1
linux/drivers/net/sfc/efx.c
Ben Hutchings 89c758fa47 sfc: Add power-management and wake-on-LAN support
Wake-on-LAN is a stub for Falcon, but will be implemented fully for
new NICs.

Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-11-29 16:46:29 -08:00

2415 lines
62 KiB
C

/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2005-2006 Fen Systems Ltd.
* Copyright 2005-2008 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/crc32.h>
#include <linux/ethtool.h>
#include <linux/topology.h>
#include "net_driver.h"
#include "efx.h"
#include "mdio_10g.h"
#include "falcon.h"
/**************************************************************************
*
* Type name strings
*
**************************************************************************
*/
/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
const char *efx_loopback_mode_names[] = {
[LOOPBACK_NONE] = "NONE",
[LOOPBACK_GMAC] = "GMAC",
[LOOPBACK_XGMII] = "XGMII",
[LOOPBACK_XGXS] = "XGXS",
[LOOPBACK_XAUI] = "XAUI",
[LOOPBACK_GPHY] = "GPHY",
[LOOPBACK_PHYXS] = "PHYXS",
[LOOPBACK_PCS] = "PCS",
[LOOPBACK_PMAPMD] = "PMA/PMD",
[LOOPBACK_NETWORK] = "NETWORK",
};
/* Interrupt mode names (see INT_MODE())) */
const unsigned int efx_interrupt_mode_max = EFX_INT_MODE_MAX;
const char *efx_interrupt_mode_names[] = {
[EFX_INT_MODE_MSIX] = "MSI-X",
[EFX_INT_MODE_MSI] = "MSI",
[EFX_INT_MODE_LEGACY] = "legacy",
};
const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
const char *efx_reset_type_names[] = {
[RESET_TYPE_INVISIBLE] = "INVISIBLE",
[RESET_TYPE_ALL] = "ALL",
[RESET_TYPE_WORLD] = "WORLD",
[RESET_TYPE_DISABLE] = "DISABLE",
[RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
[RESET_TYPE_INT_ERROR] = "INT_ERROR",
[RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
[RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
[RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
[RESET_TYPE_TX_SKIP] = "TX_SKIP",
};
#define EFX_MAX_MTU (9 * 1024)
/* RX slow fill workqueue. If memory allocation fails in the fast path,
* a work item is pushed onto this work queue to retry the allocation later,
* to avoid the NIC being starved of RX buffers. Since this is a per cpu
* workqueue, there is nothing to be gained in making it per NIC
*/
static struct workqueue_struct *refill_workqueue;
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
* queued onto this work queue. This is not a per-nic work queue, because
* efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
*/
static struct workqueue_struct *reset_workqueue;
/**************************************************************************
*
* Configurable values
*
*************************************************************************/
/*
* Use separate channels for TX and RX events
*
* Set this to 1 to use separate channels for TX and RX. It allows us
* to control interrupt affinity separately for TX and RX.
*
* This is only used in MSI-X interrupt mode
*/
static unsigned int separate_tx_channels;
module_param(separate_tx_channels, uint, 0644);
MODULE_PARM_DESC(separate_tx_channels,
"Use separate channels for TX and RX");
/* This is the weight assigned to each of the (per-channel) virtual
* NAPI devices.
*/
static int napi_weight = 64;
/* This is the time (in jiffies) between invocations of the hardware
* monitor, which checks for known hardware bugs and resets the
* hardware and driver as necessary.
*/
unsigned int efx_monitor_interval = 1 * HZ;
/* This controls whether or not the driver will initialise devices
* with invalid MAC addresses stored in the EEPROM or flash. If true,
* such devices will be initialised with a random locally-generated
* MAC address. This allows for loading the sfc_mtd driver to
* reprogram the flash, even if the flash contents (including the MAC
* address) have previously been erased.
*/
static unsigned int allow_bad_hwaddr;
/* Initial interrupt moderation settings. They can be modified after
* module load with ethtool.
*
* The default for RX should strike a balance between increasing the
* round-trip latency and reducing overhead.
*/
static unsigned int rx_irq_mod_usec = 60;
/* Initial interrupt moderation settings. They can be modified after
* module load with ethtool.
*
* This default is chosen to ensure that a 10G link does not go idle
* while a TX queue is stopped after it has become full. A queue is
* restarted when it drops below half full. The time this takes (assuming
* worst case 3 descriptors per packet and 1024 descriptors) is
* 512 / 3 * 1.2 = 205 usec.
*/
static unsigned int tx_irq_mod_usec = 150;
/* This is the first interrupt mode to try out of:
* 0 => MSI-X
* 1 => MSI
* 2 => legacy
*/
static unsigned int interrupt_mode;
/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
* i.e. the number of CPUs among which we may distribute simultaneous
* interrupt handling.
*
* Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
* The default (0) means to assign an interrupt to each package (level II cache)
*/
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
static int phy_flash_cfg;
module_param(phy_flash_cfg, int, 0644);
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
static unsigned irq_adapt_low_thresh = 10000;
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
"Threshold score for reducing IRQ moderation");
static unsigned irq_adapt_high_thresh = 20000;
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
"Threshold score for increasing IRQ moderation");
/**************************************************************************
*
* Utility functions and prototypes
*
*************************************************************************/
static void efx_remove_channel(struct efx_channel *channel);
static void efx_remove_port(struct efx_nic *efx);
static void efx_fini_napi(struct efx_nic *efx);
static void efx_fini_channels(struct efx_nic *efx);
#define EFX_ASSERT_RESET_SERIALISED(efx) \
do { \
if ((efx->state == STATE_RUNNING) || \
(efx->state == STATE_DISABLED)) \
ASSERT_RTNL(); \
} while (0)
/**************************************************************************
*
* Event queue processing
*
*************************************************************************/
/* Process channel's event queue
*
* This function is responsible for processing the event queue of a
* single channel. The caller must guarantee that this function will
* never be concurrently called more than once on the same channel,
* though different channels may be being processed concurrently.
*/
static int efx_process_channel(struct efx_channel *channel, int rx_quota)
{
struct efx_nic *efx = channel->efx;
int rx_packets;
if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
!channel->enabled))
return 0;
rx_packets = falcon_process_eventq(channel, rx_quota);
if (rx_packets == 0)
return 0;
/* Deliver last RX packet. */
if (channel->rx_pkt) {
__efx_rx_packet(channel, channel->rx_pkt,
channel->rx_pkt_csummed);
channel->rx_pkt = NULL;
}
efx_rx_strategy(channel);
efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
return rx_packets;
}
/* Mark channel as finished processing
*
* Note that since we will not receive further interrupts for this
* channel before we finish processing and call the eventq_read_ack()
* method, there is no need to use the interrupt hold-off timers.
*/
static inline void efx_channel_processed(struct efx_channel *channel)
{
/* The interrupt handler for this channel may set work_pending
* as soon as we acknowledge the events we've seen. Make sure
* it's cleared before then. */
channel->work_pending = false;
smp_wmb();
falcon_eventq_read_ack(channel);
}
/* NAPI poll handler
*
* NAPI guarantees serialisation of polls of the same device, which
* provides the guarantee required by efx_process_channel().
*/
static int efx_poll(struct napi_struct *napi, int budget)
{
struct efx_channel *channel =
container_of(napi, struct efx_channel, napi_str);
int rx_packets;
EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
channel->channel, raw_smp_processor_id());
rx_packets = efx_process_channel(channel, budget);
if (rx_packets < budget) {
struct efx_nic *efx = channel->efx;
if (channel->used_flags & EFX_USED_BY_RX &&
efx->irq_rx_adaptive &&
unlikely(++channel->irq_count == 1000)) {
if (unlikely(channel->irq_mod_score <
irq_adapt_low_thresh)) {
if (channel->irq_moderation > 1) {
channel->irq_moderation -= 1;
efx->type->push_irq_moderation(channel);
}
} else if (unlikely(channel->irq_mod_score >
irq_adapt_high_thresh)) {
if (channel->irq_moderation <
efx->irq_rx_moderation) {
channel->irq_moderation += 1;
efx->type->push_irq_moderation(channel);
}
}
channel->irq_count = 0;
channel->irq_mod_score = 0;
}
/* There is no race here; although napi_disable() will
* only wait for napi_complete(), this isn't a problem
* since efx_channel_processed() will have no effect if
* interrupts have already been disabled.
