1
linux/drivers/video/omap/dispc.c
Russell King e8a91c953f [ARM] omap: Fix IO_ADDRESS() macros
OMAP1_IO_ADDRESS(), OMAP2_IO_ADDRESS() and IO_ADDRESS() returns cookies
for use with __raw_{read|write}* for accessing registers.  Therefore,
these macros should return (void __iomem *) cookies, not integer values.

Doing this improves typechecking, and means we can find those places
where, eg, DMA controllers are incorrectly given virtual addresses to
DMA to, or physical addresses are thrown through a virtual to physical
address translation.

Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-09-05 17:02:31 +01:00

1511 lines
37 KiB
C

/*
* OMAP2 display controller support
*
* Copyright (C) 2005 Nokia Corporation
* Author: Imre Deak <imre.deak@nokia.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <linux/kernel.h>
#include <linux/dma-mapping.h>
#include <linux/mm.h>
#include <linux/vmalloc.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <mach/sram.h>
#include <mach/omapfb.h>
#include <mach/board.h>
#include "dispc.h"
#define MODULE_NAME "dispc"
#define DSS_BASE 0x48050000
#define DSS_SYSCONFIG 0x0010
#define DISPC_BASE 0x48050400
/* DISPC common */
#define DISPC_REVISION 0x0000
#define DISPC_SYSCONFIG 0x0010
#define DISPC_SYSSTATUS 0x0014
#define DISPC_IRQSTATUS 0x0018
#define DISPC_IRQENABLE 0x001C
#define DISPC_CONTROL 0x0040
#define DISPC_CONFIG 0x0044
#define DISPC_CAPABLE 0x0048
#define DISPC_DEFAULT_COLOR0 0x004C
#define DISPC_DEFAULT_COLOR1 0x0050
#define DISPC_TRANS_COLOR0 0x0054
#define DISPC_TRANS_COLOR1 0x0058
#define DISPC_LINE_STATUS 0x005C
#define DISPC_LINE_NUMBER 0x0060
#define DISPC_TIMING_H 0x0064
#define DISPC_TIMING_V 0x0068
#define DISPC_POL_FREQ 0x006C
#define DISPC_DIVISOR 0x0070
#define DISPC_SIZE_DIG 0x0078
#define DISPC_SIZE_LCD 0x007C
#define DISPC_DATA_CYCLE1 0x01D4
#define DISPC_DATA_CYCLE2 0x01D8
#define DISPC_DATA_CYCLE3 0x01DC
/* DISPC GFX plane */
#define DISPC_GFX_BA0 0x0080
#define DISPC_GFX_BA1 0x0084
#define DISPC_GFX_POSITION 0x0088
#define DISPC_GFX_SIZE 0x008C
#define DISPC_GFX_ATTRIBUTES 0x00A0
#define DISPC_GFX_FIFO_THRESHOLD 0x00A4
#define DISPC_GFX_FIFO_SIZE_STATUS 0x00A8
#define DISPC_GFX_ROW_INC 0x00AC
#define DISPC_GFX_PIXEL_INC 0x00B0
#define DISPC_GFX_WINDOW_SKIP 0x00B4
#define DISPC_GFX_TABLE_BA 0x00B8
/* DISPC Video plane 1/2 */
#define DISPC_VID1_BASE 0x00BC
#define DISPC_VID2_BASE 0x014C
/* Offsets into DISPC_VID1/2_BASE */
#define DISPC_VID_BA0 0x0000
#define DISPC_VID_BA1 0x0004
#define DISPC_VID_POSITION 0x0008
#define DISPC_VID_SIZE 0x000C
#define DISPC_VID_ATTRIBUTES 0x0010
#define DISPC_VID_FIFO_THRESHOLD 0x0014
#define DISPC_VID_FIFO_SIZE_STATUS 0x0018
#define DISPC_VID_ROW_INC 0x001C
#define DISPC_VID_PIXEL_INC 0x0020
#define DISPC_VID_FIR 0x0024
#define DISPC_VID_PICTURE_SIZE 0x0028
#define DISPC_VID_ACCU0 0x002C
#define DISPC_VID_ACCU1 0x0030
/* 8 elements in 8 byte increments */
#define DISPC_VID_FIR_COEF_H0 0x0034
/* 8 elements in 8 byte increments */
#define DISPC_VID_FIR_COEF_HV0 0x0038
/* 5 elements in 4 byte increments */
#define DISPC_VID_CONV_COEF0 0x0074
#define DISPC_IRQ_FRAMEMASK 0x0001
#define DISPC_IRQ_VSYNC 0x0002
#define DISPC_IRQ_EVSYNC_EVEN 0x0004
#define DISPC_IRQ_EVSYNC_ODD 0x0008
#define DISPC_IRQ_ACBIAS_COUNT_STAT 0x0010
#define DISPC_IRQ_PROG_LINE_NUM 0x0020
#define DISPC_IRQ_GFX_FIFO_UNDERFLOW 0x0040
#define DISPC_IRQ_GFX_END_WIN 0x0080
#define DISPC_IRQ_PAL_GAMMA_MASK 0x0100
#define DISPC_IRQ_OCP_ERR 0x0200
#define DISPC_IRQ_VID1_FIFO_UNDERFLOW 0x0400
#define DISPC_IRQ_VID1_END_WIN 0x0800
#define DISPC_IRQ_VID2_FIFO_UNDERFLOW 0x1000
#define DISPC_IRQ_VID2_END_WIN 0x2000
#define DISPC_IRQ_SYNC_LOST 0x4000
#define DISPC_IRQ_MASK_ALL 0x7fff
#define DISPC_IRQ_MASK_ERROR (DISPC_IRQ_GFX_FIFO_UNDERFLOW | \
DISPC_IRQ_VID1_FIFO_UNDERFLOW | \
DISPC_IRQ_VID2_FIFO_UNDERFLOW | \
DISPC_IRQ_SYNC_LOST)
#define RFBI_CONTROL 0x48050040
