1
linux/drivers/tee/optee/ffa_abi.c
Jens Wiklander f0c8431568 optee: probe RPMB device using RPMB subsystem
Adds support in the OP-TEE drivers (both SMC and FF-A ABIs) to probe and
use an RPMB device via the RPMB subsystem instead of passing the RPMB
frames via tee-supplicant in user space. A fallback mechanism is kept to
route RPMB frames via tee-supplicant if the RPMB subsystem isn't
available.

The OP-TEE RPC ABI is extended to support iterating over all RPMB
devices until one is found with the expected RPMB key already
programmed.

Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>
Tested-by: Manuel Traut <manut@mecka.net>
Reviewed-by: Sumit Garg <sumit.garg@linaro.org>
Link: https://lore.kernel.org/r/20240814153558.708365-5-jens.wiklander@linaro.org
Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2024-08-26 13:16:20 +02:00

1032 lines
26 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2021, 2023 Linaro Limited
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/arm_ffa.h>
#include <linux/errno.h>
#include <linux/rpmb.h>
#include <linux/scatterlist.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/tee_core.h>
#include <linux/types.h>
#include "optee_private.h"
#include "optee_ffa.h"
#include "optee_rpc_cmd.h"
/*
* This file implement the FF-A ABI used when communicating with secure world
* OP-TEE OS via FF-A.
* This file is divided into the following sections:
* 1. Maintain a hash table for lookup of a global FF-A memory handle
* 2. Convert between struct tee_param and struct optee_msg_param
* 3. Low level support functions to register shared memory in secure world
* 4. Dynamic shared memory pool based on alloc_pages()
* 5. Do a normal scheduled call into secure world
* 6. Driver initialization.
*/
/*
* 1. Maintain a hash table for lookup of a global FF-A memory handle
*
* FF-A assigns a global memory handle for each piece shared memory.
* This handle is then used when communicating with secure world.
*
* Main functions are optee_shm_add_ffa_handle() and optee_shm_rem_ffa_handle()
*/
struct shm_rhash {
struct tee_shm *shm;
u64 global_id;
struct rhash_head linkage;
};
static void rh_free_fn(void *ptr, void *arg)
{
kfree(ptr);
}
static const struct rhashtable_params shm_rhash_params = {
.head_offset = offsetof(struct shm_rhash, linkage),
.key_len = sizeof(u64),
.key_offset = offsetof(struct shm_rhash, global_id),
.automatic_shrinking = true,
};
static struct tee_shm *optee_shm_from_ffa_handle(struct optee *optee,
u64 global_id)
{
struct tee_shm *shm = NULL;
struct shm_rhash *r;
mutex_lock(&optee->ffa.mutex);
r = rhashtable_lookup_fast(&optee->ffa.global_ids, &global_id,
shm_rhash_params);
if (r)
shm = r->shm;
mutex_unlock(&optee->ffa.mutex);
return shm;
}
static int optee_shm_add_ffa_handle(struct optee *optee, struct tee_shm *shm,
u64 global_id)
{
struct shm_rhash *r;
int rc;
r = kmalloc(sizeof(*r), GFP_KERNEL);
if (!r)
return -ENOMEM;
r->shm = shm;
r->global_id = global_id;
mutex_lock(&optee->ffa.mutex);
rc = rhashtable_lookup_insert_fast(&optee->ffa.global_ids, &r->linkage,
shm_rhash_params);
mutex_unlock(&optee->ffa.mutex);
if (rc)
kfree(r);
return rc;
}
static int optee_shm_rem_ffa_handle(struct optee *optee, u64 global_id)
{
struct shm_rhash *r;
int rc = -ENOENT;
mutex_lock(&optee->ffa.mutex);
r = rhashtable_lookup_fast(&optee->ffa.global_ids, &global_id,
shm_rhash_params);
if (r)
rc = rhashtable_remove_fast(&optee->ffa.global_ids,
&r->linkage, shm_rhash_params);
mutex_unlock(&optee->ffa.mutex);
if (!rc)
kfree(r);
return rc;
}
/*
* 2. Convert between struct tee_param and struct optee_msg_param
*
* optee_ffa_from_msg_param() and optee_ffa_to_msg_param() are the main
* functions.