*/
napi_complete(napi);
efx_channel_processed(channel);
}
return rx_packets;
}
/* Process the eventq of the specified channel immediately on this CPU
*
* Disable hardware generated interrupts, wait for any existing
* processing to finish, then directly poll (and ack ) the eventq.
* Finally reenable NAPI and interrupts.
*
* Since we are touching interrupts the caller should hold the suspend lock
*/
void efx_process_channel_now(struct efx_channel *channel)
{
struct efx_nic *efx = channel->efx;
BUG_ON(!channel->used_flags);
BUG_ON(!channel->enabled);
/* Disable interrupts and wait for ISRs to complete */
falcon_disable_interrupts(efx);
if (efx->legacy_irq)
synchronize_irq(efx->legacy_irq);
if (channel->irq)
synchronize_irq(channel->irq);
/* Wait for any NAPI processing to complete */
napi_disable(&channel->napi_str);
/* Poll the channel */
efx_process_channel(channel, EFX_EVQ_SIZE);
/* Ack the eventq. This may cause an interrupt to be generated
* when they are reenabled */
efx_channel_processed(channel);
napi_enable(&channel->napi_str);
falcon_enable_interrupts(efx);
}
/* Create event queue
* Event queue memory allocations are done only once. If the channel
* is reset, the memory buffer will be reused; this guards against
* errors during channel reset and also simplifies interrupt handling.
*/
static int efx_probe_eventq(struct efx_channel *channel)
{
EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
return falcon_probe_eventq(channel);
}
/* Prepare channel's event queue */
static void efx_init_eventq(struct efx_channel *channel)
{
EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
channel->eventq_read_ptr = 0;
falcon_init_eventq(channel);
}
static void efx_fini_eventq(struct efx_channel *channel)
{
EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
falcon_fini_eventq(channel);
}
static void efx_remove_eventq(struct efx_channel *channel)
{
EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
falcon_remove_eventq(channel);
}
/**************************************************************************
*
* Channel handling
*
*************************************************************************/
static int efx_probe_channel(struct efx_channel *channel)
{
struct efx_tx_queue *tx_queue;
struct efx_rx_queue *rx_queue;
int rc;
EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
rc = efx_probe_eventq(channel);
if (rc)
goto fail1;
efx_for_each_channel_tx_queue(tx_queue, channel) {
rc = efx_probe_tx_queue(tx_queue);
if (rc)
goto fail2;
}
efx_for_each_channel_rx_queue(rx_queue, channel) {
rc = efx_probe_rx_queue(rx_queue);
if (rc)
goto fail3;
}
channel->n_rx_frm_trunc = 0;
return 0;
fail3:
efx_for_each_channel_rx_queue(rx_queue, channel)
efx_remove_rx_queue(rx_queue);
fail2:
efx_for_each_channel_tx_queue(tx_queue, channel)
efx_remove_tx_queue(tx_queue);
fail1:
return rc;
}
static void efx_set_channel_names(struct efx_nic *efx)
{
struct efx_channel *channel;
const char *type = "";
int number;
efx_for_each_channel(channel, efx) {
number = channel->channel;
if (efx->n_channels > efx->n_rx_queues) {
if (channel->channel < efx->n_rx_queues) {
type = "-rx";
} else {
type = "-tx";
number -= efx->n_rx_queues;
}
}
snprintf(channel->name, sizeof(channel->name),
"%s%s-%d", efx->name, type, number);
}
}
/* Channels are shutdown and reinitialised whilst the NIC is running
* to propagate configuration changes (mtu, checksum offload), or
* to clear hardware error conditions
*/
static void efx_init_channels(struct efx_nic *efx)
{
struct efx_tx_queue *tx_queue;
struct efx_rx_queue *rx_queue;
struct efx_channel *channel;
/* Calculate the rx buffer allocation parameters required to
* support the current MTU, including padding for header
* alignment and overruns.
*/
efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
efx->type->rx_buffer_padding);
efx->rx_buffer_order = get_order(efx->rx_buffer_len);
/* Initialise the channels */
efx_for_each_channel(channel, efx) {
EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
efx_init_eventq(channel);
efx_for_each_channel_tx_queue(tx_queue, channel)
efx_init_tx_queue(tx_queue);
/* The rx buffer allocation strategy is MTU dependent */
efx_rx_strategy(channel);
efx_for_each_channel_rx_queue(rx_queue, channel)
efx_init_rx_queue(rx_queue);
WARN_ON(channel->rx_pkt != NULL);
efx_rx_strategy(channel);
}
}
/* This enables event queue processing and packet transmission.
*
* Note that this function is not allowed to fail, since that would
* introduce too much complexity into the suspend/resume path.
*/
static void efx_start_channel(struct efx_channel *channel)
{
struct efx_rx_queue *rx_queue;
EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
/* The interrupt handler for this channel may set work_pending
* as soon as we enable it. Make sure it's cleared before
* then. Similarly, make sure it sees the enabled flag set. */
channel->work_pending = false;
channel->enabled = true;
smp_wmb();
napi_enable(&channel->napi_str);
/* Load up RX descriptors */
efx_for_each_channel_rx_queue(rx_queue, channel)
efx_fast_push_rx_descriptors(rx_queue);
}
/* This disables event queue processing and packet transmission.
* This function does not guarantee that all queue processing
* (e.g. RX refill) is complete.
*/
static void efx_stop_channel(struct efx_channel *channel)
{
struct efx_rx_queue *rx_queue;
if (!channel->enabled)
return;
EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
channel->enabled = false;
napi_disable(&channel->napi_str);
/* Ensure that any worker threads have exited or will be no-ops */
efx_for_each_channel_rx_queue(rx_queue, channel) {
spin_lock_bh(&rx_queue->add_lock);
spin_unlock_bh(&rx_queue->add_lock);
}
}
static void efx_fini_channels(struct efx_nic *efx)
{
struct efx_channel *channel;
struct efx_tx_queue *tx_queue;
struct efx_rx_queue *rx_queue;
int rc;
EFX_ASSERT_RESET_SERIALISED(efx);
BUG_ON(efx->port_enabled);
rc = falcon_flush_queues(efx);
if (rc)
EFX_ERR(efx, "failed to flush queues\n");
else
EFX_LOG(efx, "successfully flushed all queues\n");
efx_for_each_channel(channel, efx) {
EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
efx_for_each_channel_rx_queue(rx_queue, channel)
efx_fini_rx_queue(rx_queue);
efx_for_each_channel_tx_queue(tx_queue, channel)
efx_fini_tx_queue(tx_queue);
efx_fini_eventq(channel);
}
}
static void efx_remove_channel(struct efx_channel *channel)
{
struct efx_tx_queue *tx_queue;
struct efx_rx_queue *rx_queue;
EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
efx_for_each_channel_rx_queue(rx_queue, channel)
efx_remove_rx_queue(rx_queue);
efx_for_each_channel_tx_queue(tx_queue, channel)
efx_remove_tx_queue(tx_queue);
efx_remove_eventq(channel);
channel->used_flags = 0;
}
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
{
queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
}
/**************************************************************************
*
* Port handling
*
**************************************************************************/
/* This ensures that the kernel is kept informed (via
* netif_carrier_on/off) of the link status, and also maintains the
* link status's stop on the port's TX queue.