#define MAX_PALETTE_SIZE (256 * 16)
#define FLD_MASK(pos, len) (((1 << len) - 1) << pos)
#define MOD_REG_FLD(reg, mask, val) \
dispc_write_reg((reg), (dispc_read_reg(reg) & ~(mask)) | (val));
#define OMAP2_SRAM_START 0x40200000
/* Maximum size, in reality this is smaller if SRAM is partially locked. */
#define OMAP2_SRAM_SIZE 0xa0000 /* 640k */
/* We support the SDRAM / SRAM types. See OMAPFB_PLANE_MEMTYPE_* in omapfb.h */
#define DISPC_MEMTYPE_NUM 2
#define RESMAP_SIZE(_page_cnt) \
((_page_cnt + (sizeof(unsigned long) * 8) - 1) / 8)
#define RESMAP_PTR(_res_map, _page_nr) \
(((_res_map)->map) + (_page_nr) / (sizeof(unsigned long) * 8))
#define RESMAP_MASK(_page_nr) \
(1 << ((_page_nr) & (sizeof(unsigned long) * 8 - 1)))
struct resmap {
unsigned long start;
unsigned page_cnt;
unsigned long *map;
};
static struct {
void __iomem *base;
struct omapfb_mem_desc mem_desc;
struct resmap *res_map[DISPC_MEMTYPE_NUM];
atomic_t map_count[OMAPFB_PLANE_NUM];
dma_addr_t palette_paddr;
void *palette_vaddr;
int ext_mode;
unsigned long enabled_irqs;
void (*irq_callback)(void *);
void *irq_callback_data;
struct completion frame_done;
int fir_hinc[OMAPFB_PLANE_NUM];
int fir_vinc[OMAPFB_PLANE_NUM];
struct clk *dss_ick, *dss1_fck;
struct clk *dss_54m_fck;
enum omapfb_update_mode update_mode;
struct omapfb_device *fbdev;
struct omapfb_color_key color_key;
} dispc;
static void enable_lcd_clocks(int enable);
static void inline dispc_write_reg(int idx, u32 val)
{
__raw_writel(val, dispc.base + idx);
}
static u32 inline dispc_read_reg(int idx)
{
u32 l = __raw_readl(dispc.base + idx);
return l;
}
/* Select RFBI or bypass mode */
static void enable_rfbi_mode(int enable)
{
u32 l;
l = dispc_read_reg(DISPC_CONTROL);
/* Enable RFBI, GPIO0/1 */
l &= ~((1 << 11) | (1 << 15) | (1 << 16));
l |= enable ? (1 << 11) : 0;
/* RFBI En: GPIO0/1=10 RFBI Dis: GPIO0/1=11 */
l |= 1 << 15;
l |= enable ? 0 : (1 << 16);
dispc_write_reg(DISPC_CONTROL, l);
/* Set bypass mode in RFBI module */
l = __raw_readl(IO_ADDRESS(RFBI_CONTROL));
l |= enable ? 0 : (1 << 1);
__raw_writel(l, IO_ADDRESS(RFBI_CONTROL));
}
static void set_lcd_data_lines(int data_lines)
{
u32 l;
int code = 0;
switch (data_lines) {
case 12:
code = 0;
break;
case 16:
code = 1;
break;
case 18:
code = 2;
break;
case 24:
code = 3;
break;
default:
BUG();
}
l = dispc_read_reg(DISPC_CONTROL);
l &= ~(0x03 << 8);
l |= code << 8;
dispc_write_reg(DISPC_CONTROL, l);
}
static void set_load_mode(int mode)
{
BUG_ON(mode & ~(DISPC_LOAD_CLUT_ONLY | DISPC_LOAD_FRAME_ONLY |
DISPC_LOAD_CLUT_ONCE_FRAME));
MOD_REG_FLD(DISPC_CONFIG, 0x03 << 1, mode << 1);
}
void omap_dispc_set_lcd_size(int x, int y)
{
BUG_ON((x > (1 << 11)) || (y > (1 << 11)));
enable_lcd_clocks(1);
MOD_REG_FLD(DISPC_SIZE_LCD, FLD_MASK(16, 11) | FLD_MASK(0, 11),
((y - 1) << 16) | (x - 1));
enable_lcd_clocks(0);
}
EXPORT_SYMBOL(omap_dispc_set_lcd_size);
void omap_dispc_set_digit_size(int x, int y)
{
BUG_ON((x > (1 << 11)) || (y > (1 << 11)));
enable_lcd_clocks(1);
MOD_REG_FLD(DISPC_SIZE_DIG, FLD_MASK(16, 11) | FLD_MASK(0, 11),
((y - 1) << 16) | (x - 1));
enable_lcd_clocks(0);
}
EXPORT_SYMBOL(omap_dispc_set_digit_size);
static void setup_plane_fifo(int plane, int ext_mode)
{
const u32 ftrs_reg[] = { DISPC_GFX_FIFO_THRESHOLD,
DISPC_VID1_BASE + DISPC_VID_FIFO_THRESHOLD,
DISPC_VID2_BASE + DISPC_VID_FIFO_THRESHOLD };
const u32 fsz_reg[] = { DISPC_GFX_FIFO_SIZE_STATUS,
DISPC_VID1_BASE + DISPC_VID_FIFO_SIZE_STATUS,
DISPC_VID2_BASE + DISPC_VID_FIFO_SIZE_STATUS };
int low, high;
u32 l;
BUG_ON(plane > 2);
l = dispc_read_reg(fsz_reg[plane]);
l &= FLD_MASK(0, 9);
if (ext_mode) {
low = l * 3 / 4;
high = l;
} else {
low = l / 4;
high = l * 3 / 4;
}
MOD_REG_FLD(ftrs_reg[plane], FLD_MASK(16, 9) | FLD_MASK(0, 9),
(high << 16) | low);
}
void omap_dispc_enable_lcd_out(int enable)
{
enable_lcd_clocks(1);
MOD_REG_FLD(DISPC_CONTROL, 1, enable ? 1 : 0);
enable_lcd_clocks(0);
}