*/
static void from_msg_param_ffa_mem(struct optee *optee, struct tee_param *p,
u32 attr, const struct optee_msg_param *mp)
{
struct tee_shm *shm = NULL;
u64 offs_high = 0;
u64 offs_low = 0;
p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT +
attr - OPTEE_MSG_ATTR_TYPE_FMEM_INPUT;
p->u.memref.size = mp->u.fmem.size;
if (mp->u.fmem.global_id != OPTEE_MSG_FMEM_INVALID_GLOBAL_ID)
shm = optee_shm_from_ffa_handle(optee, mp->u.fmem.global_id);
p->u.memref.shm = shm;
if (shm) {
offs_low = mp->u.fmem.offs_low;
offs_high = mp->u.fmem.offs_high;
}
p->u.memref.shm_offs = offs_low | offs_high << 32;
}
/**
* optee_ffa_from_msg_param() - convert from OPTEE_MSG parameters to
* struct tee_param
* @optee: main service struct
* @params: subsystem internal parameter representation
* @num_params: number of elements in the parameter arrays
* @msg_params: OPTEE_MSG parameters
*
* Returns 0 on success or <0 on failure
*/
static int optee_ffa_from_msg_param(struct optee *optee,
struct tee_param *params, size_t num_params,
const struct optee_msg_param *msg_params)
{
size_t n;
for (n = 0; n < num_params; n++) {
struct tee_param *p = params + n;
const struct optee_msg_param *mp = msg_params + n;
u32 attr = mp->attr & OPTEE_MSG_ATTR_TYPE_MASK;
switch (attr) {
case OPTEE_MSG_ATTR_TYPE_NONE:
p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_NONE;
memset(&p->u, 0, sizeof(p->u));
break;
case OPTEE_MSG_ATTR_TYPE_VALUE_INPUT:
case OPTEE_MSG_ATTR_TYPE_VALUE_OUTPUT:
case OPTEE_MSG_ATTR_TYPE_VALUE_INOUT:
optee_from_msg_param_value(p, attr, mp);
break;
case OPTEE_MSG_ATTR_TYPE_FMEM_INPUT:
case OPTEE_MSG_ATTR_TYPE_FMEM_OUTPUT:
case OPTEE_MSG_ATTR_TYPE_FMEM_INOUT:
from_msg_param_ffa_mem(optee, p, attr, mp);
break;
default:
return -EINVAL;
}
}
return 0;
}
static int to_msg_param_ffa_mem(struct optee_msg_param *mp,
const struct tee_param *p)
{
struct tee_shm *shm = p->u.memref.shm;
mp->attr = OPTEE_MSG_ATTR_TYPE_FMEM_INPUT + p->attr -
TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT;
if (shm) {
u64 shm_offs = p->u.memref.shm_offs;
mp->u.fmem.internal_offs = shm->offset;
mp->u.fmem.offs_low = shm_offs;
mp->u.fmem.offs_high = shm_offs >> 32;
/* Check that the entire offset could be stored. */
if (mp->u.fmem.offs_high != shm_offs >> 32)
return -EINVAL;
mp->u.fmem.global_id = shm->sec_world_id;
} else {
memset(&mp->u, 0, sizeof(mp->u));
mp->u.fmem.global_id = OPTEE_MSG_FMEM_INVALID_GLOBAL_ID;
}
mp->u.fmem.size = p->u.memref.size;
return 0;
}
/**
* optee_ffa_to_msg_param() - convert from struct tee_params to OPTEE_MSG
* parameters
* @optee: main service struct
* @msg_params: OPTEE_MSG parameters
* @num_params: number of elements in the parameter arrays
* @params: subsystem itnernal parameter representation
* Returns 0 on success or <0 on failure
*/
static int optee_ffa_to_msg_param(struct optee *optee,
struct optee_msg_param *msg_params,
size_t num_params,
const struct tee_param *params)
{
size_t n;
for (n = 0; n < num_params; n++) {
const struct tee_param *p = params + n;
struct optee_msg_param *mp = msg_params + n;
switch (p->attr) {
case TEE_IOCTL_PARAM_ATTR_TYPE_NONE:
mp->attr = TEE_IOCTL_PARAM_ATTR_TYPE_NONE;
memset(&mp->u, 0, sizeof(mp->u));
break;
case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INPUT:
case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_OUTPUT:
case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INOUT:
optee_to_msg_param_value(mp, p);
break;
case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT:
case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_OUTPUT:
case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INOUT:
if (to_msg_param_ffa_mem(mp, p))
return -EINVAL;
break;
default:
return -EINVAL;
}
}
return 0;
}
/*
* 3. Low level support functions to register shared memory in secure world
*
* Functions to register and unregister shared memory both for normal
* clients and for tee-supplicant.
