1
linux/drivers/media/dvb/dibusb/dvb-fe-dtt200u.c
Linus Torvalds 1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00

264 lines
6.9 KiB
C

/*
* dvb-dtt200u-fe.c is a driver which implements the frontend-part of the
* Yakumo/Typhoon/Hama USB2.0 boxes. It is hard-wired to the dibusb-driver as
* it uses the usb-transfer functions directly (maybe creating a
* generic-dvb-usb-lib for all usb-drivers will be reduce some more code.)
*
* Copyright (C) 2005 Patrick Boettcher <patrick.boettcher@desy.de>
*
* see dvb-dibusb-core.c for copyright details.
*/
/* guessed protocol description (reverse engineered):
* read
* 00 - USB type 0x02 for usb2.0, 0x01 for usb1.1
* 81 - <TS_LOCK> <current frequency divided by 250000>
* 82 - crash - do not touch
* 83 - crash - do not touch
* 84 - remote control
* 85 - crash - do not touch (OK, stop testing here)
* 88 - locking 2 bytes (0x80 0x40 == no signal, 0x89 0x20 == nice signal)
* 89 - noise-to-signal
* 8a - unkown 1 byte - signal_strength
* 8c - ber ???
* 8d - ber
* 8e - unc
*
* write
* 02 - bandwidth
* 03 - frequency (divided by 250000)
* 04 - pid table (index pid(7:0) pid(12:8))
* 05 - reset the pid table
* 08 - demod transfer enabled or not (FX2 transfer is enabled by default)
*/
#include "dvb-dibusb.h"
#include "dvb_frontend.h"
struct dtt200u_fe_state {
struct usb_dibusb *dib;
struct dvb_frontend_parameters fep;
struct dvb_frontend frontend;
};
#define moan(which,what) info("unexpected value in '%s' for cmd '%02x' - please report to linux-dvb@linuxtv.org",which,what)
static int dtt200u_fe_read_status(struct dvb_frontend* fe, fe_status_t *stat)
{
struct dtt200u_fe_state *state = fe->demodulator_priv;
u8 bw[1] = { 0x81 };
u8 br[3] = { 0 };
// u8 bdeb[5] = { 0 };
dibusb_readwrite_usb(state->dib,bw,1,br,3);
switch (br[0]) {
case 0x01:
*stat = FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK;
break;
case 0x00:
*stat = 0;
break;
default:
moan("br[0]",0x81);
break;
}
// bw[0] = 0x88;
// dibusb_readwrite_usb(state->dib,bw,1,bdeb,5);
// deb_info("%02x: %02x %02x %02x %02x %02x\n",bw[0],bdeb[0],bdeb[1],bdeb[2],bdeb[3],bdeb[4]);
return 0;
}
static int dtt200u_fe_read_ber(struct dvb_frontend* fe, u32 *ber)
{
struct dtt200u_fe_state *state = fe->demodulator_priv;
u8 bw[1] = { 0x8d };
*ber = 0;
dibusb_readwrite_usb(state->dib,bw,1,(u8*) ber, 3);
return 0;
}
static int dtt200u_fe_read_unc_blocks(struct dvb_frontend* fe, u32 *unc)
{
struct dtt200u_fe_state *state = fe->demodulator_priv;
u8 bw[1] = { 0x8c };
*unc = 0;
dibusb_readwrite_usb(state->dib,bw,1,(u8*) unc, 3);
return 0;
}
static int dtt200u_fe_read_signal_strength(struct dvb_frontend* fe, u16 *strength)
{
struct dtt200u_fe_state *state = fe->demodulator_priv;
u8 bw[1] = { 0x8a };
u8 b;
dibusb_readwrite_usb(state->dib,bw,1,&b, 1);
*strength = (b << 8) | b;
return 0;
}
static int dtt200u_fe_read_snr(struct dvb_frontend* fe, u16 *snr)
{
struct dtt200u_fe_state *state = fe->demodulator_priv;
u8 bw[1] = { 0x89 };
u8 br[1] = { 0 };
dibusb_readwrite_usb(state->dib,bw,1,br,1);
*snr = ((0xff - br[0]) << 8) | (0xff - br[0]);
return 0;
}
static int dtt200u_fe_init(struct dvb_frontend* fe)
{
struct dtt200u_fe_state *state = fe->demodulator_priv;
u8 b[] = { 0x01 };
return dibusb_write_usb(state->dib,b,1);
}
static int dtt200u_fe_sleep(struct dvb_frontend* fe)
{
return dtt200u_fe_init(fe);
}
static int dtt200u_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune)
