1
linux/mm/vmstat.c
Mel Gorman eb33575cf6 [ARM] Double check memmap is actually valid with a memmap has unexpected holes V2
pfn_valid() is meant to be able to tell if a given PFN has valid memmap
associated with it or not. In FLATMEM, it is expected that holes always
have valid memmap as long as there is valid PFNs either side of the hole.
In SPARSEMEM, it is assumed that a valid section has a memmap for the
entire section.

However, ARM and maybe other embedded architectures in the future free
memmap backing holes to save memory on the assumption the memmap is never
used. The page_zone linkages are then broken even though pfn_valid()
returns true. A walker of the full memmap must then do this additional
check to ensure the memmap they are looking at is sane by making sure the
zone and PFN linkages are still valid. This is expensive, but walkers of
the full memmap are extremely rare.

This was caught before for FLATMEM and hacked around but it hits again for
SPARSEMEM because the page_zone linkages can look ok where the PFN linkages
are totally screwed. This looks like a hatchet job but the reality is that
any clean solution would end up consumning all the memory saved by punching
these unexpected holes in the memmap. For example, we tried marking the
memmap within the section invalid but the section size exceeds the size of
the hole in most cases so pfn_valid() starts returning false where valid
memmap exists. Shrinking the size of the section would increase memory
consumption offsetting the gains.

This patch identifies when an architecture is punching unexpected holes
in the memmap that the memory model cannot automatically detect and sets
ARCH_HAS_HOLES_MEMORYMODEL. At the moment, this is restricted to EP93xx
which is the model sub-architecture this has been reported on but may expand
later. When set, walkers of the full memmap must call memmap_valid_within()
for each PFN and passing in what it expects the page and zone to be for
that PFN. If it finds the linkages to be broken, it assumes the memmap is
invalid for that PFN.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2009-05-18 11:22:24 +01:00

953 lines
22 KiB
C

/*
* linux/mm/vmstat.c
*
* Manages VM statistics
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
*
* zoned VM statistics
* Copyright (C) 2006 Silicon Graphics, Inc.,
* Christoph Lameter <christoph@lameter.com>
*/
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/cpu.h>
#include <linux/vmstat.h>
#include <linux/sched.h>
#ifdef CONFIG_VM_EVENT_COUNTERS
DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
EXPORT_PER_CPU_SYMBOL(vm_event_states);
static void sum_vm_events(unsigned long *ret, const struct cpumask *cpumask)
{
int cpu;
int i;
memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
for_each_cpu(cpu, cpumask) {
struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
ret[i] += this->event[i];
}
}
/*
* Accumulate the vm event counters across all CPUs.
* The result is unavoidably approximate - it can change
* during and after execution of this function.
*/
void all_vm_events(unsigned long *ret)
{
get_online_cpus();
sum_vm_events(ret, cpu_online_mask);
put_online_cpus();
}
EXPORT_SYMBOL_GPL(all_vm_events);
#ifdef CONFIG_HOTPLUG
/*
* Fold the foreign cpu events into our own.
*
* This is adding to the events on one processor
* but keeps the global counts constant.
*/
void vm_events_fold_cpu(int cpu)
{
struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
int i;
for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
count_vm_events(i, fold_state->event[i]);
fold_state->event[i] = 0;
}
}
#endif /* CONFIG_HOTPLUG */
#endif /* CONFIG_VM_EVENT_COUNTERS */
/*
* Manage combined zone based / global counters
*
* vm_stat contains the global counters
*/
atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
EXPORT_SYMBOL(vm_stat);
#ifdef CONFIG_SMP
static int calculate_threshold(struct zone *zone)
{
int threshold;
int mem; /* memory in 128 MB units */
/*
* The threshold scales with the number of processors and the amount
* of memory per zone. More memory means that we can defer updates for
* longer, more processors could lead to more contention.
* fls() is used to have a cheap way of logarithmic scaling.
