1
linux/include/asm-mips/fixmap.h
Ralf Baechle ae0c69acd6 [MIPS] fixmap: delete unused __set_fixmap, set_fixmap and set_fixmap_nocache
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2008-01-29 10:15:00 +00:00

119 lines
3.4 KiB
C

/*
* fixmap.h: compile-time virtual memory allocation
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 1998 Ingo Molnar
*
* Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
*/
#ifndef _ASM_FIXMAP_H
#define _ASM_FIXMAP_H
#include <asm/page.h>
#ifdef CONFIG_HIGHMEM
#include <linux/threads.h>
#include <asm/kmap_types.h>
#endif
/*
* Here we define all the compile-time 'special' virtual
* addresses. The point is to have a constant address at
* compile time, but to set the physical address only
* in the boot process. We allocate these special addresses
* from the end of virtual memory (0xfffff000) backwards.
* Also this lets us do fail-safe vmalloc(), we
* can guarantee that these special addresses and
* vmalloc()-ed addresses never overlap.
*
* these 'compile-time allocated' memory buffers are
* fixed-size 4k pages. (or larger if used with an increment
* highger than 1) use fixmap_set(idx,phys) to associate
* physical memory with fixmap indices.
*
* TLB entries of such buffers will not be flushed across
* task switches.
*/
/*
* on UP currently we will have no trace of the fixmap mechanizm,
* no page table allocations, etc. This might change in the
* future, say framebuffers for the console driver(s) could be
* fix-mapped?
*/
enum fixed_addresses {
#define FIX_N_COLOURS 8
FIX_CMAP_BEGIN,
#ifdef CONFIG_MIPS_MT_SMTC
FIX_CMAP_END = FIX_CMAP_BEGIN + (FIX_N_COLOURS * NR_CPUS),
#else
FIX_CMAP_END = FIX_CMAP_BEGIN + FIX_N_COLOURS,
#endif
#ifdef CONFIG_HIGHMEM
/* reserved pte's for temporary kernel mappings */
FIX_KMAP_BEGIN = FIX_CMAP_END + 1,
FIX_KMAP_END = FIX_KMAP_BEGIN+(KM_TYPE_NR*NR_CPUS)-1,
#endif
__end_of_fixed_addresses
};
/*
* used by vmalloc.c.
*
* Leave one empty page between vmalloc'ed areas and
* the start of the fixmap, and leave one page empty
* at the top of mem..
*/
#if defined(CONFIG_CPU_TX39XX) || defined(CONFIG_CPU_TX49XX)
#define FIXADDR_TOP ((unsigned long)(long)(int)(0xff000000 - 0x20000))
#else
#define FIXADDR_TOP ((unsigned long)(long)(int)0xfffe0000)
#endif
#define FIXADDR_SIZE (__end_of_fixed_addresses << PAGE_SHIFT)
#define FIXADDR_START (FIXADDR_TOP - FIXADDR_SIZE)
#define __fix_to_virt(x) (FIXADDR_TOP - ((x) << PAGE_SHIFT))
#define __virt_to_fix(x) ((FIXADDR_TOP - ((x)&PAGE_MASK)) >> PAGE_SHIFT)
extern void __this_fixmap_does_not_exist(void);
/*
* 'index to address' translation. If anyone tries to use the idx
* directly without tranlation, we catch the bug with a NULL-deference
* kernel oops. Illegal ranges of incoming indices are caught too.
*/
static inline unsigned long fix_to_virt(const unsigned int idx)
{
/*
* this branch gets completely eliminated after inlining,
* except when someone tries to use fixaddr indices in an
* illegal way. (such as mixing up address types or using
* out-of-range indices).
*
* If it doesn't get removed, the linker will complain
* loudly with a reasonably clear error message..
*/
if (idx >= __end_of_fixed_addresses)
__this_fixmap_does_not_exist();
return __fix_to_virt(idx);
}
static inline unsigned long virt_to_fix(const unsigned long vaddr)
{
BUG_ON(vaddr >= FIXADDR_TOP || vaddr < FIXADDR_START);
return __virt_to_fix(vaddr);
}
/*
* Called from pgtable_init()
*/
extern void fixrange_init(unsigned long start, unsigned long end,
pgd_t *pgd_base);
#endif