*/
void efx_link_status_changed(struct efx_nic *efx)
{
struct efx_link_state *link_state = &efx->link_state;
/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
* that no events are triggered between unregister_netdev() and the
* driver unloading. A more general condition is that NETDEV_CHANGE
* can only be generated between NETDEV_UP and NETDEV_DOWN */
if (!netif_running(efx->net_dev))
return;
if (efx->port_inhibited) {
netif_carrier_off(efx->net_dev);
return;
}
if (link_state->up != netif_carrier_ok(efx->net_dev)) {
efx->n_link_state_changes++;
if (link_state->up)
netif_carrier_on(efx->net_dev);
else
netif_carrier_off(efx->net_dev);
}
/* Status message for kernel log */
if (link_state->up) {
EFX_INFO(efx, "link up at %uMbps %s-duplex (MTU %d)%s\n",
link_state->speed, link_state->fd ? "full" : "half",
efx->net_dev->mtu,
(efx->promiscuous ? " [PROMISC]" : ""));
} else {
EFX_INFO(efx, "link down\n");
}
}
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
{
efx->link_advertising = advertising;
if (advertising) {
if (advertising & ADVERTISED_Pause)
efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
else
efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
if (advertising & ADVERTISED_Asym_Pause)
efx->wanted_fc ^= EFX_FC_TX;
}
}
void efx_link_set_wanted_fc(struct efx_nic *efx, enum efx_fc_type wanted_fc)
{
efx->wanted_fc = wanted_fc;
if (efx->link_advertising) {
if (wanted_fc & EFX_FC_RX)
efx->link_advertising |= (ADVERTISED_Pause |
ADVERTISED_Asym_Pause);
else
efx->link_advertising &= ~(ADVERTISED_Pause |
ADVERTISED_Asym_Pause);
if (wanted_fc & EFX_FC_TX)
efx->link_advertising ^= ADVERTISED_Asym_Pause;
}
}
static void efx_fini_port(struct efx_nic *efx);
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
* the MAC appropriately. All other PHY configuration changes are pushed
* through phy_op->set_settings(), and pushed asynchronously to the MAC
* through efx_monitor().
*
* Callers must hold the mac_lock
*/
int __efx_reconfigure_port(struct efx_nic *efx)
{
enum efx_phy_mode phy_mode;
int rc;
WARN_ON(!mutex_is_locked(&efx->mac_lock));
/* Serialise the promiscuous flag with efx_set_multicast_list. */
if (efx_dev_registered(efx)) {
netif_addr_lock_bh(efx->net_dev);
netif_addr_unlock_bh(efx->net_dev);
}
/* Disable PHY transmit in mac level loopbacks */
phy_mode = efx->phy_mode;
if (LOOPBACK_INTERNAL(efx))
efx->phy_mode |= PHY_MODE_TX_DISABLED;
else
efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
rc = efx->type->reconfigure_port(efx);
if (rc)
efx->phy_mode = phy_mode;
return rc;
}
/* Reinitialise the MAC to pick up new PHY settings, even if the port is
* disabled. */
int efx_reconfigure_port(struct efx_nic *efx)
{
int rc;
EFX_ASSERT_RESET_SERIALISED(efx);
mutex_lock(&efx->mac_lock);
rc = __efx_reconfigure_port(efx);
mutex_unlock(&efx->mac_lock);
return rc;
}
/* Asynchronous work item for changing MAC promiscuity and multicast
* hash. Avoid a drain/rx_ingress enable by reconfiguring the current
* MAC directly. */
static void efx_mac_work(struct work_struct *data)
{
struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
mutex_lock(&efx->mac_lock);
if (efx->port_enabled) {
efx->type->push_multicast_hash(efx);
efx->mac_op->reconfigure(efx);
}
mutex_unlock(&efx->mac_lock);
}
static int efx_probe_port(struct efx_nic *efx)
{
int rc;
EFX_LOG(efx, "create port\n");
/* Connect up MAC/PHY operations table */
rc = efx->type->probe_port(efx);
if (rc)
goto err;
if (phy_flash_cfg)
efx->phy_mode = PHY_MODE_SPECIAL;
/* Sanity check MAC address */
if (is_valid_ether_addr(efx->mac_address)) {
memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
} else {
EFX_ERR(efx, "invalid MAC address %pM\n",
efx->mac_address);
if (!allow_bad_hwaddr) {
rc = -EINVAL;
goto err;
}
random_ether_addr(efx->net_dev->dev_addr);
EFX_INFO(efx, "using locally-generated MAC %pM\n",
efx->net_dev->dev_addr);
}
return 0;
err:
efx_remove_port(efx);
return rc;
}
static int efx_init_port(struct efx_nic *efx)
{
int rc;
EFX_LOG(efx, "init port\n");
mutex_lock(&efx->mac_lock);
rc = efx->phy_op->init(efx);
if (rc)
goto fail1;
efx->port_initialized = true;
/* Reconfigure the MAC before creating dma queues (required for
* Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
efx->mac_op->reconfigure(efx);
/* Ensure the PHY advertises the correct flow control settings */
rc = efx->phy_op->reconfigure(efx);
if (rc)
goto fail2;
mutex_unlock(&efx->mac_lock);
return 0;
fail2:
efx->phy_op->fini(efx);
fail1:
mutex_unlock(&efx->mac_lock);
return rc;
}
static void efx_start_port(struct efx_nic *efx)
{
EFX_LOG(efx, "start port\n");
BUG_ON(efx->port_enabled);
mutex_lock(&efx->mac_lock);
efx->port_enabled = true;
/* efx_mac_work() might have been scheduled after efx_stop_port(),
* and then cancelled by efx_flush_all() */
efx->type->push_multicast_hash(efx);
efx->mac_op->reconfigure(efx);
mutex_unlock(&efx->mac_lock);
}
/* Prevent efx_mac_work() and efx_monitor() from working */
static void efx_stop_port(struct efx_nic *efx)
{
EFX_LOG(efx, "stop port\n");
mutex_lock(&efx->mac_lock);
efx->port_enabled = false;
mutex_unlock(&efx->mac_lock);
/* Serialise against efx_set_multicast_list() */
if (efx_dev_registered(efx)) {
netif_addr_lock_bh(efx->net_dev);
netif_addr_unlock_bh(efx->net_dev);
}
}
static void efx_fini_port(struct efx_nic *efx)
{
EFX_LOG(efx, "shut down port\n");
if (!efx->port_initialized)
return;
efx->phy_op->fini(efx);
efx->port_initialized = false;
efx->link_state.up = false;
efx_link_status_changed(efx);
}
static void efx_remove_port(struct efx_nic *efx)
{
EFX_LOG(efx, "destroying port\n");
efx->type->remove_port(efx);
}
/**************************************************************************
*
* NIC handling
*
**************************************************************************/
/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
struct pci_dev *pci_dev = efx->pci_dev;
dma_addr_t dma_mask = efx->type->max_dma_mask;
int rc;
EFX_LOG(efx, "initialising I/O\n");
rc = pci_enable_device(pci_dev);
if (rc) {
EFX_ERR(efx, "failed to enable PCI device\n");
goto fail1;
}
pci_set_master(pci_dev);
/* Set the PCI DMA mask. Try all possibilities from our
* genuine mask down to 32 bits, because some architectures
* (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
* masks event though they reject 46 bit masks.
*/
while (dma_mask > 0x7fffffffUL) {
if (pci_dma_supported(pci_dev, dma_mask) &&
((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
break;
dma_mask >>= 1;
}
if (rc) {
EFX_ERR(efx, "could not find a suitable DMA mask\n");
goto fail2;
}
EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
if (rc) {
/* pci_set_consistent_dma_mask() is not *allowed* to
* fail with a mask that pci_set_dma_mask() accepted,
* but just in case...