*
* Some sample thresholds:
*
* Threshold Processors (fls) Zonesize fls(mem+1)
* ------------------------------------------------------------------
* 8 1 1 0.9-1 GB 4
* 16 2 2 0.9-1 GB 4
* 20 2 2 1-2 GB 5
* 24 2 2 2-4 GB 6
* 28 2 2 4-8 GB 7
* 32 2 2 8-16 GB 8
* 4 2 2 <128M 1
* 30 4 3 2-4 GB 5
* 48 4 3 8-16 GB 8
* 32 8 4 1-2 GB 4
* 32 8 4 0.9-1GB 4
* 10 16 5 <128M 1
* 40 16 5 900M 4
* 70 64 7 2-4 GB 5
* 84 64 7 4-8 GB 6
* 108 512 9 4-8 GB 6
* 125 1024 10 8-16 GB 8
* 125 1024 10 16-32 GB 9
*/
mem = zone->present_pages >> (27 - PAGE_SHIFT);
threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
/*
* Maximum threshold is 125
*/
threshold = min(125, threshold);
return threshold;
}
/*
* Refresh the thresholds for each zone.
*/
static void refresh_zone_stat_thresholds(void)
{
struct zone *zone;
int cpu;
int threshold;
for_each_populated_zone(zone) {
threshold = calculate_threshold(zone);
for_each_online_cpu(cpu)
zone_pcp(zone, cpu)->stat_threshold = threshold;
}
}
/*
* For use when we know that interrupts are disabled.
*/
void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
int delta)
{
struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
s8 *p = pcp->vm_stat_diff + item;
long x;
x = delta + *p;
if (unlikely(x > pcp->stat_threshold || x < -pcp->stat_threshold)) {
zone_page_state_add(x, zone, item);
x = 0;
}
*p = x;
}
EXPORT_SYMBOL(__mod_zone_page_state);
/*
* For an unknown interrupt state
*/
void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
int delta)
{
unsigned long flags;
local_irq_save(flags);
__mod_zone_page_state(zone, item, delta);
local_irq_restore(flags);
}
EXPORT_SYMBOL(mod_zone_page_state);
/*
* Optimized increment and decrement functions.
*
* These are only for a single page and therefore can take a struct page *
* argument instead of struct zone *. This allows the inclusion of the code
* generated for page_zone(page) into the optimized functions.
*
* No overflow check is necessary and therefore the differential can be
* incremented or decremented in place which may allow the compilers to
* generate better code.
* The increment or decrement is known and therefore one boundary check can
* be omitted.
*
* NOTE: These functions are very performance sensitive. Change only
* with care.
*
* Some processors have inc/dec instructions that are atomic vs an interrupt.
* However, the code must first determine the differential location in a zone
* based on the processor number and then inc/dec the counter. There is no
* guarantee without disabling preemption that the processor will not change
* in between and therefore the atomicity vs. interrupt cannot be exploited
* in a useful way here.
*/
void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
{
struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
s8 *p = pcp->vm_stat_diff + item;
(*p)++;
if (unlikely(*p > pcp->stat_threshold)) {
int overstep = pcp->stat_threshold / 2;
zone_page_state_add(*p + overstep, zone, item);
*p = -overstep;
}
}
void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
{
__inc_zone_state(page_zone(page), item);
}
EXPORT_SYMBOL(__inc_zone_page_state);
void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
{
struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
s8 *p = pcp->vm_stat_diff + item;
(*p)--;
if (unlikely(*p < - pcp->stat_threshold)) {
int overstep = pcp->stat_threshold / 2;
zone_page_state_add(*p - overstep, zone, item);
*p = overstep;
}
}
void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
{
__dec_zone_state(page_zone(page), item);
}
EXPORT_SYMBOL(__dec_zone_page_state);
void inc_zone_state(struct zone *zone, enum zone_stat_item item)
{
unsigned long flags;
local_irq_save(flags);
__inc_zone_state(zone, item);
local_irq_restore(flags);
}
void inc_zone_page_state(struct page *page, enum zone_stat_item item)
{
unsigned long flags;
struct zone *zone;
zone = page_zone(page);
local_irq_save(flags);
__inc_zone_state(zone, item);
local_irq_restore(flags);
}
EXPORT_SYMBOL(inc_zone_page_state);
void dec_zone_page_state(struct page *page, enum zone_stat_item item)
{
unsigned long flags;
local_irq_save(flags);
__dec_zone_page_state(page, item);
local_irq_restore(flags);
}
EXPORT_SYMBOL(dec_zone_page_state);
/*
* Update the zone counters for one cpu.
