADB_X_SPDADD;
case XFRM_MSG_UPDPOLICY:
return SADB_X_SPDUPDATE;
case XFRM_MSG_POLEXPIRE:
// return SADB_X_SPDEXPIRE;
default:
printk("pfkey: Unknown policy event %d\n", event);
break;
}
return 0;
}
static inline int event2keytype(int event)
{
switch (event) {
case XFRM_MSG_DELSA:
return SADB_DELETE;
case XFRM_MSG_NEWSA:
return SADB_ADD;
case XFRM_MSG_UPDSA:
return SADB_UPDATE;
case XFRM_MSG_EXPIRE:
return SADB_EXPIRE;
default:
printk("pfkey: Unknown SA event %d\n", event);
break;
}
return 0;
}
/* ADD/UPD/DEL */
static int key_notify_sa(struct xfrm_state *x, struct km_event *c)
{
struct sk_buff *skb;
struct sadb_msg *hdr;
skb = pfkey_xfrm_state2msg(x);
if (IS_ERR(skb))
return PTR_ERR(skb);
hdr = (struct sadb_msg *) skb->data;
hdr->sadb_msg_version = PF_KEY_V2;
hdr->sadb_msg_type = event2keytype(c->event);
hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
hdr->sadb_msg_errno = 0;
hdr->sadb_msg_reserved = 0;
hdr->sadb_msg_seq = c->seq;
hdr->sadb_msg_pid = c->pid;
pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
return 0;
}
static int pfkey_add(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
{
struct xfrm_state *x;
int err;
struct km_event c;
x = pfkey_msg2xfrm_state(hdr, ext_hdrs);
if (IS_ERR(x))
return PTR_ERR(x);
xfrm_state_hold(x);
if (hdr->sadb_msg_type == SADB_ADD)
err = xfrm_state_add(x);
else
err = xfrm_state_update(x);
xfrm_audit_state_add(x, err ? 0 : 1,
audit_get_loginuid(current),
audit_get_sessionid(current), 0);
if (err < 0) {
x->km.state = XFRM_STATE_DEAD;
__xfrm_state_put(x);
goto out;
}
if (hdr->sadb_msg_type == SADB_ADD)
c.event = XFRM_MSG_NEWSA;
else
c.event = XFRM_MSG_UPDSA;
c.seq = hdr->sadb_msg_seq;
c.pid = hdr->sadb_msg_pid;
km_state_notify(x, &c);
out:
xfrm_state_put(x);
return err;
}
static int pfkey_delete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
{
struct xfrm_state *x;
struct km_event c;
int err;
if (!ext_hdrs[SADB_EXT_SA-1] ||
!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
return -EINVAL;
x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
if (x == NULL)
return -ESRCH;
if ((err = security_xfrm_state_delete(x)))
goto out;
if (xfrm_state_kern(x)) {
err = -EPERM;
goto out;
}
err = xfrm_state_delete(x);
if (err < 0)
goto out;
c.seq = hdr->sadb_msg_seq;
c.pid = hdr->sadb_msg_pid;
c.event = XFRM_MSG_DELSA;
km_state_notify(x, &c);
out:
xfrm_audit_state_delete(x, err ? 0 : 1,
audit_get_loginuid(current),
audit_get_sessionid(current), 0);
xfrm_state_put(x);
return err;
}
static int pfkey_get(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
{
__u8 proto;
struct sk_buff *out_skb;
struct sadb_msg *out_hdr;
struct xfrm_state *x;
if (!ext_hdrs[SADB_EXT_SA-1] ||
!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
return -EINVAL;
x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
if (x == NULL)
return -ESRCH;
out_skb = pfkey_xfrm_state2msg(x);
proto = x->id.proto;
xfrm_state_put(x);
if (IS_ERR(out_skb))
return PTR_ERR(out_skb);
out_hdr = (struct sadb_msg *) out_skb->data;
out_hdr->sadb_msg_version = hdr->sadb_msg_version;
out_hdr->sadb_msg_type = SADB_GET;
out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
out_hdr->sadb_msg_errno = 0;
out_hdr->sadb_msg_reserved = 0;
out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
return 0;
}
static struct sk_buff *compose_sadb_supported(struct sadb_msg *orig,
gfp_t allocation)
{
struct sk_buff *skb;
struct sadb_msg *hdr;
int len, auth_len, enc_len, i;
auth_len = xfrm_count_auth_supported();
if (auth_len) {
auth_len *= sizeof(struct sadb_alg);
auth_len += sizeof(struct sadb_supported);
}
enc_len = xfrm_count_enc_supported();
if (enc_len) {
enc_len *= sizeof(struct sadb_alg);
enc_len += sizeof(struct sadb_supported);
}
len = enc_len + auth_len + sizeof(struct sadb_msg);
skb = alloc_skb(len + 16, allocation);
if (!skb)
goto out_put_algs;
hdr = (struct sadb_msg *) skb_put(skb, sizeof(*hdr));
pfkey_hdr_dup(hdr, orig);
hdr->sadb_msg_errno = 0;
hdr->sadb_msg_len = len / sizeof(uint64_t);
if (auth_len) {
struct sadb_supported *sp;
struct sadb_alg *ap;
sp = (struct sadb_supported *) skb_put(skb, auth_len);
ap = (struct sadb_alg *) (sp + 1);
sp->sadb_supported_len = auth_len / sizeof(uint64_t);
sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
for (i = 0; ; i++) {
struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
if (!aalg)
break;
if (aalg->available)
*ap++ = aalg->desc;
}
}
if (enc_len) {
struct sadb_supported *sp;
struct sadb_alg *ap;
sp = (struct sadb_supported *) skb_put(skb, enc_len);
ap = (struct sadb_alg *) (sp + 1);
sp->sadb_supported_len = enc_len / sizeof(uint64_t);
sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
for (i = 0; ; i++) {
struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
if (!ealg)
break;
if (ealg->available)
*ap++ = ealg->desc;
}
}
out_put_algs:
return skb;
}
static int pfkey_register(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
{
struct pfkey_sock *pfk = pfkey_sk(sk);
struct sk_buff *supp_skb;
if (hdr->sadb_msg_satype > SADB_SATYPE_MAX)
return -EINVAL;
if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) {
if (pfk->registered&(1<<hdr->sadb_msg_satype))
return -EEXIST;
pfk->registered |= (1<<hdr->sadb_msg_satype);
}
xfrm_probe_algs();
supp_skb = compose_sadb_supported(hdr, GFP_KERNEL);
if (!supp_skb) {
if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC)
pfk->registered &= ~(1<<hdr->sadb_msg_satype);
return -ENOBUFS;
}
pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk);
return 0;
}
static int key_notify_sa_flush(struct km_event *c)
{
struct sk_buff *skb;
struct sadb_msg *hdr;
skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
if (!skb)
return -ENOBUFS;
hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto);
hdr->sadb_msg_type = SADB_FLUSH;
hdr->sadb_msg_seq = c->seq;
hdr->sadb_msg_pid = c->pid;
hdr->sadb_msg_version = PF_KEY_V2;
hdr->sadb_msg_errno = (uint8_t) 0;
hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
return 0;
}
static int pfkey_flush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
{
unsigned proto;
struct km_event c;
struct xfrm_audit audit_info;
int err;
proto = pfkey_satype2proto(hdr->sadb_msg_satype);
if (proto == 0)
return -EINVAL;
audit_info.loginuid = audit_get_loginuid(current);
audit_info.sessionid = audit_get_sessionid(current);
audit_info.secid = 0;
err = xfrm_state_flush(proto, &audit_info);
if (err)
return err;
c.data.proto = proto;
c.seq = hdr->sadb_msg_seq;
c.pid = hdr->sadb_msg_pid;
c.event = XFRM_MSG_FLUSHSA;
km_state_notify(NULL, &c);
return 0;
}
static int dump_sa(struct xfrm_state *x, int count, void *ptr)
{
struct pfkey_sock *pfk = ptr;
struct sk_buff *out_skb;
struct sadb_msg *out_hdr;
if (!pfkey_can_dump(&pfk->sk))
return -ENOBUFS;
out_skb = pfkey_xfrm_state2msg(x);
if (IS_ERR(out_skb))
return PTR_ERR(out_skb);
out_hdr = (struct sadb_msg *) out_skb->data;
out_hdr->sadb_msg_version = pfk->dump.msg_version;
out_hdr->sadb_msg_type = SADB_DUMP;
out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
out_hdr->sadb_msg_errno = 0;
out_hdr->sadb_msg_reserved = 0;
out_hdr->sadb_msg_seq = count;
out_hdr->sadb_msg_pid = pfk->dump.msg_pid;
pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, &pfk->sk);
return 0;
}
static int pfkey_dump_sa(struct pfkey_sock *pfk)
{
return xfrm_state_walk(&pfk->dump.u.state, dump_sa, (void *) pfk);
}
static void pfkey_dump_sa_done(struct pfkey_sock *pfk)
{
xfrm_state_walk_done(&pfk->dump.u.state);
}
static int pfkey_dump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
{
u8 proto;
struct pfkey_sock *pfk = pfkey_sk(sk);
if (pfk->dump.dump != NULL)
return -EBUSY;
proto = pfkey_satype2proto(hdr->sadb_msg_satype);
if (proto == 0)
return -EINVAL;
pfk->dump.msg_version = hdr->sadb_msg_version;
pfk->dump.msg_pid = hdr->sadb_msg_pid;
pfk->dump.dump = pfkey_dump_sa;
pfk->dump.done = pfkey_dump_sa_done;
xfrm_state_walk_init(&pfk->dump.u.state, proto);
return pfkey_do_dump(pfk);
}
static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
{
struct pfkey_sock *pfk = pfkey_sk(sk);
int satype = hdr->sadb_msg_satype;
if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) {
/* XXX we mangle packet... */
hdr->sadb_msg_errno = 0;
if (satype != 0 && satype != 1)
return -EINVAL;
pfk->promisc = satype;
}
pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL, BROADCAST_ALL, NULL);