*/
EFX_ERR(efx, "failed to set consistent DMA mask\n");
goto fail2;
}
efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
if (rc) {
EFX_ERR(efx, "request for memory BAR failed\n");
rc = -EIO;
goto fail3;
}
efx->membase = ioremap_nocache(efx->membase_phys,
efx->type->mem_map_size);
if (!efx->membase) {
EFX_ERR(efx, "could not map memory BAR at %llx+%x\n",
(unsigned long long)efx->membase_phys,
efx->type->mem_map_size);
rc = -ENOMEM;
goto fail4;
}
EFX_LOG(efx, "memory BAR at %llx+%x (virtual %p)\n",
(unsigned long long)efx->membase_phys,
efx->type->mem_map_size, efx->membase);
return 0;
fail4:
pci_release_region(efx->pci_dev, EFX_MEM_BAR);
fail3:
efx->membase_phys = 0;
fail2:
pci_disable_device(efx->pci_dev);
fail1:
return rc;
}
static void efx_fini_io(struct efx_nic *efx)
{
EFX_LOG(efx, "shutting down I/O\n");
if (efx->membase) {
iounmap(efx->membase);
efx->membase = NULL;
}
if (efx->membase_phys) {
pci_release_region(efx->pci_dev, EFX_MEM_BAR);
efx->membase_phys = 0;
}
pci_disable_device(efx->pci_dev);
}
/* Get number of RX queues wanted. Return number of online CPU
* packages in the expectation that an IRQ balancer will spread
* interrupts across them. */
static int efx_wanted_rx_queues(void)
{
cpumask_var_t core_mask;
int count;
int cpu;
if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
printk(KERN_WARNING
"sfc: RSS disabled due to allocation failure\n");
return 1;
}
count = 0;
for_each_online_cpu(cpu) {
if (!cpumask_test_cpu(cpu, core_mask)) {
++count;
cpumask_or(core_mask, core_mask,
topology_core_cpumask(cpu));
}
}
free_cpumask_var(core_mask);
return count;
}
/* Probe the number and type of interrupts we are able to obtain, and
* the resulting numbers of channels and RX queues.
*/
static void efx_probe_interrupts(struct efx_nic *efx)
{
int max_channels =
min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
int rc, i;
if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
struct msix_entry xentries[EFX_MAX_CHANNELS];
int wanted_ints;
int rx_queues;
/* We want one RX queue and interrupt per CPU package
* (or as specified by the rss_cpus module parameter).
* We will need one channel per interrupt.
*/
rx_queues = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
wanted_ints = rx_queues + (separate_tx_channels ? 1 : 0);
wanted_ints = min(wanted_ints, max_channels);
for (i = 0; i < wanted_ints; i++)
xentries[i].entry = i;
rc = pci_enable_msix(efx->pci_dev, xentries, wanted_ints);
if (rc > 0) {
EFX_ERR(efx, "WARNING: Insufficient MSI-X vectors"
" available (%d < %d).\n", rc, wanted_ints);
EFX_ERR(efx, "WARNING: Performance may be reduced.\n");
EFX_BUG_ON_PARANOID(rc >= wanted_ints);
wanted_ints = rc;
rc = pci_enable_msix(efx->pci_dev, xentries,
wanted_ints);
}
if (rc == 0) {
efx->n_rx_queues = min(rx_queues, wanted_ints);
efx->n_channels = wanted_ints;
for (i = 0; i < wanted_ints; i++)
efx->channel[i].irq = xentries[i].vector;
} else {
/* Fall back to single channel MSI */
efx->interrupt_mode = EFX_INT_MODE_MSI;
EFX_ERR(efx, "could not enable MSI-X\n");
}
}
/* Try single interrupt MSI */
if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
efx->n_rx_queues = 1;
efx->n_channels = 1;
rc = pci_enable_msi(efx->pci_dev);
if (rc == 0) {
efx->channel[0].irq = efx->pci_dev->irq;
} else {
EFX_ERR(efx, "could not enable MSI\n");
efx->interrupt_mode = EFX_INT_MODE_LEGACY;
}
}
/* Assume legacy interrupts */
if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
efx->n_rx_queues = 1;
efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
efx->legacy_irq = efx->pci_dev->irq;
}
}
static void efx_remove_interrupts(struct efx_nic *efx)
{
struct efx_channel *channel;
/* Remove MSI/MSI-X interrupts */
efx_for_each_channel(channel, efx)
channel->irq = 0;
pci_disable_msi(efx->pci_dev);
pci_disable_msix(efx->pci_dev);
/* Remove legacy interrupt */
efx->legacy_irq = 0;
}
static void efx_set_channels(struct efx_nic *efx)
{
struct efx_tx_queue *tx_queue;
struct efx_rx_queue *rx_queue;
efx_for_each_tx_queue(tx_queue, efx) {
if (separate_tx_channels)
tx_queue->channel = &efx->channel[efx->n_channels-1];
else
tx_queue->channel = &efx->channel[0];
tx_queue->channel->used_flags |= EFX_USED_BY_TX;
}
efx_for_each_rx_queue(rx_queue, efx) {
rx_queue->channel = &efx->channel[rx_queue->queue];
rx_queue->channel->used_flags |= EFX_USED_BY_RX;
}
}
static int efx_probe_nic(struct efx_nic *efx)
{
int rc;
EFX_LOG(efx, "creating NIC\n");
/* Carry out hardware-type specific initialisation */
rc = efx->type->probe(efx);
if (rc)
return rc;
/* Determine the number of channels and RX queues by trying to hook
* in MSI-X interrupts. */
efx_probe_interrupts(efx);
efx_set_channels(efx);
/* Initialise the interrupt moderation settings */
efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
return 0;
}
static void efx_remove_nic(struct efx_nic *efx)
{
EFX_LOG(efx, "destroying NIC\n");
efx_remove_interrupts(efx);
efx->type->remove(efx);
}
/**************************************************************************
*
* NIC startup/shutdown
*
*************************************************************************/
static int efx_probe_all(struct efx_nic *efx)
{
struct efx_channel *channel;
int rc;
/* Create NIC */
rc = efx_probe_nic(efx);
if (rc) {
EFX_ERR(efx, "failed to create NIC\n");
goto fail1;
}
/* Create port */
rc = efx_probe_port(efx);
if (rc) {
EFX_ERR(efx, "failed to create port\n");
goto fail2;
}
/* Create channels */
efx_for_each_channel(channel, efx) {
rc = efx_probe_channel(channel);
if (rc) {
EFX_ERR(efx, "failed to create channel %d\n",
channel->channel);
goto fail3;
}
}
efx_set_channel_names(efx);
return 0;
fail3:
efx_for_each_channel(channel, efx)
efx_remove_channel(channel);
efx_remove_port(efx);
fail2:
efx_remove_nic(efx);
fail1:
return rc;
}
/* Called after previous invocation(s) of efx_stop_all, restarts the
* port, kernel transmit queue, NAPI processing and hardware interrupts,
* and ensures that the port is scheduled to be reconfigured.
* This function is safe to call multiple times when the NIC is in any
* state. */
static void efx_start_all(struct efx_nic *efx)
{
struct efx_channel *channel;
EFX_ASSERT_RESET_SERIALISED(efx);
/* Check that it is appropriate to restart the interface. All
* of these flags are safe to read under just the rtnl lock */
if (efx->port_enabled)
return;
if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
return;
if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
return;
/* Mark the port as enabled so port reconfigurations can start, then
* restart the transmit interface early so the watchdog timer stops */
efx_start_port(efx);
if (efx_dev_registered(efx))
efx_wake_queue(efx);
efx_for_each_channel(channel, efx)
efx_start_channel(channel);
falcon_enable_interrupts(efx);
/* Start the hardware monitor if there is one. Otherwise (we're link
* event driven), we have to poll the PHY because after an event queue
* flush, we could have a missed a link state change */
if (efx->type->monitor != NULL) {
queue_delayed_work(efx->workqueue, &efx->monitor_work,
efx_monitor_interval);
} else {
mutex_lock(&efx->mac_lock);
if (efx->phy_op->poll(efx))
efx_link_status_changed(efx);
mutex_unlock(&efx->mac_lock);
}
efx->type->start_stats(efx);
}
/* Flush all delayed work. Should only be called when no more delayed work
* will be scheduled. This doesn't flush pending online resets (efx_reset),
* since we're holding the rtnl_lock at this point. */
static void efx_flush_all(struct efx_nic *efx)
{
struct efx_rx_queue *rx_queue;
/* Make sure the hardware monitor is stopped */
cancel_delayed_work_sync(&efx->monitor_work);
/* Ensure that all RX slow refills are complete. */
efx_for_each_rx_queue(rx_queue, efx)
cancel_delayed_work_sync(&rx_queue->work);
/* Stop scheduled port reconfigurations */
cancel_work_sync(&efx->mac_work);
}
/* Quiesce hardware and software without bringing the link down.