EXPORT_SYMBOL(omap_dispc_enable_lcd_out);
void omap_dispc_enable_digit_out(int enable)
{
enable_lcd_clocks(1);
MOD_REG_FLD(DISPC_CONTROL, 1 << 1, enable ? 1 << 1 : 0);
enable_lcd_clocks(0);
}
EXPORT_SYMBOL(omap_dispc_enable_digit_out);
static inline int _setup_plane(int plane, int channel_out,
u32 paddr, int screen_width,
int pos_x, int pos_y, int width, int height,
int color_mode)
{
const u32 at_reg[] = { DISPC_GFX_ATTRIBUTES,
DISPC_VID1_BASE + DISPC_VID_ATTRIBUTES,
DISPC_VID2_BASE + DISPC_VID_ATTRIBUTES };
const u32 ba_reg[] = { DISPC_GFX_BA0, DISPC_VID1_BASE + DISPC_VID_BA0,
DISPC_VID2_BASE + DISPC_VID_BA0 };
const u32 ps_reg[] = { DISPC_GFX_POSITION,
DISPC_VID1_BASE + DISPC_VID_POSITION,
DISPC_VID2_BASE + DISPC_VID_POSITION };
const u32 sz_reg[] = { DISPC_GFX_SIZE,
DISPC_VID1_BASE + DISPC_VID_PICTURE_SIZE,
DISPC_VID2_BASE + DISPC_VID_PICTURE_SIZE };
const u32 ri_reg[] = { DISPC_GFX_ROW_INC,
DISPC_VID1_BASE + DISPC_VID_ROW_INC,
DISPC_VID2_BASE + DISPC_VID_ROW_INC };
const u32 vs_reg[] = { 0, DISPC_VID1_BASE + DISPC_VID_SIZE,
DISPC_VID2_BASE + DISPC_VID_SIZE };
int chout_shift, burst_shift;
int chout_val;
int color_code;
int bpp;
int cconv_en;
int set_vsize;
u32 l;
#ifdef VERBOSE
dev_dbg(dispc.fbdev->dev, "plane %d channel %d paddr %#08x scr_width %d"
" pos_x %d pos_y %d width %d height %d color_mode %d\n",
plane, channel_out, paddr, screen_width, pos_x, pos_y,
width, height, color_mode);
#endif
set_vsize = 0;
switch (plane) {
case OMAPFB_PLANE_GFX:
burst_shift = 6;
chout_shift = 8;
break;
case OMAPFB_PLANE_VID1:
case OMAPFB_PLANE_VID2:
burst_shift = 14;
chout_shift = 16;
set_vsize = 1;
break;
default:
return -EINVAL;
}
switch (channel_out) {
case OMAPFB_CHANNEL_OUT_LCD:
chout_val = 0;
break;
case OMAPFB_CHANNEL_OUT_DIGIT:
chout_val = 1;
break;
default:
return -EINVAL;
}
cconv_en = 0;
switch (color_mode) {
case OMAPFB_COLOR_RGB565:
color_code = DISPC_RGB_16_BPP;
bpp = 16;
break;
case OMAPFB_COLOR_YUV422:
if (plane == 0)
return -EINVAL;
color_code = DISPC_UYVY_422;
cconv_en = 1;
bpp = 16;
break;
case OMAPFB_COLOR_YUY422:
if (plane == 0)
return -EINVAL;
color_code = DISPC_YUV2_422;
cconv_en = 1;
bpp = 16;
break;
default:
return -EINVAL;
}
l = dispc_read_reg(at_reg[plane]);
l &= ~(0x0f << 1);
l |= color_code << 1;
l &= ~(1 << 9);
l |= cconv_en << 9;
l &= ~(0x03 << burst_shift);
l |= DISPC_BURST_8x32 << burst_shift;
l &= ~(1 << chout_shift);
l |= chout_val << chout_shift;
dispc_write_reg(at_reg[plane], l);
dispc_write_reg(ba_reg[plane], paddr);
MOD_REG_FLD(ps_reg[plane],
FLD_MASK(16, 11) | FLD_MASK(0, 11), (pos_y << 16) | pos_x);
MOD_REG_FLD(sz_reg[plane], FLD_MASK(16, 11) | FLD_MASK(0, 11),
((height - 1) << 16) | (width - 1));
if (set_vsize) {
/* Set video size if set_scale hasn't set it */
if (!dispc.fir_vinc[plane])
MOD_REG_FLD(vs_reg[plane],
FLD_MASK(16, 11), (height - 1) << 16);
if (!dispc.fir_hinc[plane])
MOD_REG_FLD(vs_reg[plane],
FLD_MASK(0, 11), width - 1);
}
dispc_write_reg(ri_reg[plane], (screen_width - width) * bpp / 8 + 1);
return height * screen_width * bpp / 8;
}
static int omap_dispc_setup_plane(int plane, int channel_out,
unsigned long offset,
int screen_width,
int pos_x, int pos_y, int width, int height,
int color_mode)
{
u32 paddr;
int r;
if ((unsigned)plane > dispc.mem_desc.region_cnt)
return -EINVAL;
paddr = dispc.mem_desc.region[plane].paddr + offset;
enable_lcd_clocks(1);
r = _setup_plane(plane, channel_out, paddr,
screen_width,
pos_x, pos_y, width, height, color_mode);
enable_lcd_clocks(0);
return r;
}
static void write_firh_reg(int plane, int reg, u32 value)
{
u32 base;
if (plane == 1)
base = DISPC_VID1_BASE + DISPC_VID_FIR_COEF_H0;
else
base = DISPC_VID2_BASE + DISPC_VID_FIR_COEF_H0;
dispc_write_reg(base + reg * 8, value);
}
static void write_firhv_reg(int plane, int reg, u32 value)
{
u32 base;
if (plane == 1)
base = DISPC_VID1_BASE + DISPC_VID_FIR_COEF_HV0;
else
base = DISPC_VID2_BASE + DISPC_VID_FIR_COEF_HV0;