return 0;
}
static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr)
{
int i;
u32 reqid = *(u32*)ptr;
for (i=0; i<xp->xfrm_nr; i++) {
if (xp->xfrm_vec[i].reqid == reqid)
return -EEXIST;
}
return 0;
}
static u32 gen_reqid(void)
{
struct xfrm_policy_walk walk;
u32 start;
int rc;
static u32 reqid = IPSEC_MANUAL_REQID_MAX;
start = reqid;
do {
++reqid;
if (reqid == 0)
reqid = IPSEC_MANUAL_REQID_MAX+1;
xfrm_policy_walk_init(&walk, XFRM_POLICY_TYPE_MAIN);
rc = xfrm_policy_walk(&walk, check_reqid, (void*)&reqid);
xfrm_policy_walk_done(&walk);
if (rc != -EEXIST)
return reqid;
} while (reqid != start);
return 0;
}
static int
parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_ipsecrequest *rq)
{
struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr;
struct sockaddr_in *sin;
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
struct sockaddr_in6 *sin6;
#endif
int mode;
if (xp->xfrm_nr >= XFRM_MAX_DEPTH)
return -ELOOP;
if (rq->sadb_x_ipsecrequest_mode == 0)
return -EINVAL;
t->id.proto = rq->sadb_x_ipsecrequest_proto; /* XXX check proto */
if ((mode = pfkey_mode_to_xfrm(rq->sadb_x_ipsecrequest_mode)) < 0)
return -EINVAL;
t->mode = mode;
if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE)
t->optional = 1;
else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) {
t->reqid = rq->sadb_x_ipsecrequest_reqid;
if (t->reqid > IPSEC_MANUAL_REQID_MAX)
t->reqid = 0;
if (!t->reqid && !(t->reqid = gen_reqid()))
return -ENOBUFS;
}
/* addresses present only in tunnel mode */
if (t->mode == XFRM_MODE_TUNNEL) {
struct sockaddr *sa;
sa = (struct sockaddr *)(rq+1);
switch(sa->sa_family) {
case AF_INET:
sin = (struct sockaddr_in*)sa;
t->saddr.a4 = sin->sin_addr.s_addr;
sin++;
if (sin->sin_family != AF_INET)
return -EINVAL;
t->id.daddr.a4 = sin->sin_addr.s_addr;
break;
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
case AF_INET6:
sin6 = (struct sockaddr_in6*)sa;
memcpy(t->saddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr));
sin6++;
if (sin6->sin6_family != AF_INET6)
return -EINVAL;
memcpy(t->id.daddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr));
break;
#endif
default:
return -EINVAL;
}
t->encap_family = sa->sa_family;
} else
t->encap_family = xp->family;
/* No way to set this via kame pfkey */
t->allalgs = 1;
xp->xfrm_nr++;
return 0;
}
static int
parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol)
{
int err;
int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy);
struct sadb_x_ipsecrequest *rq = (void*)(pol+1);
while (len >= sizeof(struct sadb_x_ipsecrequest)) {
if ((err = parse_ipsecrequest(xp, rq)) < 0)
return err;
len -= rq->sadb_x_ipsecrequest_len;
rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len);
}
return 0;
}
static inline int pfkey_xfrm_policy2sec_ctx_size(struct xfrm_policy *xp)
{
struct xfrm_sec_ctx *xfrm_ctx = xp->security;
if (xfrm_ctx) {
int len = sizeof(struct sadb_x_sec_ctx);
len += xfrm_ctx->ctx_len;
return PFKEY_ALIGN8(len);
}
return 0;
}
static int pfkey_xfrm_policy2msg_size(struct xfrm_policy *xp)
{
struct xfrm_tmpl *t;
int sockaddr_size = pfkey_sockaddr_size(xp->family);
int socklen = 0;
int i;
for (i=0; i<xp->xfrm_nr; i++) {
t = xp->xfrm_vec + i;
socklen += (t->encap_family == AF_INET ?
sizeof(struct sockaddr_in) :
sizeof(struct sockaddr_in6));
}
return sizeof(struct sadb_msg) +
(sizeof(struct sadb_lifetime) * 3) +
(sizeof(struct sadb_address) * 2) +
(sockaddr_size * 2) +
sizeof(struct sadb_x_policy) +
(xp->xfrm_nr * sizeof(struct sadb_x_ipsecrequest)) +
(socklen * 2) +
pfkey_xfrm_policy2sec_ctx_size(xp);
}
static struct sk_buff * pfkey_xfrm_policy2msg_prep(struct xfrm_policy *xp)
{
struct sk_buff *skb;
int size;
size = pfkey_xfrm_policy2msg_size(xp);
skb = alloc_skb(size + 16, GFP_ATOMIC);
if (skb == NULL)
return ERR_PTR(-ENOBUFS);
return skb;
}
static int pfkey_xfrm_policy2msg(struct sk_buff *skb, struct xfrm_policy *xp, int dir)
{
struct sadb_msg *hdr;
struct sadb_address *addr;
struct sadb_lifetime *lifetime;
struct sadb_x_policy *pol;
struct sockaddr_in *sin;
struct sadb_x_sec_ctx *sec_ctx;
struct xfrm_sec_ctx *xfrm_ctx;
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
struct sockaddr_in6 *sin6;
#endif
int i;
int size;
int sockaddr_size = pfkey_sockaddr_size(xp->family);
int socklen = (xp->family == AF_INET ?
sizeof(struct sockaddr_in) :
sizeof(struct sockaddr_in6));
size = pfkey_xfrm_policy2msg_size(xp);
/* call should fill header later */
hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
memset(hdr, 0, size); /* XXX do we need this ? */
/* src address */
addr = (struct sadb_address*) skb_put(skb,
sizeof(struct sadb_address)+sockaddr_size);
addr->sadb_address_len =
(sizeof(struct sadb_address)+sockaddr_size)/
sizeof(uint64_t);
addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
addr->sadb_address_prefixlen = xp->selector.prefixlen_s;
addr->sadb_address_reserved = 0;
/* src address */
if (xp->family == AF_INET) {
sin = (struct sockaddr_in *) (addr + 1);
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = xp->selector.saddr.a4;
sin->sin_port = xp->selector.sport;
memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
}
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
else if (xp->family == AF_INET6) {
sin6 = (struct sockaddr_in6 *) (addr + 1);
sin6->sin6_family = AF_INET6;
sin6->sin6_port = xp->selector.sport;
sin6->sin6_flowinfo = 0;
memcpy(&sin6->sin6_addr, xp->selector.saddr.a6,
sizeof(struct in6_addr));
sin6->sin6_scope_id = 0;
}
#endif
else
BUG();
/* dst address */
addr = (struct sadb_address*) skb_put(skb,
sizeof(struct sadb_address)+sockaddr_size);
addr->sadb_address_len =
(sizeof(struct sadb_address)+sockaddr_size)/
sizeof(uint64_t);
addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
addr->sadb_address_prefixlen = xp->selector.prefixlen_d;
addr->sadb_address_reserved = 0;
if (xp->family == AF_INET) {
sin = (struct sockaddr_in *) (addr + 1);
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = xp->selector.daddr.a4;
sin->sin_port = xp->selector.dport;
memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
}
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
else if (xp->family == AF_INET6) {
sin6 = (struct sockaddr_in6 *) (addr + 1);
sin6->sin6_family = AF_INET6;
sin6->sin6_port = xp->selector.dport;
sin6->sin6_flowinfo = 0;
memcpy(&sin6->sin6_addr, xp->selector.daddr.a6,
sizeof(struct in6_addr));
sin6->sin6_scope_id = 0;
}
#endif
else
BUG();
/* hard time */
lifetime = (struct sadb_lifetime *) skb_put(skb,
sizeof(struct sadb_lifetime));
lifetime->sadb_lifetime_len =
sizeof(struct sadb_lifetime)/sizeof(uint64_t);
lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.hard_packet_limit);
lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit);
lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds;
lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds;
/* soft time */
lifetime = (struct sadb_lifetime *) skb_put(skb,
sizeof(struct sadb_lifetime));
lifetime->sadb_lifetime_len =
sizeof(struct sadb_lifetime)/sizeof(uint64_t);
lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.soft_packet_limit);
lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit);
lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds;
lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds;
/* current time */
lifetime = (struct sadb_lifetime *) skb_put(skb,
sizeof(struct sadb_lifetime));
lifetime->sadb_lifetime_len =
sizeof(struct sadb_lifetime)/sizeof(uint64_t);
lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
lifetime->sadb_lifetime_allocations = xp->curlft.packets;
lifetime->sadb_lifetime_bytes = xp->curlft.bytes;
lifetime->sadb_lifetime_addtime = xp->curlft.add_time;
lifetime->sadb_lifetime_usetime = xp->curlft.use_time;
pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD;
if (xp->action == XFRM_POLICY_ALLOW) {
if (xp->xfrm_nr)
pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
else
pol->sadb_x_policy_type = IPSEC_POLICY_NONE;
}
pol->sadb_x_policy_dir = dir+1;
pol->sadb_x_policy_id = xp->index;
pol->sadb_x_policy_priority = xp->priority;
for (i=0; i<xp->xfrm_nr; i++) {
struct sadb_x_ipsecrequest *rq;
struct xfrm_tmpl *t = xp->xfrm_vec + i;
int req_size;
int mode;
req_size = sizeof(struct sadb_x_ipsecrequest);
if (t->mode == XFRM_MODE_TUNNEL)
req_size += ((t->encap_family == AF_INET ?