* Safe to call multiple times, when the nic and interface is in any
* state. The caller is guaranteed to subsequently be in a position
* to modify any hardware and software state they see fit without
* taking locks. */
static void efx_stop_all(struct efx_nic *efx)
{
struct efx_channel *channel;
EFX_ASSERT_RESET_SERIALISED(efx);
/* port_enabled can be read safely under the rtnl lock */
if (!efx->port_enabled)
return;
efx->type->stop_stats(efx);
/* Disable interrupts and wait for ISR to complete */
falcon_disable_interrupts(efx);
if (efx->legacy_irq)
synchronize_irq(efx->legacy_irq);
efx_for_each_channel(channel, efx) {
if (channel->irq)
synchronize_irq(channel->irq);
}
/* Stop all NAPI processing and synchronous rx refills */
efx_for_each_channel(channel, efx)
efx_stop_channel(channel);
/* Stop all asynchronous port reconfigurations. Since all
* event processing has already been stopped, there is no
* window to loose phy events */
efx_stop_port(efx);
/* Flush efx_mac_work(), refill_workqueue, monitor_work */
efx_flush_all(efx);
/* Stop the kernel transmit interface late, so the watchdog
* timer isn't ticking over the flush */
if (efx_dev_registered(efx)) {
efx_stop_queue(efx);
netif_tx_lock_bh(efx->net_dev);
netif_tx_unlock_bh(efx->net_dev);
}
}
static void efx_remove_all(struct efx_nic *efx)
{
struct efx_channel *channel;
efx_for_each_channel(channel, efx)
efx_remove_channel(channel);
efx_remove_port(efx);
efx_remove_nic(efx);
}
/**************************************************************************
*
* Interrupt moderation
*
**************************************************************************/
static unsigned irq_mod_ticks(int usecs, int resolution)
{
if (usecs <= 0)
return 0; /* cannot receive interrupts ahead of time :-) */
if (usecs < resolution)
return 1; /* never round down to 0 */
return usecs / resolution;
}
/* Set interrupt moderation parameters */
void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
bool rx_adaptive)
{
struct efx_tx_queue *tx_queue;
struct efx_rx_queue *rx_queue;
unsigned tx_ticks = irq_mod_ticks(tx_usecs, FALCON_IRQ_MOD_RESOLUTION);
unsigned rx_ticks = irq_mod_ticks(rx_usecs, FALCON_IRQ_MOD_RESOLUTION);
EFX_ASSERT_RESET_SERIALISED(efx);
efx_for_each_tx_queue(tx_queue, efx)
tx_queue->channel->irq_moderation = tx_ticks;
efx->irq_rx_adaptive = rx_adaptive;
efx->irq_rx_moderation = rx_ticks;
efx_for_each_rx_queue(rx_queue, efx)
rx_queue->channel->irq_moderation = rx_ticks;
}
/**************************************************************************
*
* Hardware monitor
*
**************************************************************************/
/* Run periodically off the general workqueue. Serialised against
* efx_reconfigure_port via the mac_lock */
static void efx_monitor(struct work_struct *data)
{
struct efx_nic *efx = container_of(data, struct efx_nic,
monitor_work.work);
EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
raw_smp_processor_id());
BUG_ON(efx->type->monitor == NULL);
/* If the mac_lock is already held then it is likely a port
* reconfiguration is already in place, which will likely do
* most of the work of check_hw() anyway. */
if (!mutex_trylock(&efx->mac_lock))
goto out_requeue;
if (!efx->port_enabled)
goto out_unlock;
efx->type->monitor(efx);
out_unlock:
mutex_unlock(&efx->mac_lock);
out_requeue:
queue_delayed_work(efx->workqueue, &efx->monitor_work,
efx_monitor_interval);
}
/**************************************************************************
*
* ioctls
*
*************************************************************************/
/* Net device ioctl
* Context: process, rtnl_lock() held.
*/
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
struct efx_nic *efx = netdev_priv(net_dev);
struct mii_ioctl_data *data = if_mii(ifr);
EFX_ASSERT_RESET_SERIALISED(efx);
/* Convert phy_id from older PRTAD/DEVAD format */
if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
(data->phy_id & 0xfc00) == 0x0400)
data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
return mdio_mii_ioctl(&efx->mdio, data, cmd);
}
/**************************************************************************
*
* NAPI interface
*
**************************************************************************/
static int efx_init_napi(struct efx_nic *efx)
{
struct efx_channel *channel;
efx_for_each_channel(channel, efx) {
channel->napi_dev = efx->net_dev;
netif_napi_add(channel->napi_dev, &channel->napi_str,
efx_poll, napi_weight);
}
return 0;
}
static void efx_fini_napi(struct efx_nic *efx)
{
struct efx_channel *channel;
efx_for_each_channel(channel, efx) {
if (channel->napi_dev)
netif_napi_del(&channel->napi_str);
channel->napi_dev = NULL;
}
}
/**************************************************************************
*
* Kernel netpoll interface
*
*************************************************************************/
#ifdef CONFIG_NET_POLL_CONTROLLER
/* Although in the common case interrupts will be disabled, this is not
* guaranteed. However, all our work happens inside the NAPI callback,
* so no locking is required.
*/
static void efx_netpoll(struct net_device *net_dev)
{
struct efx_nic *efx = netdev_priv(net_dev);
struct efx_channel *channel;
efx_for_each_channel(channel, efx)
efx_schedule_channel(channel);
}
#endif
/**************************************************************************
*
* Kernel net device interface
*
*************************************************************************/
/* Context: process, rtnl_lock() held. */
static int efx_net_open(struct net_device *net_dev)
{
struct efx_nic *efx = netdev_priv(net_dev);
EFX_ASSERT_RESET_SERIALISED(efx);
EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
raw_smp_processor_id());
if (efx->state == STATE_DISABLED)
return -EIO;
if (efx->phy_mode & PHY_MODE_SPECIAL)
return -EBUSY;
/* Notify the kernel of the link state polled during driver load,
* before the monitor starts running */
efx_link_status_changed(efx);
efx_start_all(efx);
return 0;
}
/* Context: process, rtnl_lock() held.
* Note that the kernel will ignore our return code; this method
* should really be a void.