*
* The cpu specified must be either the current cpu or a processor that
* is not online. If it is the current cpu then the execution thread must
* be pinned to the current cpu.
*
* Note that refresh_cpu_vm_stats strives to only access
* node local memory. The per cpu pagesets on remote zones are placed
* in the memory local to the processor using that pageset. So the
* loop over all zones will access a series of cachelines local to
* the processor.
*
* The call to zone_page_state_add updates the cachelines with the
* statistics in the remote zone struct as well as the global cachelines
* with the global counters. These could cause remote node cache line
* bouncing and will have to be only done when necessary.
*/
void refresh_cpu_vm_stats(int cpu)
{
struct zone *zone;
int i;
int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
for_each_populated_zone(zone) {
struct per_cpu_pageset *p;
p = zone_pcp(zone, cpu);
for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
if (p->vm_stat_diff[i]) {
unsigned long flags;
int v;
local_irq_save(flags);
v = p->vm_stat_diff[i];
p->vm_stat_diff[i] = 0;
local_irq_restore(flags);
atomic_long_add(v, &zone->vm_stat[i]);
global_diff[i] += v;
#ifdef CONFIG_NUMA
/* 3 seconds idle till flush */
p->expire = 3;
#endif
}
cond_resched();
#ifdef CONFIG_NUMA
/*
* Deal with draining the remote pageset of this
* processor
*
* Check if there are pages remaining in this pageset
* if not then there is nothing to expire.
*/
if (!p->expire || !p->pcp.count)
continue;
/*
* We never drain zones local to this processor.
*/
if (zone_to_nid(zone) == numa_node_id()) {
p->expire = 0;
continue;
}
p->expire--;
if (p->expire)
continue;
if (p->pcp.count)
drain_zone_pages(zone, &p->pcp);
#endif
}
for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
if (global_diff[i])
atomic_long_add(global_diff[i], &vm_stat[i]);
}
#endif
#ifdef CONFIG_NUMA
/*
* zonelist = the list of zones passed to the allocator
* z = the zone from which the allocation occurred.
*
* Must be called with interrupts disabled.
*/
void zone_statistics(struct zone *preferred_zone, struct zone *z)
{
if (z->zone_pgdat == preferred_zone->zone_pgdat) {
__inc_zone_state(z, NUMA_HIT);
} else {
__inc_zone_state(z, NUMA_MISS);
__inc_zone_state(preferred_zone, NUMA_FOREIGN);
}
if (z->node == numa_node_id())
__inc_zone_state(z, NUMA_LOCAL);
else
__inc_zone_state(z, NUMA_OTHER);
}
#endif
#ifdef CONFIG_PROC_FS
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
static char * const migratetype_names[MIGRATE_TYPES] = {
"Unmovable",
"Reclaimable",
"Movable",
"Reserve",
"Isolate",
};
static void *frag_start(struct seq_file *m, loff_t *pos)
{
pg_data_t *pgdat;
loff_t node = *pos;
for (pgdat = first_online_pgdat();
pgdat && node;
pgdat = next_online_pgdat(pgdat))
--node;
return pgdat;
}
static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
{
pg_data_t *pgdat = (pg_data_t *)arg;
(*pos)++;
return next_online_pgdat(pgdat);
}
static void frag_stop(struct seq_file *m, void *arg)
{
}
/* Walk all the zones in a node and print using a callback */
static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
{
struct zone *zone;
struct zone *node_zones = pgdat->node_zones;
unsigned long flags;
for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
if (!populated_zone(zone))
continue;
spin_lock_irqsave(&zone->lock, flags);
print(m, pgdat, zone);
spin_unlock_irqrestore(&zone->lock, flags);
}
}
static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
struct zone *zone)
{
int order;
seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
for (order = 0; order < MAX_ORDER; ++order)
seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
seq_putc(m, '\n');
}
/*
* This walks the free areas for each zone.