sizeof(struct sockaddr_in) :
sizeof(struct sockaddr_in6)) * 2);
else
size -= 2*socklen;
rq = (void*)skb_put(skb, req_size);
pol->sadb_x_policy_len += req_size/8;
memset(rq, 0, sizeof(*rq));
rq->sadb_x_ipsecrequest_len = req_size;
rq->sadb_x_ipsecrequest_proto = t->id.proto;
if ((mode = pfkey_mode_from_xfrm(t->mode)) < 0)
return -EINVAL;
rq->sadb_x_ipsecrequest_mode = mode;
rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE;
if (t->reqid)
rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE;
if (t->optional)
rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE;
rq->sadb_x_ipsecrequest_reqid = t->reqid;
if (t->mode == XFRM_MODE_TUNNEL) {
switch (t->encap_family) {
case AF_INET:
sin = (void*)(rq+1);
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = t->saddr.a4;
sin->sin_port = 0;
memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
sin++;
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = t->id.daddr.a4;
sin->sin_port = 0;
memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
break;
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
case AF_INET6:
sin6 = (void*)(rq+1);
sin6->sin6_family = AF_INET6;
sin6->sin6_port = 0;
sin6->sin6_flowinfo = 0;
memcpy(&sin6->sin6_addr, t->saddr.a6,
sizeof(struct in6_addr));
sin6->sin6_scope_id = 0;
sin6++;
sin6->sin6_family = AF_INET6;
sin6->sin6_port = 0;
sin6->sin6_flowinfo = 0;
memcpy(&sin6->sin6_addr, t->id.daddr.a6,
sizeof(struct in6_addr));
sin6->sin6_scope_id = 0;
break;
#endif
default:
break;
}
}
}
/* security context */
if ((xfrm_ctx = xp->security)) {
int ctx_size = pfkey_xfrm_policy2sec_ctx_size(xp);
sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb, ctx_size);
sec_ctx->sadb_x_sec_len = ctx_size / sizeof(uint64_t);
sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
xfrm_ctx->ctx_len);
}
hdr->sadb_msg_len = size / sizeof(uint64_t);
hdr->sadb_msg_reserved = atomic_read(&xp->refcnt);
return 0;
}
static int key_notify_policy(struct xfrm_policy *xp, int dir, struct km_event *c)
{
struct sk_buff *out_skb;
struct sadb_msg *out_hdr;
int err;
out_skb = pfkey_xfrm_policy2msg_prep(xp);
if (IS_ERR(out_skb)) {
err = PTR_ERR(out_skb);
goto out;
}
err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
if (err < 0)
return err;
out_hdr = (struct sadb_msg *) out_skb->data;
out_hdr->sadb_msg_version = PF_KEY_V2;
if (c->data.byid && c->event == XFRM_MSG_DELPOLICY)
out_hdr->sadb_msg_type = SADB_X_SPDDELETE2;
else
out_hdr->sadb_msg_type = event2poltype(c->event);
out_hdr->sadb_msg_errno = 0;
out_hdr->sadb_msg_seq = c->seq;
out_hdr->sadb_msg_pid = c->pid;
pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
out:
return 0;
}
static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
{
int err = 0;
struct sadb_lifetime *lifetime;
struct sadb_address *sa;
struct sadb_x_policy *pol;
struct xfrm_policy *xp;
struct km_event c;
struct sadb_x_sec_ctx *sec_ctx;
if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
!ext_hdrs[SADB_X_EXT_POLICY-1])
return -EINVAL;
pol = ext_hdrs[SADB_X_EXT_POLICY-1];
if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC)
return -EINVAL;
if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
return -EINVAL;
xp = xfrm_policy_alloc(GFP_KERNEL);
if (xp == NULL)
return -ENOBUFS;
xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
xp->priority = pol->sadb_x_policy_priority;
sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr);
if (!xp->family) {
err = -EINVAL;
goto out;
}
xp->selector.family = xp->family;
xp->selector.prefixlen_s = sa->sadb_address_prefixlen;
xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
if (xp->selector.sport)
xp->selector.sport_mask = htons(0xffff);
sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr);
xp->selector.prefixlen_d = sa->sadb_address_prefixlen;
/* Amusing, we set this twice. KAME apps appear to set same value
* in both addresses.
*/
xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
if (xp->selector.dport)
xp->selector.dport_mask = htons(0xffff);
sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
if (sec_ctx != NULL) {
struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
if (!uctx) {
err = -ENOBUFS;
goto out;
}
err = security_xfrm_policy_alloc(&xp->security, uctx);
kfree(uctx);
if (err)
goto out;
}
xp->lft.soft_byte_limit = XFRM_INF;
xp->lft.hard_byte_limit = XFRM_INF;
xp->lft.soft_packet_limit = XFRM_INF;
xp->lft.hard_packet_limit = XFRM_INF;
if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) {
xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
}
if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) {
xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
}
xp->xfrm_nr = 0;
if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
(err = parse_ipsecrequests(xp, pol)) < 0)
goto out;
err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp,
hdr->sadb_msg_type != SADB_X_SPDUPDATE);
xfrm_audit_policy_add(xp, err ? 0 : 1,
audit_get_loginuid(current),
audit_get_sessionid(current), 0);
if (err)
goto out;
if (hdr->sadb_msg_type == SADB_X_SPDUPDATE)
c.event = XFRM_MSG_UPDPOLICY;
else
c.event = XFRM_MSG_NEWPOLICY;
c.seq = hdr->sadb_msg_seq;
c.pid = hdr->sadb_msg_pid;
km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
xfrm_pol_put(xp);
return 0;
out:
xp->dead = 1;
xfrm_policy_destroy(xp);
return err;
}
static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
{
int err;
struct sadb_address *sa;
struct sadb_x_policy *pol;
struct xfrm_policy *xp;
struct xfrm_selector sel;
struct km_event c;
struct sadb_x_sec_ctx *sec_ctx;
struct xfrm_sec_ctx *pol_ctx = NULL;
if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
!ext_hdrs[SADB_X_EXT_POLICY-1])
return -EINVAL;
pol = ext_hdrs[SADB_X_EXT_POLICY-1];
if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
return -EINVAL;
memset(&sel, 0, sizeof(sel));
sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
sel.prefixlen_s = sa->sadb_address_prefixlen;
sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
if (sel.sport)
sel.sport_mask = htons(0xffff);
sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
sel.prefixlen_d = sa->sadb_address_prefixlen;
sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
if (sel.dport)
sel.dport_mask = htons(0xffff);
sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
if (sec_ctx != NULL) {
struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
if (!uctx)
return -ENOMEM;
err = security_xfrm_policy_alloc(&pol_ctx, uctx);
kfree(uctx);
if (err)
return err;
}
xp = xfrm_policy_bysel_ctx(XFRM_POLICY_TYPE_MAIN,
pol->sadb_x_policy_dir - 1, &sel, pol_ctx,
1, &err);
security_xfrm_policy_free(pol_ctx);
if (xp == NULL)
return -ENOENT;
xfrm_audit_policy_delete(xp, err ? 0 : 1,
audit_get_loginuid(current),
audit_get_sessionid(current), 0);
if (err)
goto out;
c.seq = hdr->sadb_msg_seq;
c.pid = hdr->sadb_msg_pid;
c.event = XFRM_MSG_DELPOLICY;
km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
out:
xfrm_pol_put(xp);
return err;
}
static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, struct sadb_msg *hdr, int dir)
{
int err;
struct sk_buff *out_skb;
struct sadb_msg *out_hdr;
err = 0;
out_skb = pfkey_xfrm_policy2msg_prep(xp);
if (IS_ERR(out_skb)) {
err = PTR_ERR(out_skb);
goto out;
}