*/
static int efx_net_stop(struct net_device *net_dev)
{
struct efx_nic *efx = netdev_priv(net_dev);
EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
raw_smp_processor_id());
if (efx->state != STATE_DISABLED) {
/* Stop the device and flush all the channels */
efx_stop_all(efx);
efx_fini_channels(efx);
efx_init_channels(efx);
}
return 0;
}
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
{
struct efx_nic *efx = netdev_priv(net_dev);
struct efx_mac_stats *mac_stats = &efx->mac_stats;
struct net_device_stats *stats = &net_dev->stats;
spin_lock_bh(&efx->stats_lock);
efx->type->update_stats(efx);
spin_unlock_bh(&efx->stats_lock);
stats->rx_packets = mac_stats->rx_packets;
stats->tx_packets = mac_stats->tx_packets;
stats->rx_bytes = mac_stats->rx_bytes;
stats->tx_bytes = mac_stats->tx_bytes;
stats->multicast = mac_stats->rx_multicast;
stats->collisions = mac_stats->tx_collision;
stats->rx_length_errors = (mac_stats->rx_gtjumbo +
mac_stats->rx_length_error);
stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
stats->rx_crc_errors = mac_stats->rx_bad;
stats->rx_frame_errors = mac_stats->rx_align_error;
stats->rx_fifo_errors = mac_stats->rx_overflow;
stats->rx_missed_errors = mac_stats->rx_missed;
stats->tx_window_errors = mac_stats->tx_late_collision;
stats->rx_errors = (stats->rx_length_errors +
stats->rx_over_errors +
stats->rx_crc_errors +
stats->rx_frame_errors +
stats->rx_fifo_errors +
stats->rx_missed_errors +
mac_stats->rx_symbol_error);
stats->tx_errors = (stats->tx_window_errors +
mac_stats->tx_bad);
return stats;
}
/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
struct efx_nic *efx = netdev_priv(net_dev);
EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d:"
" resetting channels\n",
atomic_read(&efx->netif_stop_count), efx->port_enabled);
efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
}
/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
struct efx_nic *efx = netdev_priv(net_dev);
int rc = 0;
EFX_ASSERT_RESET_SERIALISED(efx);
if (new_mtu > EFX_MAX_MTU)
return -EINVAL;
efx_stop_all(efx);
EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
efx_fini_channels(efx);
mutex_lock(&efx->mac_lock);
/* Reconfigure the MAC before enabling the dma queues so that
* the RX buffers don't overflow */
net_dev->mtu = new_mtu;
efx->mac_op->reconfigure(efx);
mutex_unlock(&efx->mac_lock);
efx_init_channels(efx);
efx_start_all(efx);
return rc;
}
static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
struct efx_nic *efx = netdev_priv(net_dev);
struct sockaddr *addr = data;
char *new_addr = addr->sa_data;
EFX_ASSERT_RESET_SERIALISED(efx);
if (!is_valid_ether_addr(new_addr)) {
EFX_ERR(efx, "invalid ethernet MAC address requested: %pM\n",
new_addr);
return -EINVAL;
}
memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
/* Reconfigure the MAC */
mutex_lock(&efx->mac_lock);
efx->mac_op->reconfigure(efx);
mutex_unlock(&efx->mac_lock);
return 0;
}
/* Context: netif_addr_lock held, BHs disabled. */
static void efx_set_multicast_list(struct net_device *net_dev)
{
struct efx_nic *efx = netdev_priv(net_dev);
struct dev_mc_list *mc_list = net_dev->mc_list;
union efx_multicast_hash *mc_hash = &efx->multicast_hash;
u32 crc;
int bit;
int i;
efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
/* Build multicast hash table */
if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
memset(mc_hash, 0xff, sizeof(*mc_hash));
} else {
memset(mc_hash, 0x00, sizeof(*mc_hash));
for (i = 0; i < net_dev->mc_count; i++) {
crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
set_bit_le(bit, mc_hash->byte);
mc_list = mc_list->next;
}
/* Broadcast packets go through the multicast hash filter.
* ether_crc_le() of the broadcast address is 0xbe2612ff
* so we always add bit 0xff to the mask.
*/
set_bit_le(0xff, mc_hash->byte);
}
if (efx->port_enabled)
queue_work(efx->workqueue, &efx->mac_work);
/* Otherwise efx_start_port() will do this */
}
static const struct net_device_ops efx_netdev_ops = {
.ndo_open = efx_net_open,
.ndo_stop = efx_net_stop,
.ndo_get_stats = efx_net_stats,
.ndo_tx_timeout = efx_watchdog,
.ndo_start_xmit = efx_hard_start_xmit,
.ndo_validate_addr = eth_validate_addr,
.ndo_do_ioctl = efx_ioctl,
.ndo_change_mtu = efx_change_mtu,
.ndo_set_mac_address = efx_set_mac_address,
.ndo_set_multicast_list = efx_set_multicast_list,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = efx_netpoll,
#endif
};
static void efx_update_name(struct efx_nic *efx)
{
strcpy(efx->name, efx->net_dev->name);
efx_mtd_rename(efx);
efx_set_channel_names(efx);
}
static int efx_netdev_event(struct notifier_block *this,
unsigned long event, void *ptr)
{
struct net_device *net_dev = ptr;
if (net_dev->netdev_ops == &efx_netdev_ops &&
event == NETDEV_CHANGENAME)
efx_update_name(netdev_priv(net_dev));
return NOTIFY_DONE;
}
static struct notifier_block efx_netdev_notifier = {
.notifier_call = efx_netdev_event,
};
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
return sprintf(buf, "%d\n", efx->phy_type);
}
static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
static int efx_register_netdev(struct efx_nic *efx)
{
struct net_device *net_dev = efx->net_dev;
int rc;
net_dev->watchdog_timeo = 5 * HZ;
net_dev->irq = efx->pci_dev->irq;
net_dev->netdev_ops = &efx_netdev_ops;
SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
/* Clear MAC statistics */
efx->mac_op->update_stats(efx);
memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
rtnl_lock();
rc = dev_alloc_name(net_dev, net_dev->name);
if (rc < 0)
goto fail_locked;
efx_update_name(efx);
rc = register_netdevice(net_dev);
if (rc)
goto fail_locked;
/* Always start with carrier off; PHY events will detect the link */
netif_carrier_off(efx->net_dev);
rtnl_unlock();
rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
if (rc) {
EFX_ERR(efx, "failed to init net dev attributes\n");
goto fail_registered;
}
return 0;
fail_locked:
rtnl_unlock();
EFX_ERR(efx, "could not register net dev\n");
return rc;
fail_registered:
unregister_netdev(net_dev);
return rc;
}
static void efx_unregister_netdev(struct efx_nic *efx)
{
struct efx_tx_queue *tx_queue;
if (!efx->net_dev)
return;
BUG_ON(netdev_priv(efx->net_dev) != efx);
/* Free up any skbs still remaining. This has to happen before
* we try to unregister the netdev as running their destructors
* may be needed to get the device ref. count to 0. */
efx_for_each_tx_queue(tx_queue, efx)
efx_release_tx_buffers(tx_queue);
if (efx_dev_registered(efx)) {
strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
unregister_netdev(efx->net_dev);
}
}
/**************************************************************************
*
* Device reset and suspend
*
**************************************************************************/
/* Tears down the entire software state and most of the hardware state
* before reset. */
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
{
EFX_ASSERT_RESET_SERIALISED(efx);
efx_stop_all(efx);
mutex_lock(&efx->mac_lock);
mutex_lock(&efx->spi_lock);
efx_fini_channels(efx);
if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
efx->phy_op->fini(efx);
efx->type->fini(efx);
}
/* This function will always ensure that the locks acquired in
* efx_reset_down() are released. A failure return code indicates
* that we were unable to reinitialise the hardware, and the
* driver should be disabled. If ok is false, then the rx and tx
* engines are not restarted, pending a RESET_DISABLE. */
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
{
int rc;
EFX_ASSERT_RESET_SERIALISED(efx);
rc = efx->type->init(efx);
if (rc) {
EFX_ERR(efx, "failed to initialise NIC\n");
ok = false;
}
if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
if (ok) {
rc = efx->phy_op->init(efx);
if (rc)
ok = false;
if (efx->phy_op->reconfigure(efx))
EFX_ERR(efx, "could not restore PHY settings\n");
}
if (!ok)
efx->port_initialized = false;
}
if (ok) {
efx->mac_op->reconfigure(efx);
efx_init_channels(efx);
}
mutex_unlock(&efx->spi_lock);
mutex_unlock(&efx->mac_lock);
if (ok)
efx_start_all(efx);
return rc;
}
/* Reset the NIC as transparently as possible. Do not reset the PHY
* Note that the reset may fail, in which case the card will be left
* in a most-probably-unusable state.
