1
linux/arch/powerpc/mm/init_64.c
Sonny Rao 79c3095fb3 powerpc: Export memstart_addr and kernstart_addr on ppc64
Some modules (like eHCA) want to map all of kernel memory, for this to
work with a relocated kernel, we need to export kernstart_addr so
modules can use PHYSICAL_START and memstart_addr so they could use
MEMORY_START.  Note that the 32bit code already exports these symbols.

Signed-off-By: Sonny Rao <sonnyrao@us.ibm.com>

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2010-08-24 15:26:26 +10:00

333 lines
9.3 KiB
C

/*
* PowerPC version
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
*
* Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
* and Cort Dougan (PReP) (cort@cs.nmt.edu)
* Copyright (C) 1996 Paul Mackerras
*
* Derived from "arch/i386/mm/init.c"
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
*
* Dave Engebretsen <engebret@us.ibm.com>
* Rework for PPC64 port.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#undef DEBUG
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/stddef.h>
#include <linux/vmalloc.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/bootmem.h>
#include <linux/highmem.h>
#include <linux/idr.h>
#include <linux/nodemask.h>
#include <linux/module.h>
#include <linux/poison.h>
#include <linux/memblock.h>
#include <linux/hugetlb.h>
#include <linux/slab.h>
#include <asm/pgalloc.h>
#include <asm/page.h>
#include <asm/prom.h>
#include <asm/rtas.h>
#include <asm/io.h>
#include <asm/mmu_context.h>
#include <asm/pgtable.h>
#include <asm/mmu.h>
#include <asm/uaccess.h>
#include <asm/smp.h>
#include <asm/machdep.h>
#include <asm/tlb.h>
#include <asm/eeh.h>
#include <asm/processor.h>
#include <asm/mmzone.h>
#include <asm/cputable.h>
#include <asm/sections.h>
#include <asm/system.h>
#include <asm/iommu.h>
#include <asm/abs_addr.h>
#include <asm/vdso.h>
#include "mmu_decl.h"
#ifdef CONFIG_PPC_STD_MMU_64
#if PGTABLE_RANGE > USER_VSID_RANGE
#warning Limited user VSID range means pagetable space is wasted
#endif
#if (TASK_SIZE_USER64 < PGTABLE_RANGE) && (TASK_SIZE_USER64 < USER_VSID_RANGE)
#warning TASK_SIZE is smaller than it needs to be.
#endif
#endif /* CONFIG_PPC_STD_MMU_64 */
phys_addr_t memstart_addr = ~0;
EXPORT_SYMBOL_GPL(memstart_addr);
phys_addr_t kernstart_addr;
EXPORT_SYMBOL_GPL(kernstart_addr);
void free_initmem(void)
{
unsigned long addr;
addr = (unsigned long)__init_begin;
for (; addr < (unsigned long)__init_end; addr += PAGE_SIZE) {
memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
ClearPageReserved(virt_to_page(addr));
init_page_count(virt_to_page(addr));
free_page(addr);
totalram_pages++;
}
printk ("Freeing unused kernel memory: %luk freed\n",
((unsigned long)__init_end - (unsigned long)__init_begin) >> 10);
}
#ifdef CONFIG_BLK_DEV_INITRD
void free_initrd_mem(unsigned long start, unsigned long end)
{
if (start < end)
printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
for (; start < end; start += PAGE_SIZE) {
ClearPageReserved(virt_to_page(start));
init_page_count(virt_to_page(start));
free_page(start);
totalram_pages++;
}
}
#endif
static void pgd_ctor(void *addr)
{
memset(addr, 0, PGD_TABLE_SIZE);
}
static void pmd_ctor(void *addr)
{
memset(addr, 0, PMD_TABLE_SIZE);
}
struct kmem_cache *pgtable_cache[MAX_PGTABLE_INDEX_SIZE];
/*
* Create a kmem_cache() for pagetables. This is not used for PTE
* pages - they're linked to struct page, come from the normal free
* pages pool and have a different entry size (see real_pte_t) to
* everything else. Caches created by this function are used for all
* the higher level pagetables, and for hugepage pagetables.
*/
void pgtable_cache_add(unsigned shift, void (*ctor)(void *))
{
char *name;
unsigned long table_size = sizeof(void *) << shift;
unsigned long align = table_size;
/* When batching pgtable pointers for RCU freeing, we store
* the index size in the low bits. Table alignment must be
* big enough to fit it.
*
* Likewise, hugeapge pagetable pointers contain a (different)
* shift value in the low bits. All tables must be aligned so
* as to leave enough 0 bits in the address to contain it. */
unsigned long minalign = max(MAX_PGTABLE_INDEX_SIZE + 1,
HUGEPD_SHIFT_MASK + 1);
struct kmem_cache *new;
/* It would be nice if this was a BUILD_BUG_ON(), but at the
* moment, gcc doesn't seem to recognize is_power_of_2 as a
* constant expression, so so much for that. */
BUG_ON(!is_power_of_2(minalign));
BUG_ON((shift < 1) || (shift > MAX_PGTABLE_INDEX_SIZE));
if (PGT_CACHE(shift))
return; /* Already have a cache of this size */
align = max_t(unsigned long, align, minalign);
name = kasprintf(GFP_KERNEL, "pgtable-2^%d", shift);