*/
static int frag_show(struct seq_file *m, void *arg)
{
pg_data_t *pgdat = (pg_data_t *)arg;
walk_zones_in_node(m, pgdat, frag_show_print);
return 0;
}
static void pagetypeinfo_showfree_print(struct seq_file *m,
pg_data_t *pgdat, struct zone *zone)
{
int order, mtype;
for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
seq_printf(m, "Node %4d, zone %8s, type %12s ",
pgdat->node_id,
zone->name,
migratetype_names[mtype]);
for (order = 0; order < MAX_ORDER; ++order) {
unsigned long freecount = 0;
struct free_area *area;
struct list_head *curr;
area = &(zone->free_area[order]);
list_for_each(curr, &area->free_list[mtype])
freecount++;
seq_printf(m, "%6lu ", freecount);
}
seq_putc(m, '\n');
}
}
/* Print out the free pages at each order for each migatetype */
static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
{
int order;
pg_data_t *pgdat = (pg_data_t *)arg;
/* Print header */
seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
for (order = 0; order < MAX_ORDER; ++order)
seq_printf(m, "%6d ", order);
seq_putc(m, '\n');
walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
return 0;
}
static void pagetypeinfo_showblockcount_print(struct seq_file *m,
pg_data_t *pgdat, struct zone *zone)
{
int mtype;
unsigned long pfn;
unsigned long start_pfn = zone->zone_start_pfn;
unsigned long end_pfn = start_pfn + zone->spanned_pages;
unsigned long count[MIGRATE_TYPES] = { 0, };
for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
struct page *page;
if (!pfn_valid(pfn))
continue;
page = pfn_to_page(pfn);
/* Watch for unexpected holes punched in the memmap */
if (!memmap_valid_within(pfn, page, zone))
continue;
mtype = get_pageblock_migratetype(page);
if (mtype < MIGRATE_TYPES)
count[mtype]++;
}
/* Print counts */
seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
seq_printf(m, "%12lu ", count[mtype]);
seq_putc(m, '\n');
}
/* Print out the free pages at each order for each migratetype */
static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
{
int mtype;
pg_data_t *pgdat = (pg_data_t *)arg;
seq_printf(m, "\n%-23s", "Number of blocks type ");
for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
seq_printf(m, "%12s ", migratetype_names[mtype]);
seq_putc(m, '\n');
walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
return 0;
}
/*
* This prints out statistics in relation to grouping pages by mobility.
* It is expensive to collect so do not constantly read the file.
*/
static int pagetypeinfo_show(struct seq_file *m, void *arg)
{
pg_data_t *pgdat = (pg_data_t *)arg;
/* check memoryless node */
if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
return 0;
seq_printf(m, "Page block order: %d\n", pageblock_order);
seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
seq_putc(m, '\n');
pagetypeinfo_showfree(m, pgdat);
pagetypeinfo_showblockcount(m, pgdat);
return 0;
}
static const struct seq_operations fragmentation_op = {
.start = frag_start,
.next = frag_next,
.stop = frag_stop,
.show = frag_show,
};
static int fragmentation_open(struct inode *inode, struct file *file)
{
return seq_open(file, &fragmentation_op);
}
static const struct file_operations fragmentation_file_operations = {
.open = fragmentation_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
static const struct seq_operations pagetypeinfo_op = {
.start = frag_start,
.next = frag_next,
.stop = frag_stop,
.show = pagetypeinfo_show,
};