*
* This function will sleep. You cannot reset from within an atomic
* state; use efx_schedule_reset() instead.
*
* Grabs the rtnl_lock.
*/
static int efx_reset(struct efx_nic *efx)
{
enum reset_type method = efx->reset_pending;
int rc = 0;
/* Serialise with kernel interfaces */
rtnl_lock();
/* If we're not RUNNING then don't reset. Leave the reset_pending
* flag set so that efx_pci_probe_main will be retried */
if (efx->state != STATE_RUNNING) {
EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
goto out_unlock;
}
EFX_INFO(efx, "resetting (%s)\n", RESET_TYPE(method));
efx_reset_down(efx, method);
rc = efx->type->reset(efx, method);
if (rc) {
EFX_ERR(efx, "failed to reset hardware\n");
goto out_disable;
}
/* Allow resets to be rescheduled. */
efx->reset_pending = RESET_TYPE_NONE;
/* Reinitialise bus-mastering, which may have been turned off before
* the reset was scheduled. This is still appropriate, even in the
* RESET_TYPE_DISABLE since this driver generally assumes the hardware
* can respond to requests. */
pci_set_master(efx->pci_dev);
/* Leave device stopped if necessary */
if (method == RESET_TYPE_DISABLE) {
efx_reset_up(efx, method, false);
rc = -EIO;
} else {
rc = efx_reset_up(efx, method, true);
}
out_disable:
if (rc) {
EFX_ERR(efx, "has been disabled\n");
efx->state = STATE_DISABLED;
dev_close(efx->net_dev);
} else {
EFX_LOG(efx, "reset complete\n");
}
out_unlock:
rtnl_unlock();
return rc;
}
/* The worker thread exists so that code that cannot sleep can
* schedule a reset for later.
*/
static void efx_reset_work(struct work_struct *data)
{
struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
efx_reset(nic);
}
void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
enum reset_type method;
if (efx->reset_pending != RESET_TYPE_NONE) {
EFX_INFO(efx, "quenching already scheduled reset\n");
return;
}
switch (type) {
case RESET_TYPE_INVISIBLE:
case RESET_TYPE_ALL:
case RESET_TYPE_WORLD:
case RESET_TYPE_DISABLE:
method = type;
break;
case RESET_TYPE_RX_RECOVERY:
case RESET_TYPE_RX_DESC_FETCH:
case RESET_TYPE_TX_DESC_FETCH:
case RESET_TYPE_TX_SKIP:
method = RESET_TYPE_INVISIBLE;
break;
default:
method = RESET_TYPE_ALL;
break;
}
if (method != type)
EFX_LOG(efx, "scheduling %s reset for %s\n",
RESET_TYPE(method), RESET_TYPE(type));
else
EFX_LOG(efx, "scheduling %s reset\n", RESET_TYPE(method));
efx->reset_pending = method;
queue_work(reset_workqueue, &efx->reset_work);
}
/**************************************************************************
*
* List of NICs we support
*
**************************************************************************/
/* PCI device ID table */
static struct pci_device_id efx_pci_table[] __devinitdata = {
{PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
.driver_data = (unsigned long) &falcon_a1_nic_type},
{PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
.driver_data = (unsigned long) &falcon_b0_nic_type},
{0} /* end of list */
};
/**************************************************************************
*
* Dummy PHY/MAC operations
*
* Can be used for some unimplemented operations
* Needed so all function pointers are valid and do not have to be tested
* before use
*
**************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
void efx_port_dummy_op_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
{
}
bool efx_port_dummy_op_poll(struct efx_nic *efx)
{
return false;
}
static struct efx_phy_operations efx_dummy_phy_operations = {
.init = efx_port_dummy_op_int,
.reconfigure = efx_port_dummy_op_int,
.poll = efx_port_dummy_op_poll,
.fini = efx_port_dummy_op_void,
};
/**************************************************************************
*
* Data housekeeping
*
**************************************************************************/
/* This zeroes out and then fills in the invariants in a struct
* efx_nic (including all sub-structures).
*/
static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
struct pci_dev *pci_dev, struct net_device *net_dev)
{
struct efx_channel *channel;
struct efx_tx_queue *tx_queue;
struct efx_rx_queue *rx_queue;
int i;
/* Initialise common structures */
memset(efx, 0, sizeof(*efx));
spin_lock_init(&efx->biu_lock);
mutex_init(&efx->mdio_lock);
mutex_init(&efx->spi_lock);
INIT_WORK(&efx->reset_work, efx_reset_work);
INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
efx->pci_dev = pci_dev;
efx->state = STATE_INIT;
efx->reset_pending = RESET_TYPE_NONE;
strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
efx->net_dev = net_dev;
efx->rx_checksum_enabled = true;
spin_lock_init(&efx->netif_stop_lock);
spin_lock_init(&efx->stats_lock);
mutex_init(&efx->mac_lock);
efx->mac_op = type->default_mac_ops;
efx->phy_op = &efx_dummy_phy_operations;
efx->mdio.dev = net_dev;
INIT_WORK(&efx->mac_work, efx_mac_work);
atomic_set(&efx->netif_stop_count, 1);
for (i = 0; i < EFX_MAX_CHANNELS; i++) {
channel = &efx->channel[i];
channel->efx = efx;
channel->channel = i;
channel->work_pending = false;
}
for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
tx_queue = &efx->tx_queue[i];
tx_queue->efx = efx;
tx_queue->queue = i;
tx_queue->buffer = NULL;
tx_queue->channel = &efx->channel[0]; /* for safety */
tx_queue->tso_headers_free = NULL;
}
for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
rx_queue = &efx->rx_queue[i];
rx_queue->efx = efx;
rx_queue->queue = i;
rx_queue->channel = &efx->channel[0]; /* for safety */
rx_queue->buffer = NULL;
spin_lock_init(&rx_queue->add_lock);
INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
}
efx->type = type;
/* As close as we can get to guaranteeing that we don't overflow */
BUILD_BUG_ON(EFX_EVQ_SIZE < EFX_TXQ_SIZE + EFX_RXQ_SIZE);
EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
/* Higher numbered interrupt modes are less capable! */
efx->interrupt_mode = max(efx->type->max_interrupt_mode,
interrupt_mode);
/* Would be good to use the net_dev name, but we're too early */
snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
pci_name(pci_dev));
efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
if (!efx->workqueue)
return -ENOMEM;
return 0;
}
static void efx_fini_struct(struct efx_nic *efx)
{
if (efx->workqueue) {
destroy_workqueue(efx->workqueue);
efx->workqueue = NULL;
}
}
/**************************************************************************
*
* PCI interface
*
**************************************************************************/
/* Main body of final NIC shutdown code
* This is called only at module unload (or hotplug removal).
*/
static void efx_pci_remove_main(struct efx_nic *efx)
{
falcon_fini_interrupt(efx);
efx_fini_channels(efx);
efx_fini_port(efx);
efx->type->fini(efx);
efx_fini_napi(efx);
efx_remove_all(efx);
}
/* Final NIC shutdown
* This is called only at module unload (or hotplug removal).
*/
static void efx_pci_remove(struct pci_dev *pci_dev)
{
struct efx_nic *efx;
efx = pci_get_drvdata(pci_dev);
if (!efx)
return;
/* Mark the NIC as fini, then stop the interface */
rtnl_lock();
efx->state = STATE_FINI;
dev_close(efx->net_dev);
/* Allow any queued efx_resets() to complete */
rtnl_unlock();
efx_unregister_netdev(efx);
efx_mtd_remove(efx);
/* Wait for any scheduled resets to complete. No more will be
* scheduled from this point because efx_stop_all() has been
* called, we are no longer registered with driverlink, and
* the net_device's have been removed. */
cancel_work_sync(&efx->reset_work);
efx_pci_remove_main(efx);
efx_fini_io(efx);
EFX_LOG(efx, "shutdown successful\n");
pci_set_drvdata(pci_dev, NULL);
efx_fini_struct(efx);
free_netdev(efx->net_dev);
};
/* Main body of NIC initialisation
* This is called at module load (or hotplug insertion, theoretically).
