1
linux/arch/sh/mm/fault_32.c
Peter Zijlstra a8b0ca17b8 perf: Remove the nmi parameter from the swevent and overflow interface
The nmi parameter indicated if we could do wakeups from the current
context, if not, we would set some state and self-IPI and let the
resulting interrupt do the wakeup.

For the various event classes:

  - hardware: nmi=0; PMI is in fact an NMI or we run irq_work_run from
    the PMI-tail (ARM etc.)
  - tracepoint: nmi=0; since tracepoint could be from NMI context.
  - software: nmi=[0,1]; some, like the schedule thing cannot
    perform wakeups, and hence need 0.

As one can see, there is very little nmi=1 usage, and the down-side of
not using it is that on some platforms some software events can have a
jiffy delay in wakeup (when arch_irq_work_raise isn't implemented).

The up-side however is that we can remove the nmi parameter and save a
bunch of conditionals in fast paths.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Michael Cree <mcree@orcon.net.nz>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com>
Cc: Anton Blanchard <anton@samba.org>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Jason Wessel <jason.wessel@windriver.com>
Cc: Don Zickus <dzickus@redhat.com>
Link: http://lkml.kernel.org/n/tip-agjev8eu666tvknpb3iaj0fg@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-07-01 11:06:35 +02:00

375 lines
8.5 KiB
C

/*
* Page fault handler for SH with an MMU.
*
* Copyright (C) 1999 Niibe Yutaka
* Copyright (C) 2003 - 2009 Paul Mundt
*
* Based on linux/arch/i386/mm/fault.c:
* Copyright (C) 1995 Linus Torvalds
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*/
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/hardirq.h>
#include <linux/kprobes.h>
#include <linux/perf_event.h>
#include <asm/io_trapped.h>
#include <asm/system.h>
#include <asm/mmu_context.h>
#include <asm/tlbflush.h>
static inline int notify_page_fault(struct pt_regs *regs, int trap)
{
int ret = 0;
if (kprobes_built_in() && !user_mode(regs)) {
preempt_disable();
if (kprobe_running() && kprobe_fault_handler(regs, trap))
ret = 1;
preempt_enable();
}
return ret;
}
static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
{
unsigned index = pgd_index(address);
pgd_t *pgd_k;
pud_t *pud, *pud_k;
pmd_t *pmd, *pmd_k;
pgd += index;
pgd_k = init_mm.pgd + index;
if (!pgd_present(*pgd_k))
return NULL;
pud = pud_offset(pgd, address);
pud_k = pud_offset(pgd_k, address);
if (!pud_present(*pud_k))
return NULL;
if (!pud_present(*pud))
set_pud(pud, *pud_k);
pmd = pmd_offset(pud, address);
pmd_k = pmd_offset(pud_k, address);
if (!pmd_present(*pmd_k))
return NULL;
if (!pmd_present(*pmd))
set_pmd(pmd, *pmd_k);
else {
/*
* The page tables are fully synchronised so there must
* be another reason for the fault. Return NULL here to
* signal that we have not taken care of the fault.
*/
BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
return NULL;
}
return pmd_k;
}
/*
* Handle a fault on the vmalloc or module mapping area
*/
static noinline int vmalloc_fault(unsigned long address)
{
pgd_t *pgd_k;
pmd_t *pmd_k;
pte_t *pte_k;
/* Make sure we are in vmalloc/module/P3 area: */
if (!(address >= VMALLOC_START && address < P3_ADDR_MAX))
return -1;
/*
* Synchronize this task's top level page-table
* with the 'reference' page table.
*
* Do _not_ use "current" here. We might be inside
* an interrupt in the middle of a task switch..
*/
pgd_k = get_TTB();
pmd_k = vmalloc_sync_one(pgd_k, address);
if (!pmd_k)
return -1;
pte_k = pte_offset_kernel(pmd_k, address);
if (!pte_present(*pte_k))
return -1;
return 0;
}
static int fault_in_kernel_space(unsigned long address)
{
return address >= TASK_SIZE;
}
/*
* This routine handles page faults. It determines the address,
* and the problem, and then passes it off to one of the appropriate
* routines.
*/
asmlinkage void __kprobes do_page_fault(struct pt_regs *regs,
unsigned long writeaccess,
unsigned long address)
{
unsigned long vec;
struct task_struct *tsk;
struct mm_struct *mm;
struct vm_area_struct * vma;
int si_code;
int fault;
siginfo_t info;
tsk = current;
mm = tsk->mm;
si_code = SEGV_MAPERR;
vec = lookup_exception_vector();
/*
* We fault-in kernel-space virtual memory on-demand. The
* 'reference' page table is init_mm.pgd.
*
* NOTE! We MUST NOT take any locks for this case. We may
* be in an interrupt or a critical region, and should
* only copy the information from the master page table,
* nothing more.
*/
if (unlikely(fault_in_kernel_space(address))) {
if (vmalloc_fault(address) >= 0)
return;
if (notify_page_fault(regs, vec))
return;
goto bad_area_nosemaphore;
}
if (unlikely(notify_page_fault(regs, vec)))
return;
/* Only enable interrupts if they were on before the fault */