static int pagetypeinfo_open(struct inode *inode, struct file *file)
{
return seq_open(file, &pagetypeinfo_op);
}
static const struct file_operations pagetypeinfo_file_ops = {
.open = pagetypeinfo_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
#ifdef CONFIG_ZONE_DMA
#define TEXT_FOR_DMA(xx) xx "_dma",
#else
#define TEXT_FOR_DMA(xx)
#endif
#ifdef CONFIG_ZONE_DMA32
#define TEXT_FOR_DMA32(xx) xx "_dma32",
#else
#define TEXT_FOR_DMA32(xx)
#endif
#ifdef CONFIG_HIGHMEM
#define TEXT_FOR_HIGHMEM(xx) xx "_high",
#else
#define TEXT_FOR_HIGHMEM(xx)
#endif
#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
TEXT_FOR_HIGHMEM(xx) xx "_movable",
static const char * const vmstat_text[] = {
/* Zoned VM counters */
"nr_free_pages",
"nr_inactive_anon",
"nr_active_anon",
"nr_inactive_file",
"nr_active_file",
#ifdef CONFIG_UNEVICTABLE_LRU
"nr_unevictable",
"nr_mlock",
#endif
"nr_anon_pages",
"nr_mapped",
"nr_file_pages",
"nr_dirty",
"nr_writeback",
"nr_slab_reclaimable",
"nr_slab_unreclaimable",
"nr_page_table_pages",
"nr_unstable",
"nr_bounce",
"nr_vmscan_write",
"nr_writeback_temp",
#ifdef CONFIG_NUMA
"numa_hit",
"numa_miss",
"numa_foreign",
"numa_interleave",
"numa_local",
"numa_other",
#endif
#ifdef CONFIG_VM_EVENT_COUNTERS
"pgpgin",
"pgpgout",
"pswpin",
"pswpout",
TEXTS_FOR_ZONES("pgalloc")
"pgfree",
"pgactivate",
"pgdeactivate",
"pgfault",
"pgmajfault",
TEXTS_FOR_ZONES("pgrefill")
TEXTS_FOR_ZONES("pgsteal")
TEXTS_FOR_ZONES("pgscan_kswapd")
TEXTS_FOR_ZONES("pgscan_direct")
"pginodesteal",
"slabs_scanned",
"kswapd_steal",
"kswapd_inodesteal",
"pageoutrun",
"allocstall",
"pgrotated",
#ifdef CONFIG_HUGETLB_PAGE
"htlb_buddy_alloc_success",
"htlb_buddy_alloc_fail",
#endif
#ifdef CONFIG_UNEVICTABLE_LRU
"unevictable_pgs_culled",
"unevictable_pgs_scanned",
"unevictable_pgs_rescued",
"unevictable_pgs_mlocked",
"unevictable_pgs_munlocked",
"unevictable_pgs_cleared",
"unevictable_pgs_stranded",
"unevictable_pgs_mlockfreed",
#endif
#endif
};
static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
struct zone *zone)
{
int i;
seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
seq_printf(m,
"\n pages free %lu"
"\n min %lu"
"\n low %lu"
"\n high %lu"
"\n scanned %lu (aa: %lu ia: %lu af: %lu if: %lu)"
"\n spanned %lu"
"\n present %lu",
zone_page_state(zone, NR_FREE_PAGES),
zone->pages_min,
zone->pages_low,
zone->pages_high,
zone->pages_scanned,
zone->lru[LRU_ACTIVE_ANON].nr_scan,
zone->lru[LRU_INACTIVE_ANON].nr_scan,
zone->lru[LRU_ACTIVE_FILE].nr_scan,
zone->lru[LRU_INACTIVE_FILE].nr_scan,
zone->spanned_pages,
zone->present_pages);
for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
seq_printf(m, "\n %-12s %lu", vmstat_text[i],
zone_page_state(zone, i));
seq_printf(m,
"\n protection: (%lu",
zone->lowmem_reserve[0]);
for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
seq_printf(m,
")"
"\n pagesets");
for_each_online_cpu(i) {
struct per_cpu_pageset *pageset;
pageset = zone_pcp(zone, i);
seq_printf(m,
"\n cpu: %i"
"\n count: %i"
"\n high: %i"
"\n batch: %i",
i,
pageset->pcp.count,
pageset->pcp.high,
pageset->pcp.batch);
#ifdef CONFIG_SMP
seq_printf(m, "\n vm stats threshold: %d",
pageset->stat_threshold);
#endif
}
seq_printf(m,
"\n all_unreclaimable: %u"
"\n prev_priority: %i"
"\n start_pfn: %lu"
"\n inactive_ratio: %u",
zone_is_all_unreclaimable(zone),
zone->prev_priority,
zone->zone_start_pfn,
zone->inactive_ratio);
seq_putc(m, '\n');
}
/*
* Output information about zones in @pgdat.