{
tune->min_delay_ms = 1500;
tune->step_size = 166667;
tune->max_drift = 166667 * 2;
return 0;
}
static int dtt200u_fe_set_frontend(struct dvb_frontend* fe,
struct dvb_frontend_parameters *fep)
{
struct dtt200u_fe_state *state = fe->demodulator_priv;
u16 freq = fep->frequency / 250000;
u8 bw,bwbuf[2] = { 0x03, 0 }, freqbuf[3] = { 0x02, 0, 0 };
switch (fep->u.ofdm.bandwidth) {
case BANDWIDTH_8_MHZ: bw = 8; break;
case BANDWIDTH_7_MHZ: bw = 7; break;
case BANDWIDTH_6_MHZ: bw = 6; break;
case BANDWIDTH_AUTO: return -EOPNOTSUPP;
default:
return -EINVAL;
}
deb_info("set_frontend\n");
bwbuf[1] = bw;
dibusb_write_usb(state->dib,bwbuf,2);
freqbuf[1] = freq & 0xff;
freqbuf[2] = (freq >> 8) & 0xff;
dibusb_write_usb(state->dib,freqbuf,3);
memcpy(&state->fep,fep,sizeof(struct dvb_frontend_parameters));
return 0;
}
static int dtt200u_fe_get_frontend(struct dvb_frontend* fe,
struct dvb_frontend_parameters *fep)
{
struct dtt200u_fe_state *state = fe->demodulator_priv;
memcpy(fep,&state->fep,sizeof(struct dvb_frontend_parameters));
return 0;
}
static void dtt200u_fe_release(struct dvb_frontend* fe)
{
struct dtt200u_fe_state *state = (struct dtt200u_fe_state*) fe->demodulator_priv;
kfree(state);
}
static int dtt200u_pid_control(struct dvb_frontend *fe,int index, int pid,int onoff)
{
struct dtt200u_fe_state *state = (struct dtt200u_fe_state*) fe->demodulator_priv;
u8 b_pid[4];
pid = onoff ? pid : 0;
b_pid[0] = 0x04;
b_pid[1] = index;
b_pid[2] = pid & 0xff;
b_pid[3] = (pid >> 8) & 0xff;
dibusb_write_usb(state->dib,b_pid,4);
return 0;
}
static int dtt200u_fifo_control(struct dvb_frontend *fe, int onoff)
{
struct dtt200u_fe_state *state = (struct dtt200u_fe_state*) fe->demodulator_priv;
u8 b_streaming[2] = { 0x08, onoff };
u8 b_rst_pid[1] = { 0x05 };
dibusb_write_usb(state->dib,b_streaming,2);
if (!onoff)
dibusb_write_usb(state->dib,b_rst_pid,1);
return 0;
}
static struct dvb_frontend_ops dtt200u_fe_ops;
struct dvb_frontend* dtt200u_fe_attach(struct usb_dibusb *dib, struct dib_fe_xfer_ops *xfer_ops)
{
struct dtt200u_fe_state* state = NULL;
/* allocate memory for the internal state */
state = (struct dtt200u_fe_state*) kmalloc(sizeof(struct dtt200u_fe_state), GFP_KERNEL);
if (state == NULL)
goto error;
memset(state,0,sizeof(struct dtt200u_fe_state));
deb_info("attaching frontend dtt200u\n");
state->dib = dib;
state->frontend.ops = &dtt200u_fe_ops;
state->frontend.demodulator_priv = state;
xfer_ops->fifo_ctrl = dtt200u_fifo_control;
xfer_ops->pid_ctrl = dtt200u_pid_control;
goto success;
error:
return NULL;
success:
return &state->frontend;
}
static struct dvb_frontend_ops dtt200u_fe_ops = {
.info = {
.name = "DTT200U (Yakumo/Typhoon/Hama) DVB-T",
.type = FE_OFDM,
.frequency_min = 44250000,
.frequency_max = 867250000,
.frequency_stepsize = 250000,
.caps = FE_CAN_INVERSION_AUTO |
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO |
FE_CAN_GUARD_INTERVAL_AUTO |
FE_CAN_RECOVER |
FE_CAN_HIERARCHY_AUTO,
},
.release = dtt200u_fe_release,
.init = dtt200u_fe_init,
.sleep = dtt200u_fe_sleep,
.set_frontend = dtt200u_fe_set_frontend,
.get_frontend = dtt200u_fe_get_frontend,
.get_tune_settings = dtt200u_fe_get_tune_settings,
.read_status = dtt200u_fe_read_status,
.read_ber = dtt200u_fe_read_ber,
.read_signal_strength = dtt200u_fe_read_signal_strength,
.read_snr = dtt200u_fe_read_snr,
.read_ucblocks = dtt200u_fe_read_unc_blocks,
};