if ((regs->sr & SR_IMASK) != SR_IMASK)
local_irq_enable();
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
/*
* If we're in an interrupt, have no user context or are running
* in an atomic region then we must not take the fault:
*/
if (in_atomic() || !mm)
goto no_context;
down_read(&mm->mmap_sem);
vma = find_vma(mm, address);
if (!vma)
goto bad_area;
if (vma->vm_start <= address)
goto good_area;
if (!(vma->vm_flags & VM_GROWSDOWN))
goto bad_area;
if (expand_stack(vma, address))
goto bad_area;
/*
* Ok, we have a good vm_area for this memory access, so
* we can handle it..
*/
good_area:
si_code = SEGV_ACCERR;
if (writeaccess) {
if (!(vma->vm_flags & VM_WRITE))
goto bad_area;
} else {
if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
goto bad_area;
}
/*
* If for any reason at all we couldn't handle the fault,
* make sure we exit gracefully rather than endlessly redo
* the fault.
*/
fault = handle_mm_fault(mm, vma, address, writeaccess ? FAULT_FLAG_WRITE : 0);
if (unlikely(fault & VM_FAULT_ERROR)) {
if (fault & VM_FAULT_OOM)
goto out_of_memory;
else if (fault & VM_FAULT_SIGBUS)
goto do_sigbus;
BUG();
}
if (fault & VM_FAULT_MAJOR) {
tsk->maj_flt++;
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
regs, address);
} else {
tsk->min_flt++;
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
regs, address);
}
up_read(&mm->mmap_sem);
return;
/*
* Something tried to access memory that isn't in our memory map..
* Fix it, but check if it's kernel or user first..
*/
bad_area:
up_read(&mm->mmap_sem);
bad_area_nosemaphore:
if (user_mode(regs)) {
info.si_signo = SIGSEGV;
info.si_errno = 0;
info.si_code = si_code;
info.si_addr = (void *) address;
force_sig_info(SIGSEGV, &info, tsk);
return;
}
no_context:
/* Are we prepared to handle this kernel fault? */
if (fixup_exception(regs))
return;
if (handle_trapped_io(regs, address))
return;
/*
* Oops. The kernel tried to access some bad page. We'll have to
* terminate things with extreme prejudice.
*
*/
bust_spinlocks(1);
if (oops_may_print()) {
unsigned long page;
if (address < PAGE_SIZE)
printk(KERN_ALERT "Unable to handle kernel NULL "
"pointer dereference");
else
printk(KERN_ALERT "Unable to handle kernel paging "
"request");
printk(" at virtual address %08lx\n", address);
printk(KERN_ALERT "pc = %08lx\n", regs->pc);
page = (unsigned long)get_TTB();
if (page) {
page = ((__typeof__(page) *)page)[address >> PGDIR_SHIFT];
printk(KERN_ALERT "*pde = %08lx\n", page);
if (page & _PAGE_PRESENT) {
page &= PAGE_MASK;
address &= 0x003ff000;
page = ((__typeof__(page) *)
__va(page))[address >>
PAGE_SHIFT];
printk(KERN_ALERT "*pte = %08lx\n", page);
}
}
}
die("Oops", regs, writeaccess);
bust_spinlocks(0);
do_exit(SIGKILL);
/*
* We ran out of memory, or some other thing happened to us that made
* us unable to handle the page fault gracefully.
*/
out_of_memory:
up_read(&mm->mmap_sem);
if (!user_mode(regs))
goto no_context;
pagefault_out_of_memory();
return;
do_sigbus:
up_read(&mm->mmap_sem);
/*
* Send a sigbus, regardless of whether we were in kernel
* or user mode.
*/
info.si_signo = SIGBUS;
info.si_errno = 0;
info.si_code = BUS_ADRERR;
info.si_addr = (void *)address;
force_sig_info(SIGBUS, &info, tsk);
/* Kernel mode? Handle exceptions or die */
if (!user_mode(regs))
goto no_context;
}
/*
* Called with interrupts disabled.
*/
asmlinkage int __kprobes
handle_tlbmiss(struct pt_regs *regs, unsigned long writeaccess,
unsigned long address)
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
pte_t entry;
/*
* We don't take page faults for P1, P2, and parts of P4, these
* are always mapped, whether it be due to legacy behaviour in
* 29-bit mode, or due to PMB configuration in 32-bit mode.
*/
if (address >= P3SEG && address < P3_ADDR_MAX) {
pgd = pgd_offset_k(address);
} else {
if (unlikely(address >= TASK_SIZE || !current->mm))
return 1;
pgd = pgd_offset(current->mm, address);
}
pud = pud_offset(pgd, address);
if (pud_none_or_clear_bad(pud))
return 1;
pmd = pmd_offset(pud, address);
if (pmd_none_or_clear_bad(pmd))
return 1;
pte = pte_offset_kernel(pmd, address);
entry = *pte;
if (unlikely(pte_none(entry) || pte_not_present(entry)))
return 1;
if (unlikely(writeaccess && !pte_write(entry)))
return 1;
if (writeaccess)
entry = pte_mkdirty(entry);
entry = pte_mkyoung(entry);
set_pte(pte, entry);
#if defined(CONFIG_CPU_SH4) && !defined(CONFIG_SMP)
/*
* SH-4 does not set MMUCR.RC to the corresponding TLB entry in
* the case of an initial page write exception, so we need to
* flush it in order to avoid potential TLB entry duplication.
*/
if (writeaccess == 2)
local_flush_tlb_one(get_asid(), address & PAGE_MASK);
#endif
update_mmu_cache(NULL, address, pte);
return 0;
}