dispc_write_reg(base + reg * 8, value);
}
static void set_upsampling_coef_table(int plane)
{
const u32 coef[][2] = {
{ 0x00800000, 0x00800000 },
{ 0x0D7CF800, 0x037B02FF },
{ 0x1E70F5FF, 0x0C6F05FE },
{ 0x335FF5FE, 0x205907FB },
{ 0xF74949F7, 0x00404000 },
{ 0xF55F33FB, 0x075920FE },
{ 0xF5701EFE, 0x056F0CFF },
{ 0xF87C0DFF, 0x027B0300 },
};
int i;
for (i = 0; i < 8; i++) {
write_firh_reg(plane, i, coef[i][0]);
write_firhv_reg(plane, i, coef[i][1]);
}
}
static int omap_dispc_set_scale(int plane,
int orig_width, int orig_height,
int out_width, int out_height)
{
const u32 at_reg[] = { 0, DISPC_VID1_BASE + DISPC_VID_ATTRIBUTES,
DISPC_VID2_BASE + DISPC_VID_ATTRIBUTES };
const u32 vs_reg[] = { 0, DISPC_VID1_BASE + DISPC_VID_SIZE,
DISPC_VID2_BASE + DISPC_VID_SIZE };
const u32 fir_reg[] = { 0, DISPC_VID1_BASE + DISPC_VID_FIR,
DISPC_VID2_BASE + DISPC_VID_FIR };
u32 l;
int fir_hinc;
int fir_vinc;
if ((unsigned)plane > OMAPFB_PLANE_NUM)
return -ENODEV;
if (plane == OMAPFB_PLANE_GFX &&
(out_width != orig_width || out_height != orig_height))
return -EINVAL;
enable_lcd_clocks(1);
if (orig_width < out_width) {
/*
* Upsampling.
* Currently you can only scale both dimensions in one way.
*/
if (orig_height > out_height ||
orig_width * 8 < out_width ||
orig_height * 8 < out_height) {
enable_lcd_clocks(0);
return -EINVAL;
}
set_upsampling_coef_table(plane);
} else if (orig_width > out_width) {
/* Downsampling not yet supported
*/
enable_lcd_clocks(0);
return -EINVAL;
}
if (!orig_width || orig_width == out_width)
fir_hinc = 0;
else
fir_hinc = 1024 * orig_width / out_width;
if (!orig_height || orig_height == out_height)
fir_vinc = 0;
else
fir_vinc = 1024 * orig_height / out_height;
dispc.fir_hinc[plane] = fir_hinc;
dispc.fir_vinc[plane] = fir_vinc;
MOD_REG_FLD(fir_reg[plane],
FLD_MASK(16, 12) | FLD_MASK(0, 12),
((fir_vinc & 4095) << 16) |
(fir_hinc & 4095));
dev_dbg(dispc.fbdev->dev, "out_width %d out_height %d orig_width %d "
"orig_height %d fir_hinc %d fir_vinc %d\n",
out_width, out_height, orig_width, orig_height,
fir_hinc, fir_vinc);
MOD_REG_FLD(vs_reg[plane],
FLD_MASK(16, 11) | FLD_MASK(0, 11),
((out_height - 1) << 16) | (out_width - 1));
l = dispc_read_reg(at_reg[plane]);
l &= ~(0x03 << 5);
l |= fir_hinc ? (1 << 5) : 0;
l |= fir_vinc ? (1 << 6) : 0;
dispc_write_reg(at_reg[plane], l);
enable_lcd_clocks(0);
return 0;
}
static int omap_dispc_enable_plane(int plane, int enable)
{
const u32 at_reg[] = { DISPC_GFX_ATTRIBUTES,
DISPC_VID1_BASE + DISPC_VID_ATTRIBUTES,
DISPC_VID2_BASE + DISPC_VID_ATTRIBUTES };
if ((unsigned int)plane > dispc.mem_desc.region_cnt)
return -EINVAL;
enable_lcd_clocks(1);
MOD_REG_FLD(at_reg[plane], 1, enable ? 1 : 0);
enable_lcd_clocks(0);
return 0;
}
static int omap_dispc_set_color_key(struct omapfb_color_key *ck)
{
u32 df_reg, tr_reg;
int shift, val;
switch (ck->channel_out) {
case OMAPFB_CHANNEL_OUT_LCD:
df_reg = DISPC_DEFAULT_COLOR0;
tr_reg = DISPC_TRANS_COLOR0;
shift = 10;
break;
case OMAPFB_CHANNEL_OUT_DIGIT:
df_reg = DISPC_DEFAULT_COLOR1;
tr_reg = DISPC_TRANS_COLOR1;
shift = 12;
break;
default:
return -EINVAL;
}
switch (ck->key_type) {
case OMAPFB_COLOR_KEY_DISABLED:
val = 0;
break;
case OMAPFB_COLOR_KEY_GFX_DST:
val = 1;
break;
case OMAPFB_COLOR_KEY_VID_SRC:
val = 3;
break;
default:
return -EINVAL;
}
enable_lcd_clocks(1);
MOD_REG_FLD(DISPC_CONFIG, FLD_MASK(shift, 2), val << shift);
if (val != 0)
dispc_write_reg(tr_reg, ck->trans_key);
dispc_write_reg(df_reg, ck->background);
enable_lcd_clocks(0);
dispc.color_key = *ck;
return 0;
}
static int omap_dispc_get_color_key(struct omapfb_color_key *ck)
{
*ck = dispc.color_key;
return 0;
}
static void load_palette(void)
{
}
static int omap_dispc_set_update_mode(enum omapfb_update_mode mode)
{
int r = 0;
if (mode != dispc.update_mode) {
switch (mode) {
case OMAPFB_AUTO_UPDATE:
case OMAPFB_MANUAL_UPDATE:
enable_lcd_clocks(1);
omap_dispc_enable_lcd_out(1);