new = kmem_cache_create(name, table_size, align, 0, ctor);
PGT_CACHE(shift) = new;
pr_debug("Allocated pgtable cache for order %d\n", shift);
}
void pgtable_cache_init(void)
{
pgtable_cache_add(PGD_INDEX_SIZE, pgd_ctor);
pgtable_cache_add(PMD_INDEX_SIZE, pmd_ctor);
if (!PGT_CACHE(PGD_INDEX_SIZE) || !PGT_CACHE(PMD_INDEX_SIZE))
panic("Couldn't allocate pgtable caches");
/* In all current configs, when the PUD index exists it's the
* same size as either the pgd or pmd index. Verify that the
* initialization above has also created a PUD cache. This
* will need re-examiniation if we add new possibilities for
* the pagetable layout. */
BUG_ON(PUD_INDEX_SIZE && !PGT_CACHE(PUD_INDEX_SIZE));
}
#ifdef CONFIG_SPARSEMEM_VMEMMAP
/*
* Given an address within the vmemmap, determine the pfn of the page that
* represents the start of the section it is within. Note that we have to
* do this by hand as the proffered address may not be correctly aligned.
* Subtraction of non-aligned pointers produces undefined results.
*/
static unsigned long __meminit vmemmap_section_start(unsigned long page)
{
unsigned long offset = page - ((unsigned long)(vmemmap));
/* Return the pfn of the start of the section. */
return (offset / sizeof(struct page)) & PAGE_SECTION_MASK;
}
/*
* Check if this vmemmap page is already initialised. If any section
* which overlaps this vmemmap page is initialised then this page is
* initialised already.
*/
static int __meminit vmemmap_populated(unsigned long start, int page_size)
{
unsigned long end = start + page_size;
for (; start < end; start += (PAGES_PER_SECTION * sizeof(struct page)))
if (pfn_valid(vmemmap_section_start(start)))
return 1;
return 0;
}
/* On hash-based CPUs, the vmemmap is bolted in the hash table.
*
* On Book3E CPUs, the vmemmap is currently mapped in the top half of
* the vmalloc space using normal page tables, though the size of
* pages encoded in the PTEs can be different
*/
#ifdef CONFIG_PPC_BOOK3E
static void __meminit vmemmap_create_mapping(unsigned long start,
unsigned long page_size,
unsigned long phys)
{
/* Create a PTE encoding without page size */
unsigned long i, flags = _PAGE_PRESENT | _PAGE_ACCESSED |
_PAGE_KERNEL_RW;
/* PTEs only contain page size encodings up to 32M */
BUG_ON(mmu_psize_defs[mmu_vmemmap_psize].enc > 0xf);
/* Encode the size in the PTE */
flags |= mmu_psize_defs[mmu_vmemmap_psize].enc << 8;
/* For each PTE for that area, map things. Note that we don't
* increment phys because all PTEs are of the large size and
* thus must have the low bits clear
*/
for (i = 0; i < page_size; i += PAGE_SIZE)
BUG_ON(map_kernel_page(start + i, phys, flags));
}
#else /* CONFIG_PPC_BOOK3E */
static void __meminit vmemmap_create_mapping(unsigned long start,
unsigned long page_size,
unsigned long phys)
{
int mapped = htab_bolt_mapping(start, start + page_size, phys,
PAGE_KERNEL, mmu_vmemmap_psize,
mmu_kernel_ssize);
BUG_ON(mapped < 0);
}
#endif /* CONFIG_PPC_BOOK3E */
struct vmemmap_backing *vmemmap_list;
static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
{
static struct vmemmap_backing *next;
static int num_left;
/* allocate a page when required and hand out chunks */
if (!next || !num_left) {
next = vmemmap_alloc_block(PAGE_SIZE, node);
if (unlikely(!next)) {
WARN_ON(1);
return NULL;
}
num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
}
num_left--;
return next++;
}
static __meminit void vmemmap_list_populate(unsigned long phys,
unsigned long start,
int node)
{
struct vmemmap_backing *vmem_back;
vmem_back = vmemmap_list_alloc(node);
if (unlikely(!vmem_back)) {
WARN_ON(1);
return;
}
vmem_back->phys = phys;
vmem_back->virt_addr = start;
vmem_back->list = vmemmap_list;
vmemmap_list = vmem_back;
}
int __meminit vmemmap_populate(struct page *start_page,
unsigned long nr_pages, int node)
{
unsigned long start = (unsigned long)start_page;
unsigned long end = (unsigned long)(start_page + nr_pages);
unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
/* Align to the page size of the linear mapping. */
start = _ALIGN_DOWN(start, page_size);
pr_debug("vmemmap_populate page %p, %ld pages, node %d\n",
start_page, nr_pages, node);
pr_debug(" -> map %lx..%lx\n", start, end);
for (; start < end; start += page_size) {
void *p;
if (vmemmap_populated(start, page_size))
continue;
p = vmemmap_alloc_block(page_size, node);
if (!p)
return -ENOMEM;
vmemmap_list_populate(__pa(p), start, node);
pr_debug(" * %016lx..%016lx allocated at %p\n",
start, start + page_size, p);
vmemmap_create_mapping(start, page_size, __pa(p));
}
return 0;
}
#endif /* CONFIG_SPARSEMEM_VMEMMAP */