err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
if (err < 0)
goto out;
out_hdr = (struct sadb_msg *) out_skb->data;
out_hdr->sadb_msg_version = hdr->sadb_msg_version;
out_hdr->sadb_msg_type = hdr->sadb_msg_type;
out_hdr->sadb_msg_satype = 0;
out_hdr->sadb_msg_errno = 0;
out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
err = 0;
out:
return err;
}
#ifdef CONFIG_NET_KEY_MIGRATE
static int pfkey_sockaddr_pair_size(sa_family_t family)
{
switch (family) {
case AF_INET:
return PFKEY_ALIGN8(sizeof(struct sockaddr_in) * 2);
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
case AF_INET6:
return PFKEY_ALIGN8(sizeof(struct sockaddr_in6) * 2);
#endif
default:
return 0;
}
/* NOTREACHED */
}
static int parse_sockaddr_pair(struct sadb_x_ipsecrequest *rq,
xfrm_address_t *saddr, xfrm_address_t *daddr,
u16 *family)
{
struct sockaddr *sa = (struct sockaddr *)(rq + 1);
if (rq->sadb_x_ipsecrequest_len <
pfkey_sockaddr_pair_size(sa->sa_family))
return -EINVAL;
switch (sa->sa_family) {
case AF_INET:
{
struct sockaddr_in *sin;
sin = (struct sockaddr_in *)sa;
if ((sin+1)->sin_family != AF_INET)
return -EINVAL;
memcpy(&saddr->a4, &sin->sin_addr, sizeof(saddr->a4));
sin++;
memcpy(&daddr->a4, &sin->sin_addr, sizeof(daddr->a4));
*family = AF_INET;
break;
}
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
case AF_INET6:
{
struct sockaddr_in6 *sin6;
sin6 = (struct sockaddr_in6 *)sa;
if ((sin6+1)->sin6_family != AF_INET6)
return -EINVAL;
memcpy(&saddr->a6, &sin6->sin6_addr,
sizeof(saddr->a6));
sin6++;
memcpy(&daddr->a6, &sin6->sin6_addr,
sizeof(daddr->a6));
*family = AF_INET6;
break;
}
#endif
default:
return -EINVAL;
}
return 0;
}
static int ipsecrequests_to_migrate(struct sadb_x_ipsecrequest *rq1, int len,
struct xfrm_migrate *m)
{
int err;
struct sadb_x_ipsecrequest *rq2;
int mode;
if (len <= sizeof(struct sadb_x_ipsecrequest) ||
len < rq1->sadb_x_ipsecrequest_len)
return -EINVAL;
/* old endoints */
err = parse_sockaddr_pair(rq1, &m->old_saddr, &m->old_daddr,
&m->old_family);
if (err)
return err;
rq2 = (struct sadb_x_ipsecrequest *)((u8 *)rq1 + rq1->sadb_x_ipsecrequest_len);
len -= rq1->sadb_x_ipsecrequest_len;
if (len <= sizeof(struct sadb_x_ipsecrequest) ||
len < rq2->sadb_x_ipsecrequest_len)
return -EINVAL;
/* new endpoints */
err = parse_sockaddr_pair(rq2, &m->new_saddr, &m->new_daddr,
&m->new_family);
if (err)
return err;
if (rq1->sadb_x_ipsecrequest_proto != rq2->sadb_x_ipsecrequest_proto ||
rq1->sadb_x_ipsecrequest_mode != rq2->sadb_x_ipsecrequest_mode ||
rq1->sadb_x_ipsecrequest_reqid != rq2->sadb_x_ipsecrequest_reqid)
return -EINVAL;
m->proto = rq1->sadb_x_ipsecrequest_proto;
if ((mode = pfkey_mode_to_xfrm(rq1->sadb_x_ipsecrequest_mode)) < 0)
return -EINVAL;
m->mode = mode;
m->reqid = rq1->sadb_x_ipsecrequest_reqid;
return ((int)(rq1->sadb_x_ipsecrequest_len +
rq2->sadb_x_ipsecrequest_len));
}
static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
struct sadb_msg *hdr, void **ext_hdrs)
{
int i, len, ret, err = -EINVAL;
u8 dir;
struct sadb_address *sa;
struct sadb_x_policy *pol;
struct sadb_x_ipsecrequest *rq;
struct xfrm_selector sel;
struct xfrm_migrate m[XFRM_MAX_DEPTH];
if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC - 1],
ext_hdrs[SADB_EXT_ADDRESS_DST - 1]) ||
!ext_hdrs[SADB_X_EXT_POLICY - 1]) {
err = -EINVAL;
goto out;
}
pol = ext_hdrs[SADB_X_EXT_POLICY - 1];
if (!pol) {
err = -EINVAL;
goto out;
}
if (pol->sadb_x_policy_dir >= IPSEC_DIR_MAX) {
err = -EINVAL;
goto out;
}
dir = pol->sadb_x_policy_dir - 1;
memset(&sel, 0, sizeof(sel));
/* set source address info of selector */
sa = ext_hdrs[SADB_EXT_ADDRESS_SRC - 1];
sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
sel.prefixlen_s = sa->sadb_address_prefixlen;
sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
sel.sport = ((struct sockaddr_in *)(sa + 1))->sin_port;
if (sel.sport)
sel.sport_mask = htons(0xffff);
/* set destination address info of selector */
sa = ext_hdrs[SADB_EXT_ADDRESS_DST - 1],
pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
sel.prefixlen_d = sa->sadb_address_prefixlen;
sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
sel.dport = ((struct sockaddr_in *)(sa + 1))->sin_port;
if (sel.dport)
sel.dport_mask = htons(0xffff);
rq = (struct sadb_x_ipsecrequest *)(pol + 1);
/* extract ipsecrequests */
i = 0;
len = pol->sadb_x_policy_len * 8 - sizeof(struct sadb_x_policy);
while (len > 0 && i < XFRM_MAX_DEPTH) {
ret = ipsecrequests_to_migrate(rq, len, &m[i]);
if (ret < 0) {
err = ret;
goto out;
} else {
rq = (struct sadb_x_ipsecrequest *)((u8 *)rq + ret);
len -= ret;
i++;
}
}
if (!i || len > 0) {
err = -EINVAL;
goto out;
}
return xfrm_migrate(&sel, dir, XFRM_POLICY_TYPE_MAIN, m, i);
out:
return err;
}
#else
static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
struct sadb_msg *hdr, void **ext_hdrs)
{
return -ENOPROTOOPT;
}
#endif
static int pfkey_spdget(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
{
unsigned int dir;
int err = 0, delete;
struct sadb_x_policy *pol;
struct xfrm_policy *xp;
struct km_event c;
if ((pol = ext_hdrs[SADB_X_EXT_POLICY-1]) == NULL)
return -EINVAL;
dir = xfrm_policy_id2dir(pol->sadb_x_policy_id);
if (dir >= XFRM_POLICY_MAX)
return -EINVAL;
delete = (hdr->sadb_msg_type == SADB_X_SPDDELETE2);
xp = xfrm_policy_byid(XFRM_POLICY_TYPE_MAIN, dir, pol->sadb_x_policy_id,
delete, &err);
if (xp == NULL)
return -ENOENT;
if (delete) {
xfrm_audit_policy_delete(xp, err ? 0 : 1,
audit_get_loginuid(current),
audit_get_sessionid(current), 0);
if (err)
goto out;
c.seq = hdr->sadb_msg_seq;
c.pid = hdr->sadb_msg_pid;
c.data.byid = 1;
c.event = XFRM_MSG_DELPOLICY;
km_policy_notify(xp, dir, &c);
} else {
err = key_pol_get_resp(sk, xp, hdr, dir);
}
out:
xfrm_pol_put(xp);
return err;
}
static int dump_sp(struct xfrm_policy *xp, int dir, int count, void *ptr)
{
struct pfkey_sock *pfk = ptr;
struct sk_buff *out_skb;
struct sadb_msg *out_hdr;
int err;
if (!pfkey_can_dump(&pfk->sk))
return -ENOBUFS;
out_skb = pfkey_xfrm_policy2msg_prep(xp);
if (IS_ERR(out_skb))
return PTR_ERR(out_skb);
err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
if (err < 0)
return err;
out_hdr = (struct sadb_msg *) out_skb->data;
out_hdr->sadb_msg_version = pfk->dump.msg_version;
out_hdr->sadb_msg_type = SADB_X_SPDDUMP;
out_hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
out_hdr->sadb_msg_errno = 0;
out_hdr->sadb_msg_seq = count;
out_hdr->sadb_msg_pid = pfk->dump.msg_pid;
pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, &pfk->sk);
return 0;
}
static int pfkey_dump_sp(struct pfkey_sock *pfk)
{
return xfrm_policy_walk(&pfk->dump.u.policy, dump_sp, (void *) pfk);
}
static void pfkey_dump_sp_done(struct pfkey_sock *pfk)
{
xfrm_policy_walk_done(&pfk->dump.u.policy);
}
static int pfkey_spddump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
{
struct pfkey_sock *pfk = pfkey_sk(sk);
if (pfk->dump.dump != NULL)
return -EBUSY;
pfk->dump.msg_version = hdr->sadb_msg_version;
pfk->dump.msg_pid = hdr->sadb_msg_pid;
pfk->dump.dump = pfkey_dump_sp;
pfk->dump.done = pfkey_dump_sp_done;
xfrm_policy_walk_init(&pfk->dump.u.policy, XFRM_POLICY_TYPE_MAIN);
return pfkey_do_dump(pfk);
}
static int key_notify_policy_flush(struct km_event *c)