dispc.update_mode = mode;
break;
case OMAPFB_UPDATE_DISABLED:
init_completion(&dispc.frame_done);
omap_dispc_enable_lcd_out(0);
if (!wait_for_completion_timeout(&dispc.frame_done,
msecs_to_jiffies(500))) {
dev_err(dispc.fbdev->dev,
"timeout waiting for FRAME DONE\n");
}
dispc.update_mode = mode;
enable_lcd_clocks(0);
break;
default:
r = -EINVAL;
}
}
return r;
}
static void omap_dispc_get_caps(int plane, struct omapfb_caps *caps)
{
caps->ctrl |= OMAPFB_CAPS_PLANE_RELOCATE_MEM;
if (plane > 0)
caps->ctrl |= OMAPFB_CAPS_PLANE_SCALE;
caps->plane_color |= (1 << OMAPFB_COLOR_RGB565) |
(1 << OMAPFB_COLOR_YUV422) |
(1 << OMAPFB_COLOR_YUY422);
if (plane == 0)
caps->plane_color |= (1 << OMAPFB_COLOR_CLUT_8BPP) |
(1 << OMAPFB_COLOR_CLUT_4BPP) |
(1 << OMAPFB_COLOR_CLUT_2BPP) |
(1 << OMAPFB_COLOR_CLUT_1BPP) |
(1 << OMAPFB_COLOR_RGB444);
}
static enum omapfb_update_mode omap_dispc_get_update_mode(void)
{
return dispc.update_mode;
}
static void setup_color_conv_coef(void)
{
u32 mask = FLD_MASK(16, 11) | FLD_MASK(0, 11);
int cf1_reg = DISPC_VID1_BASE + DISPC_VID_CONV_COEF0;
int cf2_reg = DISPC_VID2_BASE + DISPC_VID_CONV_COEF0;
int at1_reg = DISPC_VID1_BASE + DISPC_VID_ATTRIBUTES;
int at2_reg = DISPC_VID2_BASE + DISPC_VID_ATTRIBUTES;
const struct color_conv_coef {
int ry, rcr, rcb, gy, gcr, gcb, by, bcr, bcb;
int full_range;
} ctbl_bt601_5 = {
298, 409, 0, 298, -208, -100, 298, 0, 517, 0,
};
const struct color_conv_coef *ct;
#define CVAL(x, y) (((x & 2047) << 16) | (y & 2047))
ct = &ctbl_bt601_5;
MOD_REG_FLD(cf1_reg, mask, CVAL(ct->rcr, ct->ry));
MOD_REG_FLD(cf1_reg + 4, mask, CVAL(ct->gy, ct->rcb));
MOD_REG_FLD(cf1_reg + 8, mask, CVAL(ct->gcb, ct->gcr));
MOD_REG_FLD(cf1_reg + 12, mask, CVAL(ct->bcr, ct->by));
MOD_REG_FLD(cf1_reg + 16, mask, CVAL(0, ct->bcb));
MOD_REG_FLD(cf2_reg, mask, CVAL(ct->rcr, ct->ry));
MOD_REG_FLD(cf2_reg + 4, mask, CVAL(ct->gy, ct->rcb));
MOD_REG_FLD(cf2_reg + 8, mask, CVAL(ct->gcb, ct->gcr));
MOD_REG_FLD(cf2_reg + 12, mask, CVAL(ct->bcr, ct->by));
MOD_REG_FLD(cf2_reg + 16, mask, CVAL(0, ct->bcb));
#undef CVAL
MOD_REG_FLD(at1_reg, (1 << 11), ct->full_range);
MOD_REG_FLD(at2_reg, (1 << 11), ct->full_range);
}
static void calc_ck_div(int is_tft, int pck, int *lck_div, int *pck_div)
{
unsigned long fck, lck;
*lck_div = 1;
pck = max(1, pck);
fck = clk_get_rate(dispc.dss1_fck);
lck = fck;
*pck_div = (lck + pck - 1) / pck;
if (is_tft)
*pck_div = max(2, *pck_div);
else
*pck_div = max(3, *pck_div);
if (*pck_div > 255) {
*pck_div = 255;
lck = pck * *pck_div;
*lck_div = fck / lck;
BUG_ON(*lck_div < 1);
if (*lck_div > 255) {
*lck_div = 255;
dev_warn(dispc.fbdev->dev, "pixclock %d kHz too low.\n",
pck / 1000);
}
}
}
static void set_lcd_tft_mode(int enable)
{
u32 mask;
mask = 1 << 3;
MOD_REG_FLD(DISPC_CONTROL, mask, enable ? mask : 0);
}
static void set_lcd_timings(void)
{
u32 l;
int lck_div, pck_div;
struct lcd_panel *panel = dispc.fbdev->panel;
int is_tft = panel->config & OMAP_LCDC_PANEL_TFT;
unsigned long fck;
l = dispc_read_reg(DISPC_TIMING_H);
l &= ~(FLD_MASK(0, 6) | FLD_MASK(8, 8) | FLD_MASK(20, 8));
l |= ( max(1, (min(64, panel->hsw))) - 1 ) << 0;
l |= ( max(1, (min(256, panel->hfp))) - 1 ) << 8;
l |= ( max(1, (min(256, panel->hbp))) - 1 ) << 20;
dispc_write_reg(DISPC_TIMING_H, l);
l = dispc_read_reg(DISPC_TIMING_V);
l &= ~(FLD_MASK(0, 6) | FLD_MASK(8, 8) | FLD_MASK(20, 8));
l |= ( max(1, (min(64, panel->vsw))) - 1 ) << 0;
l |= ( max(0, (min(255, panel->vfp))) - 0 ) << 8;
l |= ( max(0, (min(255, panel->vbp))) - 0 ) << 20;
dispc_write_reg(DISPC_TIMING_V, l);
l = dispc_read_reg(DISPC_POL_FREQ);
l &= ~FLD_MASK(12, 6);
l |= (panel->config & OMAP_LCDC_SIGNAL_MASK) << 12;
l |= panel->acb & 0xff;
dispc_write_reg(DISPC_POL_FREQ, l);
calc_ck_div(is_tft, panel->pixel_clock * 1000, &lck_div, &pck_div);
l = dispc_read_reg(DISPC_DIVISOR);
l &= ~(FLD_MASK(16, 8) | FLD_MASK(0, 8));
l |= (lck_div << 16) | (pck_div << 0);