*/
static int zoneinfo_show(struct seq_file *m, void *arg)
{
pg_data_t *pgdat = (pg_data_t *)arg;
walk_zones_in_node(m, pgdat, zoneinfo_show_print);
return 0;
}
static const struct seq_operations zoneinfo_op = {
.start = frag_start, /* iterate over all zones. The same as in
* fragmentation. */
.next = frag_next,
.stop = frag_stop,
.show = zoneinfo_show,
};
static int zoneinfo_open(struct inode *inode, struct file *file)
{
return seq_open(file, &zoneinfo_op);
}
static const struct file_operations proc_zoneinfo_file_operations = {
.open = zoneinfo_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
static void *vmstat_start(struct seq_file *m, loff_t *pos)
{
unsigned long *v;
#ifdef CONFIG_VM_EVENT_COUNTERS
unsigned long *e;
#endif
int i;
if (*pos >= ARRAY_SIZE(vmstat_text))
return NULL;
#ifdef CONFIG_VM_EVENT_COUNTERS
v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long)
+ sizeof(struct vm_event_state), GFP_KERNEL);
#else
v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long),
GFP_KERNEL);
#endif
m->private = v;
if (!v)
return ERR_PTR(-ENOMEM);
for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
v[i] = global_page_state(i);
#ifdef CONFIG_VM_EVENT_COUNTERS
e = v + NR_VM_ZONE_STAT_ITEMS;
all_vm_events(e);
e[PGPGIN] /= 2; /* sectors -> kbytes */
e[PGPGOUT] /= 2;
#endif
return v + *pos;
}
static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
{
(*pos)++;
if (*pos >= ARRAY_SIZE(vmstat_text))
return NULL;
return (unsigned long *)m->private + *pos;
}
static int vmstat_show(struct seq_file *m, void *arg)
{
unsigned long *l = arg;
unsigned long off = l - (unsigned long *)m->private;
seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
return 0;
}
static void vmstat_stop(struct seq_file *m, void *arg)
{
kfree(m->private);
m->private = NULL;
}
static const struct seq_operations vmstat_op = {
.start = vmstat_start,
.next = vmstat_next,
.stop = vmstat_stop,
.show = vmstat_show,
};
static int vmstat_open(struct inode *inode, struct file *file)
{
return seq_open(file, &vmstat_op);
}
static const struct file_operations proc_vmstat_file_operations = {
.open = vmstat_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
#endif /* CONFIG_PROC_FS */
#ifdef CONFIG_SMP
static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
int sysctl_stat_interval __read_mostly = HZ;
static void vmstat_update(struct work_struct *w)
{
refresh_cpu_vm_stats(smp_processor_id());
schedule_delayed_work(&__get_cpu_var(vmstat_work),
round_jiffies_relative(sysctl_stat_interval));
}
static void __cpuinit start_cpu_timer(int cpu)
{
struct delayed_work *vmstat_work = &per_cpu(vmstat_work, cpu);
INIT_DELAYED_WORK_DEFERRABLE(vmstat_work, vmstat_update);
schedule_delayed_work_on(cpu, vmstat_work,
__round_jiffies_relative(HZ, cpu));
}
/*
* Use the cpu notifier to insure that the thresholds are recalculated
* when necessary.
*/
static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
unsigned long action,
void *hcpu)
{
long cpu = (long)hcpu;
switch (action) {
case CPU_ONLINE:
case CPU_ONLINE_FROZEN:
start_cpu_timer(cpu);
break;
case CPU_DOWN_PREPARE:
case CPU_DOWN_PREPARE_FROZEN:
cancel_rearming_delayed_work(&per_cpu(vmstat_work, cpu));
per_cpu(vmstat_work, cpu).work.func = NULL;
break;
case CPU_DOWN_FAILED:
case CPU_DOWN_FAILED_FROZEN:
start_cpu_timer(cpu);
break;
case CPU_DEAD:
case CPU_DEAD_FROZEN:
refresh_zone_stat_thresholds();
break;
default:
break;
}
return NOTIFY_OK;
}
static struct notifier_block __cpuinitdata vmstat_notifier =
{ &vmstat_cpuup_callback, NULL, 0 };
#endif
static int __init setup_vmstat(void)
{
#ifdef CONFIG_SMP
int cpu;
refresh_zone_stat_thresholds();
register_cpu_notifier(&vmstat_notifier);
for_each_online_cpu(cpu)
start_cpu_timer(cpu);
#endif
#ifdef CONFIG_PROC_FS
proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
#endif
return 0;
}
module_init(setup_vmstat)