*/
static int optee_ffa_shm_register(struct tee_context *ctx, struct tee_shm *shm,
struct page **pages, size_t num_pages,
unsigned long start)
{
struct optee *optee = tee_get_drvdata(ctx->teedev);
struct ffa_device *ffa_dev = optee->ffa.ffa_dev;
const struct ffa_mem_ops *mem_ops = ffa_dev->ops->mem_ops;
struct ffa_mem_region_attributes mem_attr = {
.receiver = ffa_dev->vm_id,
.attrs = FFA_MEM_RW,
};
struct ffa_mem_ops_args args = {
.use_txbuf = true,
.attrs = &mem_attr,
.nattrs = 1,
};
struct sg_table sgt;
int rc;
rc = optee_check_mem_type(start, num_pages);
if (rc)
return rc;
rc = sg_alloc_table_from_pages(&sgt, pages, num_pages, 0,
num_pages * PAGE_SIZE, GFP_KERNEL);
if (rc)
return rc;
args.sg = sgt.sgl;
rc = mem_ops->memory_share(&args);
sg_free_table(&sgt);
if (rc)
return rc;
rc = optee_shm_add_ffa_handle(optee, shm, args.g_handle);
if (rc) {
mem_ops->memory_reclaim(args.g_handle, 0);
return rc;
}
shm->sec_world_id = args.g_handle;
return 0;
}
static int optee_ffa_shm_unregister(struct tee_context *ctx,
struct tee_shm *shm)
{
struct optee *optee = tee_get_drvdata(ctx->teedev);
struct ffa_device *ffa_dev = optee->ffa.ffa_dev;
const struct ffa_msg_ops *msg_ops = ffa_dev->ops->msg_ops;
const struct ffa_mem_ops *mem_ops = ffa_dev->ops->mem_ops;
u64 global_handle = shm->sec_world_id;
struct ffa_send_direct_data data = {
.data0 = OPTEE_FFA_UNREGISTER_SHM,
.data1 = (u32)global_handle,
.data2 = (u32)(global_handle >> 32)
};
int rc;
optee_shm_rem_ffa_handle(optee, global_handle);
shm->sec_world_id = 0;
rc = msg_ops->sync_send_receive(ffa_dev, &data);
if (rc)
pr_err("Unregister SHM id 0x%llx rc %d\n", global_handle, rc);
rc = mem_ops->memory_reclaim(global_handle, 0);
if (rc)
pr_err("mem_reclaim: 0x%llx %d", global_handle, rc);
return rc;
}
static int optee_ffa_shm_unregister_supp(struct tee_context *ctx,
struct tee_shm *shm)
{
struct optee *optee = tee_get_drvdata(ctx->teedev);
const struct ffa_mem_ops *mem_ops;
u64 global_handle = shm->sec_world_id;
int rc;
/*
* We're skipping the OPTEE_FFA_YIELDING_CALL_UNREGISTER_SHM call
* since this is OP-TEE freeing via RPC so it has already retired
* this ID.
*/
optee_shm_rem_ffa_handle(optee, global_handle);
mem_ops = optee->ffa.ffa_dev->ops->mem_ops;
rc = mem_ops->memory_reclaim(global_handle, 0);
if (rc)
pr_err("mem_reclaim: 0x%llx %d", global_handle, rc);
shm->sec_world_id = 0;
return rc;
}
/*
* 4. Dynamic shared memory pool based on alloc_pages()
*
* Implements an OP-TEE specific shared memory pool.
* The main function is optee_ffa_shm_pool_alloc_pages().