dispc_write_reg(DISPC_DIVISOR, l);
/* update panel info with the exact clock */
fck = clk_get_rate(dispc.dss1_fck);
panel->pixel_clock = fck / lck_div / pck_div / 1000;
}
int omap_dispc_request_irq(void (*callback)(void *data), void *data)
{
int r = 0;
BUG_ON(callback == NULL);
if (dispc.irq_callback)
r = -EBUSY;
else {
dispc.irq_callback = callback;
dispc.irq_callback_data = data;
}
return r;
}
EXPORT_SYMBOL(omap_dispc_request_irq);
void omap_dispc_enable_irqs(int irq_mask)
{
enable_lcd_clocks(1);
dispc.enabled_irqs = irq_mask;
irq_mask |= DISPC_IRQ_MASK_ERROR;
MOD_REG_FLD(DISPC_IRQENABLE, 0x7fff, irq_mask);
enable_lcd_clocks(0);
}
EXPORT_SYMBOL(omap_dispc_enable_irqs);
void omap_dispc_disable_irqs(int irq_mask)
{
enable_lcd_clocks(1);
dispc.enabled_irqs &= ~irq_mask;
irq_mask &= ~DISPC_IRQ_MASK_ERROR;
MOD_REG_FLD(DISPC_IRQENABLE, 0x7fff, irq_mask);
enable_lcd_clocks(0);
}
EXPORT_SYMBOL(omap_dispc_disable_irqs);
void omap_dispc_free_irq(void)
{
enable_lcd_clocks(1);
omap_dispc_disable_irqs(DISPC_IRQ_MASK_ALL);
dispc.irq_callback = NULL;
dispc.irq_callback_data = NULL;
enable_lcd_clocks(0);
}
EXPORT_SYMBOL(omap_dispc_free_irq);
static irqreturn_t omap_dispc_irq_handler(int irq, void *dev)
{
u32 stat = dispc_read_reg(DISPC_IRQSTATUS);
if (stat & DISPC_IRQ_FRAMEMASK)
complete(&dispc.frame_done);
if (stat & DISPC_IRQ_MASK_ERROR) {
if (printk_ratelimit()) {
dev_err(dispc.fbdev->dev, "irq error status %04x\n",
stat & 0x7fff);
}
}
if ((stat & dispc.enabled_irqs) && dispc.irq_callback)
dispc.irq_callback(dispc.irq_callback_data);
dispc_write_reg(DISPC_IRQSTATUS, stat);
return IRQ_HANDLED;
}
static int get_dss_clocks(void)
{
if (IS_ERR((dispc.dss_ick = clk_get(dispc.fbdev->dev, "dss_ick")))) {
dev_err(dispc.fbdev->dev, "can't get dss_ick\n");
return PTR_ERR(dispc.dss_ick);
}
if (IS_ERR((dispc.dss1_fck = clk_get(dispc.fbdev->dev, "dss1_fck")))) {
dev_err(dispc.fbdev->dev, "can't get dss1_fck\n");
clk_put(dispc.dss_ick);
return PTR_ERR(dispc.dss1_fck);
}
if (IS_ERR((dispc.dss_54m_fck =
clk_get(dispc.fbdev->dev, "dss_54m_fck")))) {
dev_err(dispc.fbdev->dev, "can't get dss_54m_fck\n");
clk_put(dispc.dss_ick);
clk_put(dispc.dss1_fck);
return PTR_ERR(dispc.dss_54m_fck);
}
return 0;
}
static void put_dss_clocks(void)
{
clk_put(dispc.dss_54m_fck);
clk_put(dispc.dss1_fck);
clk_put(dispc.dss_ick);
}
static void enable_lcd_clocks(int enable)
{
if (enable)
clk_enable(dispc.dss1_fck);
else
clk_disable(dispc.dss1_fck);
}
static void enable_interface_clocks(int enable)
{
if (enable)
clk_enable(dispc.dss_ick);
else
clk_disable(dispc.dss_ick);
}
static void enable_digit_clocks(int enable)
{
if (enable)
clk_enable(dispc.dss_54m_fck);
else
clk_disable(dispc.dss_54m_fck);
}
static void omap_dispc_suspend(void)
{
if (dispc.update_mode == OMAPFB_AUTO_UPDATE) {
init_completion(&dispc.frame_done);
omap_dispc_enable_lcd_out(0);
if (!wait_for_completion_timeout(&dispc.frame_done,
msecs_to_jiffies(500))) {
dev_err(dispc.fbdev->dev,
"timeout waiting for FRAME DONE\n");
}
enable_lcd_clocks(0);
}
}
static void omap_dispc_resume(void)
{
if (dispc.update_mode == OMAPFB_AUTO_UPDATE) {
enable_lcd_clocks(1);
if (!dispc.ext_mode) {
set_lcd_timings();
load_palette();
}
omap_dispc_enable_lcd_out(1);
}
}
static int omap_dispc_update_window(struct fb_info *fbi,
struct omapfb_update_window *win,
void (*complete_callback)(void *arg),
void *complete_callback_data)
{
return dispc.update_mode == OMAPFB_UPDATE_DISABLED ? -ENODEV : 0;
}
static int mmap_kern(struct omapfb_mem_region *region)
{
struct vm_struct *kvma;
struct vm_area_struct vma;
pgprot_t pgprot;
unsigned long vaddr;
kvma = get_vm_area(region->size, VM_IOREMAP);
if (kvma == NULL) {
dev_err(dispc.fbdev->dev, "can't get kernel vm area\n");
return -ENOMEM;
}
vma.vm_mm = &init_mm;
vaddr = (unsigned long)kvma->addr;
pgprot = pgprot_writecombine(pgprot_kernel);
vma.vm_start = vaddr;
vma.vm_end = vaddr + region->size;