{
struct sk_buff *skb_out;
struct sadb_msg *hdr;
skb_out = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
if (!skb_out)
return -ENOBUFS;
hdr = (struct sadb_msg *) skb_put(skb_out, sizeof(struct sadb_msg));
hdr->sadb_msg_type = SADB_X_SPDFLUSH;
hdr->sadb_msg_seq = c->seq;
hdr->sadb_msg_pid = c->pid;
hdr->sadb_msg_version = PF_KEY_V2;
hdr->sadb_msg_errno = (uint8_t) 0;
hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
pfkey_broadcast(skb_out, GFP_ATOMIC, BROADCAST_ALL, NULL);
return 0;
}
static int pfkey_spdflush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
{
struct km_event c;
struct xfrm_audit audit_info;
int err;
audit_info.loginuid = audit_get_loginuid(current);
audit_info.sessionid = audit_get_sessionid(current);
audit_info.secid = 0;
err = xfrm_policy_flush(XFRM_POLICY_TYPE_MAIN, &audit_info);
if (err)
return err;
c.data.type = XFRM_POLICY_TYPE_MAIN;
c.event = XFRM_MSG_FLUSHPOLICY;
c.pid = hdr->sadb_msg_pid;
c.seq = hdr->sadb_msg_seq;
km_policy_notify(NULL, 0, &c);
return 0;
}
typedef int (*pfkey_handler)(struct sock *sk, struct sk_buff *skb,
struct sadb_msg *hdr, void **ext_hdrs);
static pfkey_handler pfkey_funcs[SADB_MAX + 1] = {
[SADB_RESERVED] = pfkey_reserved,
[SADB_GETSPI] = pfkey_getspi,
[SADB_UPDATE] = pfkey_add,
[SADB_ADD] = pfkey_add,
[SADB_DELETE] = pfkey_delete,
[SADB_GET] = pfkey_get,
[SADB_ACQUIRE] = pfkey_acquire,
[SADB_REGISTER] = pfkey_register,
[SADB_EXPIRE] = NULL,
[SADB_FLUSH] = pfkey_flush,
[SADB_DUMP] = pfkey_dump,
[SADB_X_PROMISC] = pfkey_promisc,
[SADB_X_PCHANGE] = NULL,
[SADB_X_SPDUPDATE] = pfkey_spdadd,
[SADB_X_SPDADD] = pfkey_spdadd,
[SADB_X_SPDDELETE] = pfkey_spddelete,
[SADB_X_SPDGET] = pfkey_spdget,
[SADB_X_SPDACQUIRE] = NULL,
[SADB_X_SPDDUMP] = pfkey_spddump,
[SADB_X_SPDFLUSH] = pfkey_spdflush,
[SADB_X_SPDSETIDX] = pfkey_spdadd,
[SADB_X_SPDDELETE2] = pfkey_spdget,
[SADB_X_MIGRATE] = pfkey_migrate,
};
static int pfkey_process(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr)
{
void *ext_hdrs[SADB_EXT_MAX];
int err;
pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL,
BROADCAST_PROMISC_ONLY, NULL);
memset(ext_hdrs, 0, sizeof(ext_hdrs));
err = parse_exthdrs(skb, hdr, ext_hdrs);
if (!err) {
err = -EOPNOTSUPP;
if (pfkey_funcs[hdr->sadb_msg_type])
err = pfkey_funcs[hdr->sadb_msg_type](sk, skb, hdr, ext_hdrs);
}
return err;
}
static struct sadb_msg *pfkey_get_base_msg(struct sk_buff *skb, int *errp)
{
struct sadb_msg *hdr = NULL;
if (skb->len < sizeof(*hdr)) {
*errp = -EMSGSIZE;
} else {
hdr = (struct sadb_msg *) skb->data;
if (hdr->sadb_msg_version != PF_KEY_V2 ||
hdr->sadb_msg_reserved != 0 ||
(hdr->sadb_msg_type <= SADB_RESERVED ||
hdr->sadb_msg_type > SADB_MAX)) {
hdr = NULL;
*errp = -EINVAL;
} else if (hdr->sadb_msg_len != (skb->len /
sizeof(uint64_t)) ||
hdr->sadb_msg_len < (sizeof(struct sadb_msg) /
sizeof(uint64_t))) {
hdr = NULL;
*errp = -EMSGSIZE;
} else {
*errp = 0;
}
}
return hdr;
}
static inline int aalg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
{
unsigned int id = d->desc.sadb_alg_id;
if (id >= sizeof(t->aalgos) * 8)
return 0;
return (t->aalgos >> id) & 1;
}
static inline int ealg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
{
unsigned int id = d->desc.sadb_alg_id;
if (id >= sizeof(t->ealgos) * 8)
return 0;
return (t->ealgos >> id) & 1;
}
static int count_ah_combs(struct xfrm_tmpl *t)
{
int i, sz = 0;
for (i = 0; ; i++) {
struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
if (!aalg)
break;
if (aalg_tmpl_set(t, aalg) && aalg->available)
sz += sizeof(struct sadb_comb);
}
return sz + sizeof(struct sadb_prop);
}
static int count_esp_combs(struct xfrm_tmpl *t)
{
int i, k, sz = 0;
for (i = 0; ; i++) {
struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
if (!ealg)
break;
if (!(ealg_tmpl_set(t, ealg) && ealg->available))
continue;
for (k = 1; ; k++) {
struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
if (!aalg)
break;
if (aalg_tmpl_set(t, aalg) && aalg->available)
sz += sizeof(struct sadb_comb);
}
}
return sz + sizeof(struct sadb_prop);
}
static void dump_ah_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
{
struct sadb_prop *p;
int i;
p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
p->sadb_prop_len = sizeof(struct sadb_prop)/8;
p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
p->sadb_prop_replay = 32;
memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
for (i = 0; ; i++) {
struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
if (!aalg)
break;
if (aalg_tmpl_set(t, aalg) && aalg->available) {
struct sadb_comb *c;
c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
memset(c, 0, sizeof(*c));
p->sadb_prop_len += sizeof(struct sadb_comb)/8;
c->sadb_comb_auth = aalg->desc.sadb_alg_id;
c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
c->sadb_comb_hard_addtime = 24*60*60;
c->sadb_comb_soft_addtime = 20*60*60;
c->sadb_comb_hard_usetime = 8*60*60;
c->sadb_comb_soft_usetime = 7*60*60;
}
}
}
static void dump_esp_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
{
struct sadb_prop *p;
int i, k;
p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
p->sadb_prop_len = sizeof(struct sadb_prop)/8;
p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
p->sadb_prop_replay = 32;
memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
for (i=0; ; i++) {
struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
if (!ealg)
break;
if (!(ealg_tmpl_set(t, ealg) && ealg->available))
continue;
for (k = 1; ; k++) {
struct sadb_comb *c;
struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
if (!aalg)
break;
if (!(aalg_tmpl_set(t, aalg) && aalg->available))
continue;
c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
memset(c, 0, sizeof(*c));
p->sadb_prop_len += sizeof(struct sadb_comb)/8;
c->sadb_comb_auth = aalg->desc.sadb_alg_id;
c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
c->sadb_comb_encrypt = ealg->desc.sadb_alg_id;
c->sadb_comb_encrypt_minbits = ealg->desc.sadb_alg_minbits;
c->sadb_comb_encrypt_maxbits = ealg->desc.sadb_alg_maxbits;
c->sadb_comb_hard_addtime = 24*60*60;
c->sadb_comb_soft_addtime = 20*60*60;
c->sadb_comb_hard_usetime = 8*60*60;
c->sadb_comb_soft_usetime = 7*60*60;
}
}
}
static int key_notify_policy_expire(struct xfrm_policy *xp, struct km_event *c)
{
return 0;
}
static int key_notify_sa_expire(struct xfrm_state *x, struct km_event *c)
{
struct sk_buff *out_skb;
struct sadb_msg *out_hdr;
int hard;
int hsc;
hard = c->data.hard;
if (hard)
hsc = 2;
else
hsc = 1;
out_skb = pfkey_xfrm_state2msg_expire(x, hsc);
if (IS_ERR(out_skb))
return PTR_ERR(out_skb);
out_hdr = (struct sadb_msg *) out_skb->data;
out_hdr->sadb_msg_version = PF_KEY_V2;
out_hdr->sadb_msg_type = SADB_EXPIRE;
out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
out_hdr->sadb_msg_errno = 0;
out_hdr->sadb_msg_reserved = 0;
out_hdr->sadb_msg_seq = 0;
out_hdr->sadb_msg_pid = 0;
pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
return 0;
}
static int pfkey_send_notify(struct xfrm_state *x, struct km_event *c)
{
if (atomic_read(&pfkey_socks_nr) == 0)
return 0;
switch (c->event) {
case XFRM_MSG_EXPIRE:
return key_notify_sa_expire(x, c);
case XFRM_MSG_DELSA:
case XFRM_MSG_NEWSA:
case XFRM_MSG_UPDSA:
return key_notify_sa(x, c);
case XFRM_MSG_FLUSHSA:
return key_notify_sa_flush(c);
case XFRM_MSG_NEWAE: /* not yet supported */
break;
default:
printk("pfkey: Unknown SA event %d\n", c->event);
break;
}
return 0;
}
static int pfkey_send_policy_notify(struct xfrm_policy *xp, int dir, struct km_event *c)
{
if (xp && xp->type != XFRM_POLICY_TYPE_MAIN)
return 0;
switch (c->event) {
case XFRM_MSG_POLEXPIRE:
return key_notify_policy_expire(xp, c);
case XFRM_MSG_DELPOLICY:
case XFRM_MSG_NEWPOLICY:
case XFRM_MSG_UPDPOLICY:
return key_notify_policy(xp, dir, c);
case XFRM_MSG_FLUSHPOLICY:
if (c->data.type != XFRM_POLICY_TYPE_MAIN)
break;
return key_notify_policy_flush(c);
default:
printk("pfkey: Unknown policy event %d\n", c->event);
break;
}
return 0;
}
static u32 get_acqseq(void)
{
u32 res;
static u32 acqseq;
static DEFINE_SPINLOCK(acqseq_lock);
spin_lock_bh(&acqseq_lock);
res = (++acqseq ? : ++acqseq);
spin_unlock_bh(&acqseq_lock);
return res;
}
static int pfkey_send_acquire(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *xp, int dir)
{
struct sk_buff *skb;
struct sadb_msg *hdr;
struct sadb_address *addr;
struct sadb_x_policy *pol;
struct sockaddr_in *sin;
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
struct sockaddr_in6 *sin6;
#endif
int sockaddr_size;
int size;
struct sadb_x_sec_ctx *sec_ctx;
struct xfrm_sec_ctx *xfrm_ctx;
int ctx_size = 0;
sockaddr_size = pfkey_sockaddr_size(x->props.family);
if (!sockaddr_size)
return -EINVAL;
size = sizeof(struct sadb_msg) +
(sizeof(struct sadb_address) * 2) +
(sockaddr_size * 2) +
sizeof(struct sadb_x_policy);
if (x->id.proto == IPPROTO_AH)
size += count_ah_combs(t);
else if (x->id.proto == IPPROTO_ESP)
size += count_esp_combs(t);
if ((xfrm_ctx = x->security)) {
ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
}
skb = alloc_skb(size + 16, GFP_ATOMIC);
if (skb == NULL)
return -ENOMEM;
hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
hdr->sadb_msg_version = PF_KEY_V2;
hdr->sadb_msg_type = SADB_ACQUIRE;
hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
hdr->sadb_msg_len = size / sizeof(uint64_t);
hdr->sadb_msg_errno = 0;
hdr->sadb_msg_reserved = 0;
hdr->sadb_msg_seq = x->km.seq = get_acqseq();
hdr->sadb_msg_pid = 0;
/* src address */
addr = (struct sadb_address*) skb_put(skb,
sizeof(struct sadb_address)+sockaddr_size);
addr->sadb_address_len =
(sizeof(struct sadb_address)+sockaddr_size)/
sizeof(uint64_t);
addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
addr->sadb_address_proto = 0;
addr->sadb_address_reserved = 0;
if (x->props.family == AF_INET) {
addr->sadb_address_prefixlen = 32;
sin = (struct sockaddr_in *) (addr + 1);
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = x->props.saddr.a4;
sin->sin_port = 0;
memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
}
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
else if (x->props.family == AF_INET6) {
addr->sadb_address_prefixlen = 128;
sin6 = (struct sockaddr_in6 *) (addr + 1);
sin6->sin6_family = AF_INET6;
sin6->sin6_port = 0;
sin6->sin6_flowinfo = 0;
memcpy(&sin6->sin6_addr,
x->props.saddr.a6, sizeof(struct in6_addr));
sin6->sin6_scope_id = 0;
}
#endif
else
BUG();
/* dst address */
addr = (struct sadb_address*) skb_put(skb,
sizeof(struct sadb_address)+sockaddr_size);
addr->sadb_address_len =
(sizeof(struct sadb_address)+sockaddr_size)/
sizeof(uint64_t);
addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
addr->sadb_address_proto = 0;
addr->sadb_address_reserved = 0;
if (x->props.family == AF_INET) {
addr->sadb_address_prefixlen = 32;
sin = (struct sockaddr_in *) (addr + 1);
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = x->id.daddr.a4;
sin->sin_port = 0;
memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
}
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
else if (x->props.family == AF_INET6) {
addr->sadb_address_prefixlen = 128;
sin6 = (struct sockaddr_in6 *) (addr + 1);
sin6->sin6_family = AF_INET6;
sin6->sin6_port = 0;
sin6->sin6_flowinfo = 0;
memcpy(&sin6->sin6_addr,
x->id.daddr.a6, sizeof(struct in6_addr));
sin6->sin6_scope_id = 0;
}
#endif
else
BUG();
pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
pol->sadb_x_policy_dir = dir+1;
pol->sadb_x_policy_id = xp->index;
/* Set sadb_comb's. */
if (x->id.proto == IPPROTO_AH)
dump_ah_combs(skb, t);
else if (x->id.proto == IPPROTO_ESP)
dump_esp_combs(skb, t);
/* security context */
if (xfrm_ctx) {
sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
sizeof(struct sadb_x_sec_ctx) + ctx_size);
sec_ctx->sadb_x_sec_len =
(sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
xfrm_ctx->ctx_len);
}
return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
}
static struct xfrm_policy *pfkey_compile_policy(struct sock *sk, int opt,
u8 *data, int len, int *dir)
{
struct xfrm_policy *xp;
struct sadb_x_policy *pol = (struct sadb_x_policy*)data;
struct sadb_x_sec_ctx *sec_ctx;
switch (sk->sk_family) {
case AF_INET:
if (opt != IP_IPSEC_POLICY) {
*dir = -EOPNOTSUPP;
return NULL;
}
break;
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
case AF_INET6:
if (opt != IPV6_IPSEC_POLICY) {
*dir = -EOPNOTSUPP;
return NULL;
}
break;
#endif
default:
*dir = -EINVAL;
return NULL;
}
*dir = -EINVAL;
if (len < sizeof(struct sadb_x_policy) ||
pol->sadb_x_policy_len*8 > len ||
pol->sadb_x_policy_type > IPSEC_POLICY_BYPASS ||
(!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir > IPSEC_DIR_OUTBOUND))
return NULL;
xp = xfrm_policy_alloc(GFP_ATOMIC);
if (xp == NULL) {
*dir = -ENOBUFS;
return NULL;
}
xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
xp->lft.soft_byte_limit = XFRM_INF;
xp->lft.hard_byte_limit = XFRM_INF;
xp->lft.soft_packet_limit = XFRM_INF;
xp->lft.hard_packet_limit = XFRM_INF;
xp->family = sk->sk_family;
xp->xfrm_nr = 0;
if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
(*dir = parse_ipsecrequests(xp, pol)) < 0)
goto out;
/* security context too */
if (len >= (pol->sadb_x_policy_len*8 +
sizeof(struct sadb_x_sec_ctx))) {
char *p = (char *)pol;
struct xfrm_user_sec_ctx *uctx;
p += pol->sadb_x_policy_len*8;
sec_ctx = (struct sadb_x_sec_ctx *)p;
if (len < pol->sadb_x_policy_len*8 +
sec_ctx->sadb_x_sec_len) {
*dir = -EINVAL;
goto out;
}
if ((*dir = verify_sec_ctx_len(p)))
goto out;
uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
*dir = security_xfrm_policy_alloc(&xp->security, uctx);
kfree(uctx);
if (*dir)
goto out;
}
*dir = pol->sadb_x_policy_dir-1;
return xp;
out:
xfrm_policy_destroy(xp);
return NULL;
}
static int pfkey_send_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
{
struct sk_buff *skb;
struct sadb_msg *hdr;
struct sadb_sa *sa;
struct sadb_address *addr;
struct sadb_x_nat_t_port *n_port;
struct sockaddr_in *sin;
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
struct sockaddr_in6 *sin6;
#endif
int sockaddr_size;
int size;
__u8 satype = (x->id.proto == IPPROTO_ESP ? SADB_SATYPE_ESP : 0);
struct xfrm_encap_tmpl *natt = NULL;
sockaddr_size = pfkey_sockaddr_size(x->props.family);
if (!sockaddr_size)
return -EINVAL;
if (!satype)
return -EINVAL;
if (!x->encap)
return -EINVAL;
natt = x->encap;
/* Build an SADB_X_NAT_T_NEW_MAPPING message:
*
* HDR | SA | ADDRESS_SRC (old addr) | NAT_T_SPORT (old port) |