*/
static int pool_ffa_op_alloc(struct tee_shm_pool *pool,
struct tee_shm *shm, size_t size, size_t align)
{
return tee_dyn_shm_alloc_helper(shm, size, align,
optee_ffa_shm_register);
}
static void pool_ffa_op_free(struct tee_shm_pool *pool,
struct tee_shm *shm)
{
tee_dyn_shm_free_helper(shm, optee_ffa_shm_unregister);
}
static void pool_ffa_op_destroy_pool(struct tee_shm_pool *pool)
{
kfree(pool);
}
static const struct tee_shm_pool_ops pool_ffa_ops = {
.alloc = pool_ffa_op_alloc,
.free = pool_ffa_op_free,
.destroy_pool = pool_ffa_op_destroy_pool,
};
/**
* optee_ffa_shm_pool_alloc_pages() - create page-based allocator pool
*
* This pool is used with OP-TEE over FF-A. In this case command buffers
* and such are allocated from kernel's own memory.
*/
static struct tee_shm_pool *optee_ffa_shm_pool_alloc_pages(void)
{
struct tee_shm_pool *pool = kzalloc(sizeof(*pool), GFP_KERNEL);
if (!pool)
return ERR_PTR(-ENOMEM);
pool->ops = &pool_ffa_ops;
return pool;
}
/*
* 5. Do a normal scheduled call into secure world
*
* The function optee_ffa_do_call_with_arg() performs a normal scheduled
* call into secure world. During this call may normal world request help
* from normal world using RPCs, Remote Procedure Calls. This includes
* delivery of non-secure interrupts to for instance allow rescheduling of
* the current task.
*/
static void handle_ffa_rpc_func_cmd_shm_alloc(struct tee_context *ctx,
struct optee *optee,
struct optee_msg_arg *arg)
{
struct tee_shm *shm;
if (arg->num_params != 1 ||
arg->params[0].attr != OPTEE_MSG_ATTR_TYPE_VALUE_INPUT) {
arg->ret = TEEC_ERROR_BAD_PARAMETERS;
return;
}
switch (arg->params[0].u.value.a) {
case OPTEE_RPC_SHM_TYPE_APPL:
shm = optee_rpc_cmd_alloc_suppl(ctx, arg->params[0].u.value.b);
break;
case OPTEE_RPC_SHM_TYPE_KERNEL:
shm = tee_shm_alloc_priv_buf(optee->ctx,
arg->params[0].u.value.b);
break;
default:
arg->ret = TEEC_ERROR_BAD_PARAMETERS;
return;
}
if (IS_ERR(shm)) {
arg->ret = TEEC_ERROR_OUT_OF_MEMORY;
return;
}
arg->params[0] = (struct optee_msg_param){
.attr = OPTEE_MSG_ATTR_TYPE_FMEM_OUTPUT,
.u.fmem.size = tee_shm_get_size(shm),
.u.fmem.global_id = shm->sec_world_id,
.u.fmem.internal_offs = shm->offset,
};
arg->ret = TEEC_SUCCESS;
}
static void handle_ffa_rpc_func_cmd_shm_free(struct tee_context *ctx,
struct optee *optee,
struct optee_msg_arg *arg)
{
struct tee_shm *shm;
if (arg->num_params != 1 ||
arg->params[0].attr != OPTEE_MSG_ATTR_TYPE_VALUE_INPUT)
goto err_bad_param;
shm = optee_shm_from_ffa_handle(optee, arg->params[0].u.value.b);
if (!shm)
goto err_bad_param;
switch (arg->params[0].u.value.a) {
case OPTEE_RPC_SHM_TYPE_APPL:
optee_rpc_cmd_free_suppl(ctx, shm);
break;
case OPTEE_RPC_SHM_TYPE_KERNEL:
tee_shm_free(shm);
break;
default:
goto err_bad_param;
}
arg->ret = TEEC_SUCCESS;
return;
err_bad_param:
arg->ret = TEEC_ERROR_BAD_PARAMETERS;
}
static void handle_ffa_rpc_func_cmd(struct tee_context *ctx,
struct optee *optee,
struct optee_msg_arg *arg)
{
arg->ret_origin = TEEC_ORIGIN_COMMS;
switch (arg->cmd) {
case OPTEE_RPC_CMD_SHM_ALLOC:
handle_ffa_rpc_func_cmd_shm_alloc(ctx, optee, arg);
break;
case OPTEE_RPC_CMD_SHM_FREE:
handle_ffa_rpc_func_cmd_shm_free(ctx, optee, arg);
break;
default:
optee_rpc_cmd(ctx, optee, arg);
}
}
static void optee_handle_ffa_rpc(struct tee_context *ctx, struct optee *optee,
u32 cmd, struct optee_msg_arg *arg)
{
switch (cmd) {
case OPTEE_FFA_YIELDING_CALL_RETURN_RPC_CMD:
handle_ffa_rpc_func_cmd(ctx, optee, arg);
break;
case OPTEE_FFA_YIELDING_CALL_RETURN_INTERRUPT:
/* Interrupt delivered by now */
break;
default:
pr_warn("Unknown RPC func 0x%x\n", cmd);
break;
}
}
static int optee_ffa_yielding_call(struct tee_context *ctx,
struct ffa_send_direct_data *data,
struct optee_msg_arg *rpc_arg,
bool system_thread)
{
struct optee *optee = tee_get_drvdata(ctx->teedev);
struct ffa_device *ffa_dev = optee->ffa.ffa_dev;
const struct ffa_msg_ops *msg_ops = ffa_dev->ops->msg_ops;
struct optee_call_waiter w;
u32 cmd = data->data0;
u32 w4 = data->data1;
u32 w5 = data->data2;
u32 w6 = data->data3;
int rc;
/* Initialize waiter */
optee_cq_wait_init(&optee->call_queue, &w, system_thread);
while (true) {
rc = msg_ops->sync_send_receive(ffa_dev, data);
if (rc)
goto done;
switch ((int)data->data0) {
case TEEC_SUCCESS:
break;
case TEEC_ERROR_BUSY:
if (cmd == OPTEE_FFA_YIELDING_CALL_RESUME) {
rc = -EIO;
goto done;
}
/*
* Out of threads in secure world, wait for a thread
* become available.
*/
optee_cq_wait_for_completion(&optee->call_queue, &w);
data->data0 = cmd;
data->data1 = w4;
data->data2 = w5;
data->data3 = w6;
continue;
default:
rc = -EIO;
goto done;
}
if (data->data1 == OPTEE_FFA_YIELDING_CALL_RETURN_DONE)
goto done;
/*
* OP-TEE has returned with a RPC request.
*
* Note that data->data4 (passed in register w7) is already
* filled in by ffa_mem_ops->sync_send_receive() returning
* above.
*/
cond_resched();
optee_handle_ffa_rpc(ctx, optee, data->data1, rpc_arg);
cmd = OPTEE_FFA_YIELDING_CALL_RESUME;
data->data0 = cmd;
data->data1 = 0;
data->data2 = 0;
data->data3 = 0;
}
done:
/*
* We're done with our thread in secure world, if there's any
* thread waiters wake up one.
*/
optee_cq_wait_final(&optee->call_queue, &w);
return rc;
}
/**
* optee_ffa_do_call_with_arg() - Do a FF-A call to enter OP-TEE in secure world
* @ctx: calling context
* @shm: shared memory holding the message to pass to secure world
* @offs: offset of the message in @shm
* @system_thread: true if caller requests TEE system thread support
*
* Does a FF-A call to OP-TEE in secure world and handles eventual resulting
* Remote Procedure Calls (RPC) from OP-TEE.
*
* Returns return code from FF-A, 0 is OK
*/
static int optee_ffa_do_call_with_arg(struct tee_context *ctx,
struct tee_shm *shm, u_int offs,
bool system_thread)
{
struct ffa_send_direct_data data = {
.data0 = OPTEE_FFA_YIELDING_CALL_WITH_ARG,
.data1 = (u32)shm->sec_world_id,
.data2 = (u32)(shm->sec_world_id >> 32),
.data3 = offs,
};
struct optee_msg_arg *arg;
unsigned int rpc_arg_offs;
struct optee_msg_arg *rpc_arg;
/*
* The shared memory object has to start on a page when passed as
* an argument struct. This is also what the shm pool allocator
* returns, but check this before calling secure world to catch
* eventual errors early in case something changes.
*/
if (shm->offset)
return -EINVAL;
arg = tee_shm_get_va(shm, offs);
if (IS_ERR(arg))
return PTR_ERR(arg);
rpc_arg_offs = OPTEE_MSG_GET_ARG_SIZE(arg->num_params);
rpc_arg = tee_shm_get_va(shm, offs + rpc_arg_offs);
if (IS_ERR(rpc_arg))
return PTR_ERR(rpc_arg);
return optee_ffa_yielding_call(ctx, &data, rpc_arg, system_thread);
}
/*
* 6. Driver initialization
*
* During driver inititialization is the OP-TEE Secure Partition is probed
* to find out which features it supports so the driver can be initialized
* with a matching configuration.