if (io_remap_pfn_range(&vma, vaddr, region->paddr >> PAGE_SHIFT,
region->size, pgprot) < 0) {
dev_err(dispc.fbdev->dev, "kernel mmap for FBMEM failed\n");
return -EAGAIN;
}
region->vaddr = (void *)vaddr;
return 0;
}
static void mmap_user_open(struct vm_area_struct *vma)
{
int plane = (int)vma->vm_private_data;
atomic_inc(&dispc.map_count[plane]);
}
static void mmap_user_close(struct vm_area_struct *vma)
{
int plane = (int)vma->vm_private_data;
atomic_dec(&dispc.map_count[plane]);
}
static struct vm_operations_struct mmap_user_ops = {
.open = mmap_user_open,
.close = mmap_user_close,
};
static int omap_dispc_mmap_user(struct fb_info *info,
struct vm_area_struct *vma)
{
struct omapfb_plane_struct *plane = info->par;
unsigned long off;
unsigned long start;
u32 len;
if (vma->vm_end - vma->vm_start == 0)
return 0;
if (vma->vm_pgoff > (~0UL >> PAGE_SHIFT))
return -EINVAL;
off = vma->vm_pgoff << PAGE_SHIFT;
start = info->fix.smem_start;
len = info->fix.smem_len;
if (off >= len)
return -EINVAL;
if ((vma->vm_end - vma->vm_start + off) > len)
return -EINVAL;
off += start;
vma->vm_pgoff = off >> PAGE_SHIFT;
vma->vm_flags |= VM_IO | VM_RESERVED;
vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
vma->vm_ops = &mmap_user_ops;
vma->vm_private_data = (void *)plane->idx;
if (io_remap_pfn_range(vma, vma->vm_start, off >> PAGE_SHIFT,
vma->vm_end - vma->vm_start, vma->vm_page_prot))
return -EAGAIN;
/* vm_ops.open won't be called for mmap itself. */
atomic_inc(&dispc.map_count[plane->idx]);
return 0;
}
static void unmap_kern(struct omapfb_mem_region *region)
{
vunmap(region->vaddr);
}
static int alloc_palette_ram(void)
{
dispc.palette_vaddr = dma_alloc_writecombine(dispc.fbdev->dev,
MAX_PALETTE_SIZE, &dispc.palette_paddr, GFP_KERNEL);
if (dispc.palette_vaddr == NULL) {
dev_err(dispc.fbdev->dev, "failed to alloc palette memory\n");
return -ENOMEM;
}
return 0;
}
static void free_palette_ram(void)
{
dma_free_writecombine(dispc.fbdev->dev, MAX_PALETTE_SIZE,
dispc.palette_vaddr, dispc.palette_paddr);
}
static int alloc_fbmem(struct omapfb_mem_region *region)
{
region->vaddr = dma_alloc_writecombine(dispc.fbdev->dev,
region->size, &region->paddr, GFP_KERNEL);
if (region->vaddr == NULL) {
dev_err(dispc.fbdev->dev, "unable to allocate FB DMA memory\n");
return -ENOMEM;
}
return 0;
}
static void free_fbmem(struct omapfb_mem_region *region)
{
dma_free_writecombine(dispc.fbdev->dev, region->size,
region->vaddr, region->paddr);
}
static struct resmap *init_resmap(unsigned long start, size_t size)
{
unsigned page_cnt;
struct resmap *res_map;
page_cnt = PAGE_ALIGN(size) / PAGE_SIZE;
res_map =
kzalloc(sizeof(struct resmap) + RESMAP_SIZE(page_cnt), GFP_KERNEL);
if (res_map == NULL)
return NULL;
res_map->start = start;
res_map->page_cnt = page_cnt;
res_map->map = (unsigned long *)(res_map + 1);
return res_map;
}
static void cleanup_resmap(struct resmap *res_map)
{
kfree(res_map);
}
static inline int resmap_mem_type(unsigned long start)
{
if (start >= OMAP2_SRAM_START &&
start < OMAP2_SRAM_START + OMAP2_SRAM_SIZE)
return OMAPFB_MEMTYPE_SRAM;
else
return OMAPFB_MEMTYPE_SDRAM;
}
static inline int resmap_page_reserved(struct resmap *res_map, unsigned page_nr)
{
return *RESMAP_PTR(res_map, page_nr) & RESMAP_MASK(page_nr) ? 1 : 0;
}
static inline void resmap_reserve_page(struct resmap *res_map, unsigned page_nr)
{
BUG_ON(resmap_page_reserved(res_map, page_nr));
*RESMAP_PTR(res_map, page_nr) |= RESMAP_MASK(page_nr);
}
static inline void resmap_free_page(struct resmap *res_map, unsigned page_nr)
{
BUG_ON(!resmap_page_reserved(res_map, page_nr));
*RESMAP_PTR(res_map, page_nr) &= ~RESMAP_MASK(page_nr);
}
static void resmap_reserve_region(unsigned long start, size_t size)
{
struct resmap *res_map;
unsigned start_page;
unsigned end_page;
int mtype;
unsigned i;
mtype = resmap_mem_type(start);
res_map = dispc.res_map[mtype];
dev_dbg(dispc.fbdev->dev, "reserve mem type %d start %08lx size %d\n",