*/
static int efx_pci_probe_main(struct efx_nic *efx)
{
int rc;
/* Do start-of-day initialisation */
rc = efx_probe_all(efx);
if (rc)
goto fail1;
rc = efx_init_napi(efx);
if (rc)
goto fail2;
rc = efx->type->init(efx);
if (rc) {
EFX_ERR(efx, "failed to initialise NIC\n");
goto fail3;
}
rc = efx_init_port(efx);
if (rc) {
EFX_ERR(efx, "failed to initialise port\n");
goto fail4;
}
efx_init_channels(efx);
rc = falcon_init_interrupt(efx);
if (rc)
goto fail5;
return 0;
fail5:
efx_fini_channels(efx);
efx_fini_port(efx);
fail4:
efx->type->fini(efx);
fail3:
efx_fini_napi(efx);
fail2:
efx_remove_all(efx);
fail1:
return rc;
}
/* NIC initialisation
*
* This is called at module load (or hotplug insertion,
* theoretically). It sets up PCI mappings, tests and resets the NIC,
* sets up and registers the network devices with the kernel and hooks
* the interrupt service routine. It does not prepare the device for
* transmission; this is left to the first time one of the network
* interfaces is brought up (i.e. efx_net_open).
*/
static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
const struct pci_device_id *entry)
{
struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
struct net_device *net_dev;
struct efx_nic *efx;
int i, rc;
/* Allocate and initialise a struct net_device and struct efx_nic */
net_dev = alloc_etherdev(sizeof(*efx));
if (!net_dev)
return -ENOMEM;
net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
NETIF_F_HIGHDMA | NETIF_F_TSO |
NETIF_F_GRO);
/* Mask for features that also apply to VLAN devices */
net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
NETIF_F_HIGHDMA | NETIF_F_TSO);
efx = netdev_priv(net_dev);
pci_set_drvdata(pci_dev, efx);
rc = efx_init_struct(efx, type, pci_dev, net_dev);
if (rc)
goto fail1;
EFX_INFO(efx, "Solarflare Communications NIC detected\n");
/* Set up basic I/O (BAR mappings etc) */
rc = efx_init_io(efx);
if (rc)
goto fail2;
/* No serialisation is required with the reset path because
* we're in STATE_INIT. */
for (i = 0; i < 5; i++) {
rc = efx_pci_probe_main(efx);
/* Serialise against efx_reset(). No more resets will be
* scheduled since efx_stop_all() has been called, and we
* have not and never have been registered with either
* the rtnetlink or driverlink layers. */
cancel_work_sync(&efx->reset_work);
if (rc == 0) {
if (efx->reset_pending != RESET_TYPE_NONE) {
/* If there was a scheduled reset during
* probe, the NIC is probably hosed anyway */
efx_pci_remove_main(efx);
rc = -EIO;
} else {
break;
}
}
/* Retry if a recoverably reset event has been scheduled */
if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
(efx->reset_pending != RESET_TYPE_ALL))
goto fail3;
efx->reset_pending = RESET_TYPE_NONE;
}
if (rc) {
EFX_ERR(efx, "Could not reset NIC\n");
goto fail4;
}
/* Switch to the running state before we expose the device to the OS,
* so that dev_open()|efx_start_all() will actually start the device */
efx->state = STATE_RUNNING;
rc = efx_register_netdev(efx);
if (rc)
goto fail5;
EFX_LOG(efx, "initialisation successful\n");
rtnl_lock();
efx_mtd_probe(efx); /* allowed to fail */
rtnl_unlock();
return 0;
fail5:
efx_pci_remove_main(efx);
fail4:
fail3:
efx_fini_io(efx);
fail2:
efx_fini_struct(efx);
fail1:
EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
free_netdev(net_dev);
return rc;
}
static int efx_pm_freeze(struct device *dev)
{
struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
efx->state = STATE_FINI;
netif_device_detach(efx->net_dev);
efx_stop_all(efx);
efx_fini_channels(efx);
return 0;
}
static int efx_pm_thaw(struct device *dev)
{
struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
efx->state = STATE_INIT;
efx_init_channels(efx);
mutex_lock(&efx->mac_lock);
efx->phy_op->reconfigure(efx);
mutex_unlock(&efx->mac_lock);
efx_start_all(efx);
netif_device_attach(efx->net_dev);
efx->state = STATE_RUNNING;
efx->type->resume_wol(efx);
return 0;
}
static int efx_pm_poweroff(struct device *dev)
{
struct pci_dev *pci_dev = to_pci_dev(dev);
struct efx_nic *efx = pci_get_drvdata(pci_dev);
efx->type->fini(efx);
efx->reset_pending = RESET_TYPE_NONE;
pci_save_state(pci_dev);
return pci_set_power_state(pci_dev, PCI_D3hot);
}
/* Used for both resume and restore */
static int efx_pm_resume(struct device *dev)
{
struct pci_dev *pci_dev = to_pci_dev(dev);
struct efx_nic *efx = pci_get_drvdata(pci_dev);
int rc;
rc = pci_set_power_state(pci_dev, PCI_D0);
if (rc)
return rc;
pci_restore_state(pci_dev);
rc = pci_enable_device(pci_dev);
if (rc)
return rc;
pci_set_master(efx->pci_dev);
rc = efx->type->reset(efx, RESET_TYPE_ALL);
if (rc)
return rc;
rc = efx->type->init(efx);
if (rc)
return rc;
efx_pm_thaw(dev);
return 0;
}
static int efx_pm_suspend(struct device *dev)
{
int rc;
efx_pm_freeze(dev);
rc = efx_pm_poweroff(dev);
if (rc)
efx_pm_resume(dev);
return rc;
}
static struct dev_pm_ops efx_pm_ops = {
.suspend = efx_pm_suspend,
.resume = efx_pm_resume,
.freeze = efx_pm_freeze,
.thaw = efx_pm_thaw,
.poweroff = efx_pm_poweroff,
.restore = efx_pm_resume,
};
static struct pci_driver efx_pci_driver = {
.name = EFX_DRIVER_NAME,
.id_table = efx_pci_table,
.probe = efx_pci_probe,
.remove = efx_pci_remove,
.driver.pm = &efx_pm_ops,
};
/**************************************************************************
*
* Kernel module interface
*
*************************************************************************/
module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
"Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
static int __init efx_init_module(void)
{
int rc;
printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
rc = register_netdevice_notifier(&efx_netdev_notifier);
if (rc)
goto err_notifier;
refill_workqueue = create_workqueue("sfc_refill");
if (!refill_workqueue) {
rc = -ENOMEM;
goto err_refill;
}
reset_workqueue = create_singlethread_workqueue("sfc_reset");
if (!reset_workqueue) {
rc = -ENOMEM;
goto err_reset;
}
rc = pci_register_driver(&efx_pci_driver);
if (rc < 0)
goto err_pci;
return 0;
err_pci:
destroy_workqueue(reset_workqueue);
err_reset:
destroy_workqueue(refill_workqueue);
err_refill:
unregister_netdevice_notifier(&efx_netdev_notifier);
err_notifier:
return rc;
}
static void __exit efx_exit_module(void)
{
printk(KERN_INFO "Solarflare NET driver unloading\n");
pci_unregister_driver(&efx_pci_driver);
destroy_workqueue(reset_workqueue);
destroy_workqueue(refill_workqueue);
unregister_netdevice_notifier(&efx_netdev_notifier);
}
module_init(efx_init_module);
module_exit(efx_exit_module);
MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
"Solarflare Communications");
MODULE_DESCRIPTION("Solarflare Communications network driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);