*/
static bool optee_ffa_api_is_compatbile(struct ffa_device *ffa_dev,
const struct ffa_ops *ops)
{
const struct ffa_msg_ops *msg_ops = ops->msg_ops;
struct ffa_send_direct_data data = {
.data0 = OPTEE_FFA_GET_API_VERSION,
};
int rc;
msg_ops->mode_32bit_set(ffa_dev);
rc = msg_ops->sync_send_receive(ffa_dev, &data);
if (rc) {
pr_err("Unexpected error %d\n", rc);
return false;
}
if (data.data0 != OPTEE_FFA_VERSION_MAJOR ||
data.data1 < OPTEE_FFA_VERSION_MINOR) {
pr_err("Incompatible OP-TEE API version %lu.%lu",
data.data0, data.data1);
return false;
}
data = (struct ffa_send_direct_data){
.data0 = OPTEE_FFA_GET_OS_VERSION,
};
rc = msg_ops->sync_send_receive(ffa_dev, &data);
if (rc) {
pr_err("Unexpected error %d\n", rc);
return false;
}
if (data.data2)
pr_info("revision %lu.%lu (%08lx)",
data.data0, data.data1, data.data2);
else
pr_info("revision %lu.%lu", data.data0, data.data1);
return true;
}
static bool optee_ffa_exchange_caps(struct ffa_device *ffa_dev,
const struct ffa_ops *ops,
u32 *sec_caps,
unsigned int *rpc_param_count,
unsigned int *max_notif_value)
{
struct ffa_send_direct_data data = {
.data0 = OPTEE_FFA_EXCHANGE_CAPABILITIES,
};
int rc;
rc = ops->msg_ops->sync_send_receive(ffa_dev, &data);
if (rc) {
pr_err("Unexpected error %d", rc);
return false;
}
if (data.data0) {
pr_err("Unexpected exchange error %lu", data.data0);
return false;
}
*rpc_param_count = (u8)data.data1;
*sec_caps = data.data2;
if (data.data3)
*max_notif_value = data.data3;
else
*max_notif_value = OPTEE_DEFAULT_MAX_NOTIF_VALUE;
return true;
}
static void notif_callback(int notify_id, void *cb_data)
{
struct optee *optee = cb_data;
if (notify_id == optee->ffa.bottom_half_value)
optee_do_bottom_half(optee->ctx);
else
optee_notif_send(optee, notify_id);
}
static int enable_async_notif(struct optee *optee)
{
struct ffa_device *ffa_dev = optee->ffa.ffa_dev;
struct ffa_send_direct_data data = {
.data0 = OPTEE_FFA_ENABLE_ASYNC_NOTIF,
.data1 = optee->ffa.bottom_half_value,
};
int rc;
rc = ffa_dev->ops->msg_ops->sync_send_receive(ffa_dev, &data);
if (rc)
return rc;
return data.data0;
}
static void optee_ffa_get_version(struct tee_device *teedev,
struct tee_ioctl_version_data *vers)
{
struct tee_ioctl_version_data v = {
.impl_id = TEE_IMPL_ID_OPTEE,
.impl_caps = TEE_OPTEE_CAP_TZ,
.gen_caps = TEE_GEN_CAP_GP | TEE_GEN_CAP_REG_MEM |
TEE_GEN_CAP_MEMREF_NULL,
};
*vers = v;
}
static int optee_ffa_open(struct tee_context *ctx)
{
return optee_open(ctx, true);
}
static const struct tee_driver_ops optee_ffa_clnt_ops = {
.get_version = optee_ffa_get_version,
.open = optee_ffa_open,
.release = optee_release,
.open_session = optee_open_session,
.close_session = optee_close_session,
.invoke_func = optee_invoke_func,
.cancel_req = optee_cancel_req,
.shm_register = optee_ffa_shm_register,
.shm_unregister = optee_ffa_shm_unregister,
};
static const struct tee_desc optee_ffa_clnt_desc = {
.name = DRIVER_NAME "-ffa-clnt",
.ops = &optee_ffa_clnt_ops,
.owner = THIS_MODULE,