* ADDRESS_DST (new addr) | NAT_T_DPORT (new port)
*/
size = sizeof(struct sadb_msg) +
sizeof(struct sadb_sa) +
(sizeof(struct sadb_address) * 2) +
(sockaddr_size * 2) +
(sizeof(struct sadb_x_nat_t_port) * 2);
skb = alloc_skb(size + 16, GFP_ATOMIC);
if (skb == NULL)
return -ENOMEM;
hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
hdr->sadb_msg_version = PF_KEY_V2;
hdr->sadb_msg_type = SADB_X_NAT_T_NEW_MAPPING;
hdr->sadb_msg_satype = satype;
hdr->sadb_msg_len = size / sizeof(uint64_t);
hdr->sadb_msg_errno = 0;
hdr->sadb_msg_reserved = 0;
hdr->sadb_msg_seq = x->km.seq = get_acqseq();
hdr->sadb_msg_pid = 0;
/* SA */
sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
sa->sadb_sa_exttype = SADB_EXT_SA;
sa->sadb_sa_spi = x->id.spi;
sa->sadb_sa_replay = 0;
sa->sadb_sa_state = 0;
sa->sadb_sa_auth = 0;
sa->sadb_sa_encrypt = 0;
sa->sadb_sa_flags = 0;
/* ADDRESS_SRC (old addr) */
addr = (struct sadb_address*)
skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
addr->sadb_address_len =
(sizeof(struct sadb_address)+sockaddr_size)/
sizeof(uint64_t);
addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
addr->sadb_address_proto = 0;
addr->sadb_address_reserved = 0;
if (x->props.family == AF_INET) {
addr->sadb_address_prefixlen = 32;
sin = (struct sockaddr_in *) (addr + 1);
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = x->props.saddr.a4;
sin->sin_port = 0;
memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
}
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
else if (x->props.family == AF_INET6) {
addr->sadb_address_prefixlen = 128;
sin6 = (struct sockaddr_in6 *) (addr + 1);
sin6->sin6_family = AF_INET6;
sin6->sin6_port = 0;
sin6->sin6_flowinfo = 0;
memcpy(&sin6->sin6_addr,
x->props.saddr.a6, sizeof(struct in6_addr));
sin6->sin6_scope_id = 0;
}
#endif
else
BUG();
/* NAT_T_SPORT (old port) */
n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
n_port->sadb_x_nat_t_port_port = natt->encap_sport;
n_port->sadb_x_nat_t_port_reserved = 0;
/* ADDRESS_DST (new addr) */
addr = (struct sadb_address*)
skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
addr->sadb_address_len =
(sizeof(struct sadb_address)+sockaddr_size)/
sizeof(uint64_t);
addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
addr->sadb_address_proto = 0;
addr->sadb_address_reserved = 0;
if (x->props.family == AF_INET) {
addr->sadb_address_prefixlen = 32;
sin = (struct sockaddr_in *) (addr + 1);
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = ipaddr->a4;
sin->sin_port = 0;
memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
}
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
else if (x->props.family == AF_INET6) {
addr->sadb_address_prefixlen = 128;
sin6 = (struct sockaddr_in6 *) (addr + 1);
sin6->sin6_family = AF_INET6;
sin6->sin6_port = 0;
sin6->sin6_flowinfo = 0;
memcpy(&sin6->sin6_addr, &ipaddr->a6, sizeof(struct in6_addr));
sin6->sin6_scope_id = 0;
}
#endif
else
BUG();
/* NAT_T_DPORT (new port) */
n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
n_port->sadb_x_nat_t_port_port = sport;
n_port->sadb_x_nat_t_port_reserved = 0;
return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
}
#ifdef CONFIG_NET_KEY_MIGRATE
static int set_sadb_address(struct sk_buff *skb, int sasize, int type,
struct xfrm_selector *sel)
{
struct sadb_address *addr;
struct sockaddr_in *sin;
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
struct sockaddr_in6 *sin6;
#endif
addr = (struct sadb_address *)skb_put(skb, sizeof(struct sadb_address) + sasize);
addr->sadb_address_len = (sizeof(struct sadb_address) + sasize)/8;
addr->sadb_address_exttype = type;
addr->sadb_address_proto = sel->proto;
addr->sadb_address_reserved = 0;
switch (type) {
case SADB_EXT_ADDRESS_SRC:
if (sel->family == AF_INET) {
addr->sadb_address_prefixlen = sel->prefixlen_s;
sin = (struct sockaddr_in *)(addr + 1);
sin->sin_family = AF_INET;
memcpy(&sin->sin_addr.s_addr, &sel->saddr,
sizeof(sin->sin_addr.s_addr));
sin->sin_port = 0;
memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
}
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
else if (sel->family == AF_INET6) {
addr->sadb_address_prefixlen = sel->prefixlen_s;
sin6 = (struct sockaddr_in6 *)(addr + 1);
sin6->sin6_family = AF_INET6;
sin6->sin6_port = 0;
sin6->sin6_flowinfo = 0;
sin6->sin6_scope_id = 0;
memcpy(&sin6->sin6_addr.s6_addr, &sel->saddr,
sizeof(sin6->sin6_addr.s6_addr));
}
#endif
break;
case SADB_EXT_ADDRESS_DST:
if (sel->family == AF_INET) {
addr->sadb_address_prefixlen = sel->prefixlen_d;
sin = (struct sockaddr_in *)(addr + 1);
sin->sin_family = AF_INET;
memcpy(&sin->sin_addr.s_addr, &sel->daddr,
sizeof(sin->sin_addr.s_addr));
sin->sin_port = 0;
memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
}
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
else if (sel->family == AF_INET6) {
addr->sadb_address_prefixlen = sel->prefixlen_d;
sin6 = (struct sockaddr_in6 *)(addr + 1);
sin6->sin6_family = AF_INET6;
sin6->sin6_port = 0;
sin6->sin6_flowinfo = 0;
sin6->sin6_scope_id = 0;
memcpy(&sin6->sin6_addr.s6_addr, &sel->daddr,
sizeof(sin6->sin6_addr.s6_addr));
}
#endif
break;
default:
return -EINVAL;
}
return 0;
}
static int set_ipsecrequest(struct sk_buff *skb,
uint8_t proto, uint8_t mode, int level,
uint32_t reqid, uint8_t family,
xfrm_address_t *src, xfrm_address_t *dst)
{
struct sadb_x_ipsecrequest *rq;
struct sockaddr_in *sin;
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
struct sockaddr_in6 *sin6;
#endif
int size_req;
size_req = sizeof(struct sadb_x_ipsecrequest) +
pfkey_sockaddr_pair_size(family);
rq = (struct sadb_x_ipsecrequest *)skb_put(skb, size_req);
memset(rq, 0, size_req);
rq->sadb_x_ipsecrequest_len = size_req;
rq->sadb_x_ipsecrequest_proto = proto;
rq->sadb_x_ipsecrequest_mode = mode;
rq->sadb_x_ipsecrequest_level = level;
rq->sadb_x_ipsecrequest_reqid = reqid;
switch (family) {
case AF_INET:
sin = (struct sockaddr_in *)(rq + 1);
sin->sin_family = AF_INET;
memcpy(&sin->sin_addr.s_addr, src,
sizeof(sin->sin_addr.s_addr));
sin++;
sin->sin_family = AF_INET;
memcpy(&sin->sin_addr.s_addr, dst,
sizeof(sin->sin_addr.s_addr));
break;
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
case AF_INET6:
sin6 = (struct sockaddr_in6 *)(rq + 1);
sin6->sin6_family = AF_INET6;
sin6->sin6_port = 0;
sin6->sin6_flowinfo = 0;
sin6->sin6_scope_id = 0;
memcpy(&sin6->sin6_addr.s6_addr, src,
sizeof(sin6->sin6_addr.s6_addr));
sin6++;
sin6->sin6_family = AF_INET6;
sin6->sin6_port = 0;
sin6->sin6_flowinfo = 0;
sin6->sin6_scope_id = 0;
memcpy(&sin6->sin6_addr.s6_addr, dst,
sizeof(sin6->sin6_addr.s6_addr));
break;
#endif
default:
return -EINVAL;
}
return 0;
}
#endif
#ifdef CONFIG_NET_KEY_MIGRATE
static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
struct xfrm_migrate *m, int num_bundles)
{
int i;
int sasize_sel;
int size = 0;
int size_pol = 0;
struct sk_buff *skb;
struct sadb_msg *hdr;
struct sadb_x_policy *pol;
struct xfrm_migrate *mp;
if (type != XFRM_POLICY_TYPE_MAIN)
return 0;
if (num_bundles <= 0 || num_bundles > XFRM_MAX_DEPTH)
return -EINVAL;
/* selector */
sasize_sel = pfkey_sockaddr_size(sel->family);
if (!sasize_sel)
return -EINVAL;
