1
linux/fs/ext4/fsync.c
Theodore Ts'o 6b17d902fd ext4: avoid issuing unnecessary barriers
We don't to issue an I/O barrier on an error or if we force commit
because we are doing data journaling.

Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Cc: Jan Kara <jack@suse.cz>
Cc: stable@kernel.org
2009-11-23 07:24:57 -05:00

109 lines
3.2 KiB
C

/*
* linux/fs/ext4/fsync.c
*
* Copyright (C) 1993 Stephen Tweedie (sct@redhat.com)
* from
* Copyright (C) 1992 Remy Card (card@masi.ibp.fr)
* Laboratoire MASI - Institut Blaise Pascal
* Universite Pierre et Marie Curie (Paris VI)
* from
* linux/fs/minix/truncate.c Copyright (C) 1991, 1992 Linus Torvalds
*
* ext4fs fsync primitive
*
* Big-endian to little-endian byte-swapping/bitmaps by
* David S. Miller (davem@caip.rutgers.edu), 1995
*
* Removed unnecessary code duplication for little endian machines
* and excessive __inline__s.
* Andi Kleen, 1997
*
* Major simplications and cleanup - we only need to do the metadata, because
* we can depend on generic_block_fdatasync() to sync the data blocks.
*/
#include <linux/time.h>
#include <linux/fs.h>
#include <linux/sched.h>
#include <linux/writeback.h>
#include <linux/jbd2.h>
#include <linux/blkdev.h>
#include "ext4.h"
#include "ext4_jbd2.h"
#include <trace/events/ext4.h>
/*
* akpm: A new design for ext4_sync_file().
*
* This is only called from sys_fsync(), sys_fdatasync() and sys_msync().
* There cannot be a transaction open by this task.
* Another task could have dirtied this inode. Its data can be in any
* state in the journalling system.
*
* What we do is just kick off a commit and wait on it. This will snapshot the
* inode to disk.
*
* i_mutex lock is held when entering and exiting this function
*/
int ext4_sync_file(struct file *file, struct dentry *dentry, int datasync)
{
struct inode *inode = dentry->d_inode;
journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
int err, ret = 0;
J_ASSERT(ext4_journal_current_handle() == NULL);
trace_ext4_sync_file(file, dentry, datasync);
ret = flush_aio_dio_completed_IO(inode);
if (ret < 0)
return ret;
/*
* data=writeback:
* The caller's filemap_fdatawrite()/wait will sync the data.
* sync_inode() will sync the metadata
*
* data=ordered:
* The caller's filemap_fdatawrite() will write the data and
* sync_inode() will write the inode if it is dirty. Then the caller's
* filemap_fdatawait() will wait on the pages.
*
* data=journal:
* filemap_fdatawrite won't do anything (the buffers are clean).
* ext4_force_commit will write the file data into the journal and
* will wait on that.
* filemap_fdatawait() will encounter a ton of newly-dirtied pages
* (they were dirtied by commit). But that's OK - the blocks are
* safe in-journal, which is all fsync() needs to ensure.
*/
if (ext4_should_journal_data(inode))
return ext4_force_commit(inode->i_sb);
if (!journal)
ret = sync_mapping_buffers(inode->i_mapping);
if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
goto out;
/*
* The VFS has written the file data. If the inode is unaltered
* then we need not start a commit.
*/
if (inode->i_state & (I_DIRTY_SYNC|I_DIRTY_DATASYNC)) {
struct writeback_control wbc = {
.sync_mode = WB_SYNC_ALL,
.nr_to_write = 0, /* sys_fsync did this */
};
err = sync_inode(inode, &wbc);
if (ret == 0)
ret = err;
}
out:
if (journal && (journal->j_flags & JBD2_BARRIER))
blkdev_issue_flush(inode->i_sb->s_bdev, NULL);
return ret;
}