};
static const struct tee_driver_ops optee_ffa_supp_ops = {
.get_version = optee_ffa_get_version,
.open = optee_ffa_open,
.release = optee_release_supp,
.supp_recv = optee_supp_recv,
.supp_send = optee_supp_send,
.shm_register = optee_ffa_shm_register, /* same as for clnt ops */
.shm_unregister = optee_ffa_shm_unregister_supp,
};
static const struct tee_desc optee_ffa_supp_desc = {
.name = DRIVER_NAME "-ffa-supp",
.ops = &optee_ffa_supp_ops,
.owner = THIS_MODULE,
.flags = TEE_DESC_PRIVILEGED,
};
static const struct optee_ops optee_ffa_ops = {
.do_call_with_arg = optee_ffa_do_call_with_arg,
.to_msg_param = optee_ffa_to_msg_param,
.from_msg_param = optee_ffa_from_msg_param,
};
static void optee_ffa_remove(struct ffa_device *ffa_dev)
{
struct optee *optee = ffa_dev_get_drvdata(ffa_dev);
u32 bottom_half_id = optee->ffa.bottom_half_value;
if (bottom_half_id != U32_MAX)
ffa_dev->ops->notifier_ops->notify_relinquish(ffa_dev,
bottom_half_id);
optee_remove_common(optee);
mutex_destroy(&optee->ffa.mutex);
rhashtable_free_and_destroy(&optee->ffa.global_ids, rh_free_fn, NULL);
kfree(optee);
}
static int optee_ffa_async_notif_init(struct ffa_device *ffa_dev,
struct optee *optee)
{
bool is_per_vcpu = false;
u32 notif_id = 0;
int rc;
while (true) {
rc = ffa_dev->ops->notifier_ops->notify_request(ffa_dev,
is_per_vcpu,
notif_callback,
optee,
notif_id);
if (!rc)
break;
/*
* -EACCES means that the notification ID was
* already bound, try the next one as long as we
* haven't reached the max. Any other error is a
* permanent error, so skip asynchronous
* notifications in that case.
*/
if (rc != -EACCES)
return rc;
notif_id++;
if (notif_id >= OPTEE_FFA_MAX_ASYNC_NOTIF_VALUE)
return rc;
}
optee->ffa.bottom_half_value = notif_id;
rc = enable_async_notif(optee);
if (rc < 0) {
ffa_dev->ops->notifier_ops->notify_relinquish(ffa_dev,
notif_id);
optee->ffa.bottom_half_value = U32_MAX;
}
return rc;
}
static int optee_ffa_probe(struct ffa_device *ffa_dev)
{
const struct ffa_notifier_ops *notif_ops;
const struct ffa_ops *ffa_ops;
unsigned int max_notif_value;
unsigned int rpc_param_count;
struct tee_shm_pool *pool;
struct tee_device *teedev;
struct tee_context *ctx;
u32 arg_cache_flags = 0;
struct optee *optee;
u32 sec_caps;
int rc;
ffa_ops = ffa_dev->ops;
notif_ops = ffa_ops->notifier_ops;
if (!optee_ffa_api_is_compatbile(ffa_dev, ffa_ops))
return -EINVAL;
if (!optee_ffa_exchange_caps(ffa_dev, ffa_ops, &sec_caps,
&rpc_param_count, &max_notif_value))
return -EINVAL;
if (sec_caps & OPTEE_FFA_SEC_CAP_ARG_OFFSET)
arg_cache_flags |= OPTEE_SHM_ARG_SHARED;
optee = kzalloc(sizeof(*optee), GFP_KERNEL);
if (!optee)
return -ENOMEM;
pool = optee_ffa_shm_pool_alloc_pages();
if (IS_ERR(pool)) {
rc = PTR_ERR(pool);
goto err_free_optee;
}
optee->pool = pool;
optee->ops = &optee_ffa_ops;
optee->ffa.ffa_dev = ffa_dev;
optee->ffa.bottom_half_value = U32_MAX;
optee->rpc_param_count = rpc_param_count;
if (IS_REACHABLE(CONFIG_RPMB) &&