size += (sizeof(struct sadb_address) + sasize_sel) * 2;
/* policy info */
size_pol += sizeof(struct sadb_x_policy);
/* ipsecrequests */
for (i = 0, mp = m; i < num_bundles; i++, mp++) {
/* old locator pair */
size_pol += sizeof(struct sadb_x_ipsecrequest) +
pfkey_sockaddr_pair_size(mp->old_family);
/* new locator pair */
size_pol += sizeof(struct sadb_x_ipsecrequest) +
pfkey_sockaddr_pair_size(mp->new_family);
}
size += sizeof(struct sadb_msg) + size_pol;
/* alloc buffer */
skb = alloc_skb(size, GFP_ATOMIC);
if (skb == NULL)
return -ENOMEM;
hdr = (struct sadb_msg *)skb_put(skb, sizeof(struct sadb_msg));
hdr->sadb_msg_version = PF_KEY_V2;
hdr->sadb_msg_type = SADB_X_MIGRATE;
hdr->sadb_msg_satype = pfkey_proto2satype(m->proto);
hdr->sadb_msg_len = size / 8;
hdr->sadb_msg_errno = 0;
hdr->sadb_msg_reserved = 0;
hdr->sadb_msg_seq = 0;
hdr->sadb_msg_pid = 0;
/* selector src */
set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_SRC, sel);
/* selector dst */
set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_DST, sel);
/* policy information */
pol = (struct sadb_x_policy *)skb_put(skb, sizeof(struct sadb_x_policy));
pol->sadb_x_policy_len = size_pol / 8;
pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
pol->sadb_x_policy_dir = dir + 1;
pol->sadb_x_policy_id = 0;
pol->sadb_x_policy_priority = 0;
for (i = 0, mp = m; i < num_bundles; i++, mp++) {
/* old ipsecrequest */
int mode = pfkey_mode_from_xfrm(mp->mode);
if (mode < 0)
goto err;
if (set_ipsecrequest(skb, mp->proto, mode,
(mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
mp->reqid, mp->old_family,
&mp->old_saddr, &mp->old_daddr) < 0)
goto err;
/* new ipsecrequest */
if (set_ipsecrequest(skb, mp->proto, mode,
(mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
mp->reqid, mp->new_family,
&mp->new_saddr, &mp->new_daddr) < 0)
goto err;
}
/* broadcast migrate message to sockets */
pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
return 0;
err:
kfree_skb(skb);
return -EINVAL;
}
#else
static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
struct xfrm_migrate *m, int num_bundles)
{
return -ENOPROTOOPT;
}
#endif
static int pfkey_sendmsg(struct kiocb *kiocb,
struct socket *sock, struct msghdr *msg, size_t len)
{
struct sock *sk = sock->sk;
struct sk_buff *skb = NULL;
struct sadb_msg *hdr = NULL;
int err;
err = -EOPNOTSUPP;
if (msg->msg_flags & MSG_OOB)
goto out;
err = -EMSGSIZE;
if ((unsigned)len > sk->sk_sndbuf - 32)
goto out;
err = -ENOBUFS;
skb = alloc_skb(len, GFP_KERNEL);
if (skb == NULL)
goto out;
err = -EFAULT;
if (memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len))
goto out;
hdr = pfkey_get_base_msg(skb, &err);
if (!hdr)
goto out;
mutex_lock(&xfrm_cfg_mutex);
err = pfkey_process(sk, skb, hdr);
mutex_unlock(&xfrm_cfg_mutex);
out:
if (err && hdr && pfkey_error(hdr, err, sk) == 0)
err = 0;
if (skb)
kfree_skb(skb);
return err ? : len;
}
static int pfkey_recvmsg(struct kiocb *kiocb,
struct socket *sock, struct msghdr *msg, size_t len,
int flags)
{
struct sock *sk = sock->sk;
struct pfkey_sock *pfk = pfkey_sk(sk);
struct sk_buff *skb;
int copied, err;
err = -EINVAL;
if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT))
goto out;
msg->msg_namelen = 0;
skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
if (skb == NULL)
goto out;
copied = skb->len;
if (copied > len) {
msg->msg_flags |= MSG_TRUNC;
copied = len;
}
skb_reset_transport_header(skb);
err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
if (err)
goto out_free;
sock_recv_timestamp(msg, sk, skb);
err = (flags & MSG_TRUNC) ? skb->len : copied;
if (pfk->dump.dump != NULL &&
3 * atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
pfkey_do_dump(pfk);
out_free:
skb_free_datagram(sk, skb);
out:
return err;
}
static const struct proto_ops pfkey_ops = {
.family = PF_KEY,
.owner = THIS_MODULE,
/* Operations that make no sense on pfkey sockets. */
.bind = sock_no_bind,
.connect = sock_no_connect,
.socketpair = sock_no_socketpair,
.accept = sock_no_accept,
.getname = sock_no_getname,
.ioctl = sock_no_ioctl,
.listen = sock_no_listen,
.shutdown = sock_no_shutdown,
.setsockopt = sock_no_setsockopt,
.getsockopt = sock_no_getsockopt,
.mmap = sock_no_mmap,
.sendpage = sock_no_sendpage,
/* Now the operations that really occur. */
.release = pfkey_release,
.poll = datagram_poll,
.sendmsg = pfkey_sendmsg,
.recvmsg = pfkey_recvmsg,
};
static struct net_proto_family pfkey_family_ops = {
.family = PF_KEY,
.create = pfkey_create,
.owner = THIS_MODULE,
};
#ifdef CONFIG_PROC_FS
static int pfkey_seq_show(struct seq_file *f, void *v)
{
struct sock *s;
s = (struct sock *)v;
if (v == SEQ_START_TOKEN)
seq_printf(f ,"sk RefCnt Rmem Wmem User Inode\n");
else
seq_printf(f ,"%p %-6d %-6u %-6u %-6u %-6lu\n",
s,
atomic_read(&s->sk_refcnt),
atomic_read(&s->sk_rmem_alloc),
atomic_read(&s->sk_wmem_alloc),
sock_i_uid(s),
sock_i_ino(s)
);
return 0;
}
static void *pfkey_seq_start(struct seq_file *f, loff_t *ppos)
{
struct sock *s;
struct hlist_node *node;
loff_t pos = *ppos;
read_lock(&pfkey_table_lock);
if (pos == 0)
return SEQ_START_TOKEN;
sk_for_each(s, node, &pfkey_table)
if (pos-- == 1)
return s;
return NULL;
}
static void *pfkey_seq_next(struct seq_file *f, void *v, loff_t *ppos)
{
++*ppos;
return (v == SEQ_START_TOKEN) ?
sk_head(&pfkey_table) :
sk_next((struct sock *)v);
}
static void pfkey_seq_stop(struct seq_file *f, void *v)
{
read_unlock(&pfkey_table_lock);
}
static struct seq_operations pfkey_seq_ops = {
.start = pfkey_seq_start,
.next = pfkey_seq_next,
.stop = pfkey_seq_stop,
.show = pfkey_seq_show,
};
static int pfkey_seq_open(struct inode *inode, struct file *file)
{
return seq_open(file, &pfkey_seq_ops);
}
static struct file_operations pfkey_proc_ops = {
.open = pfkey_seq_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
static int pfkey_init_proc(void)
{
struct proc_dir_entry *e;
e = proc_net_fops_create(&init_net, "pfkey", 0, &pfkey_proc_ops);
if (e == NULL)
return -ENOMEM;
return 0;
}
static void pfkey_exit_proc(void)
{
proc_net_remove(&init_net, "pfkey");
}
#else
static inline int pfkey_init_proc(void)
{
return 0;
}
static inline void pfkey_exit_proc(void)
{
}
#endif
static struct xfrm_mgr pfkeyv2_mgr =
{
.id = "pfkeyv2",
.notify = pfkey_send_notify,
.acquire = pfkey_send_acquire,
.compile_policy = pfkey_compile_policy,
.new_mapping = pfkey_send_new_mapping,
.notify_policy = pfkey_send_policy_notify,
.migrate = pfkey_send_migrate,
};
static void __exit ipsec_pfkey_exit(void)
{
xfrm_unregister_km(&pfkeyv2_mgr);
pfkey_exit_proc();
sock_unregister(PF_KEY);
proto_unregister(&key_proto);
}
static int __init ipsec_pfkey_init(void)
{
int err = proto_register(&key_proto, 0);
if (err != 0)
goto out;
err = sock_register(&pfkey_family_ops);
if (err != 0)
goto out_unregister_key_proto;
err = pfkey_init_proc();
if (err != 0)
goto out_sock_unregister;
err = xfrm_register_km(&pfkeyv2_mgr);
if (err != 0)
goto out_remove_proc_entry;
out:
return err;
out_remove_proc_entry:
pfkey_exit_proc();
out_sock_unregister:
sock_unregister(PF_KEY);
out_unregister_key_proto:
proto_unregister(&key_proto);
goto out;
}
module_init(ipsec_pfkey_init);
module_exit(ipsec_pfkey_exit);
MODULE_LICENSE("GPL");
MODULE_ALIAS_NETPROTO(PF_KEY);