(sec_caps & OPTEE_FFA_SEC_CAP_RPMB_PROBE))
optee->in_kernel_rpmb_routing = true;
teedev = tee_device_alloc(&optee_ffa_clnt_desc, NULL, optee->pool,
optee);
if (IS_ERR(teedev)) {
rc = PTR_ERR(teedev);
goto err_free_pool;
}
optee->teedev = teedev;
teedev = tee_device_alloc(&optee_ffa_supp_desc, NULL, optee->pool,
optee);
if (IS_ERR(teedev)) {
rc = PTR_ERR(teedev);
goto err_unreg_teedev;
}
optee->supp_teedev = teedev;
optee_set_dev_group(optee);
rc = tee_device_register(optee->teedev);
if (rc)
goto err_unreg_supp_teedev;
rc = tee_device_register(optee->supp_teedev);
if (rc)
goto err_unreg_supp_teedev;
rc = rhashtable_init(&optee->ffa.global_ids, &shm_rhash_params);
if (rc)
goto err_unreg_supp_teedev;
mutex_init(&optee->ffa.mutex);
optee_cq_init(&optee->call_queue, 0);
optee_supp_init(&optee->supp);
optee_shm_arg_cache_init(optee, arg_cache_flags);
mutex_init(&optee->rpmb_dev_mutex);
ffa_dev_set_drvdata(ffa_dev, optee);
ctx = teedev_open(optee->teedev);
if (IS_ERR(ctx)) {
rc = PTR_ERR(ctx);
goto err_rhashtable_free;
}
optee->ctx = ctx;
rc = optee_notif_init(optee, OPTEE_DEFAULT_MAX_NOTIF_VALUE);
if (rc)
goto err_close_ctx;
if (sec_caps & OPTEE_FFA_SEC_CAP_ASYNC_NOTIF) {
rc = optee_ffa_async_notif_init(ffa_dev, optee);
if (rc < 0)
pr_err("Failed to initialize async notifications: %d",
rc);
}
rc = optee_enumerate_devices(PTA_CMD_GET_DEVICES);
if (rc)
goto err_unregister_devices;
INIT_WORK(&optee->rpmb_scan_bus_work, optee_bus_scan_rpmb);
optee->rpmb_intf.notifier_call = optee_rpmb_intf_rdev;
blocking_notifier_chain_register(&optee_rpmb_intf_added,
&optee->rpmb_intf);
pr_info("initialized driver\n");
return 0;
err_unregister_devices:
optee_unregister_devices();
if (optee->ffa.bottom_half_value != U32_MAX)
notif_ops->notify_relinquish(ffa_dev,
optee->ffa.bottom_half_value);
optee_notif_uninit(optee);
err_close_ctx:
teedev_close_context(ctx);
err_rhashtable_free:
rhashtable_free_and_destroy(&optee->ffa.global_ids, rh_free_fn, NULL);
rpmb_dev_put(optee->rpmb_dev);
mutex_destroy(&optee->rpmb_dev_mutex);
optee_supp_uninit(&optee->supp);
mutex_destroy(&optee->call_queue.mutex);
mutex_destroy(&optee->ffa.mutex);
err_unreg_supp_teedev:
tee_device_unregister(optee->supp_teedev);
err_unreg_teedev:
tee_device_unregister(optee->teedev);
err_free_pool:
tee_shm_pool_free(pool);
err_free_optee:
kfree(optee);
return rc;
}
static const struct ffa_device_id optee_ffa_device_id[] = {
/* 486178e0-e7f8-11e3-bc5e0002a5d5c51b */
{ UUID_INIT(0x486178e0, 0xe7f8, 0x11e3,
0xbc, 0x5e, 0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b) },
{}
};
static struct ffa_driver optee_ffa_driver = {
.name = "optee",
.probe = optee_ffa_probe,
.remove = optee_ffa_remove,
.id_table = optee_ffa_device_id,
};
int optee_ffa_abi_register(void)
{
if (IS_REACHABLE(CONFIG_ARM_FFA_TRANSPORT))
return ffa_register(&optee_ffa_driver);
else
return -EOPNOTSUPP;
}
void optee_ffa_abi_unregister(void)
{
if (IS_REACHABLE(CONFIG_ARM_FFA_TRANSPORT))
ffa_unregister(&optee_ffa_driver);
}