mtype, start, size);
start_page = (start - res_map->start) / PAGE_SIZE;
end_page = start_page + PAGE_ALIGN(size) / PAGE_SIZE;
for (i = start_page; i < end_page; i++)
resmap_reserve_page(res_map, i);
}
static void resmap_free_region(unsigned long start, size_t size)
{
struct resmap *res_map;
unsigned start_page;
unsigned end_page;
unsigned i;
int mtype;
mtype = resmap_mem_type(start);
res_map = dispc.res_map[mtype];
dev_dbg(dispc.fbdev->dev, "free mem type %d start %08lx size %d\n",
mtype, start, size);
start_page = (start - res_map->start) / PAGE_SIZE;
end_page = start_page + PAGE_ALIGN(size) / PAGE_SIZE;
for (i = start_page; i < end_page; i++)
resmap_free_page(res_map, i);
}
static unsigned long resmap_alloc_region(int mtype, size_t size)
{
unsigned i;
unsigned total;
unsigned start_page;
unsigned long start;
struct resmap *res_map = dispc.res_map[mtype];
BUG_ON(mtype >= DISPC_MEMTYPE_NUM || res_map == NULL || !size);
size = PAGE_ALIGN(size) / PAGE_SIZE;
start_page = 0;
total = 0;
for (i = 0; i < res_map->page_cnt; i++) {
if (resmap_page_reserved(res_map, i)) {
start_page = i + 1;
total = 0;
} else if (++total == size)
break;
}
if (total < size)
return 0;
start = res_map->start + start_page * PAGE_SIZE;
resmap_reserve_region(start, size * PAGE_SIZE);
return start;
}
/* Note that this will only work for user mappings, we don't deal with
* kernel mappings here, so fbcon will keep using the old region.
*/
static int omap_dispc_setup_mem(int plane, size_t size, int mem_type,
unsigned long *paddr)
{
struct omapfb_mem_region *rg;
unsigned long new_addr = 0;
if ((unsigned)plane > dispc.mem_desc.region_cnt)
return -EINVAL;
if (mem_type >= DISPC_MEMTYPE_NUM)
return -EINVAL;
if (dispc.res_map[mem_type] == NULL)
return -ENOMEM;
rg = &dispc.mem_desc.region[plane];
if (size == rg->size && mem_type == rg->type)
return 0;
if (atomic_read(&dispc.map_count[plane]))
return -EBUSY;
if (rg->size != 0)
resmap_free_region(rg->paddr, rg->size);
if (size != 0) {
new_addr = resmap_alloc_region(mem_type, size);
if (!new_addr) {
/* Reallocate old region. */
resmap_reserve_region(rg->paddr, rg->size);
return -ENOMEM;
}
}
rg->paddr = new_addr;
rg->size = size;
rg->type = mem_type;
*paddr = new_addr;
return 0;
}
static int setup_fbmem(struct omapfb_mem_desc *req_md)
{
struct omapfb_mem_region *rg;
int i;
int r;
unsigned long mem_start[DISPC_MEMTYPE_NUM];
unsigned long mem_end[DISPC_MEMTYPE_NUM];
if (!req_md->region_cnt) {
dev_err(dispc.fbdev->dev, "no memory regions defined\n");
return -ENOENT;
}
rg = &req_md->region[0];
memset(mem_start, 0xff, sizeof(mem_start));
memset(mem_end, 0, sizeof(mem_end));
for (i = 0; i < req_md->region_cnt; i++, rg++) {
int mtype;
if (rg->paddr) {
rg->alloc = 0;
if (rg->vaddr == NULL) {
rg->map = 1;
if ((r = mmap_kern(rg)) < 0)
return r;
}
} else {
if (rg->type != OMAPFB_MEMTYPE_SDRAM) {
dev_err(dispc.fbdev->dev,
"unsupported memory type\n");
return -EINVAL;
}
rg->alloc = rg->map = 1;
if ((r = alloc_fbmem(rg)) < 0)
return r;
}
mtype = rg->type;
if (rg->paddr < mem_start[mtype])
mem_start[mtype] = rg->paddr;
if (rg->paddr + rg->size > mem_end[mtype])
mem_end[mtype] = rg->paddr + rg->size;
}
for (i = 0; i < DISPC_MEMTYPE_NUM; i++) {
unsigned long start;
size_t size;
if (mem_end[i] == 0)
continue;
start = mem_start[i];
size = mem_end[i] - start;
dispc.res_map[i] = init_resmap(start, size);
r = -ENOMEM;
if (dispc.res_map[i] == NULL)
goto fail;
/* Initial state is that everything is reserved. This
* includes possible holes as well, which will never be
* freed.
*/
resmap_reserve_region(start, size);
}
dispc.mem_desc = *req_md;
return 0;
fail:
for (i = 0; i < DISPC_MEMTYPE_NUM; i++) {
if (dispc.res_map[i] != NULL)
cleanup_resmap(dispc.res_map[i]);
}
return r;
}
static void cleanup_fbmem(void)
{
struct omapfb_mem_region *rg;
int i;
for (i = 0; i < DISPC_MEMTYPE_NUM; i++) {
if (dispc.res_map[i] != NULL)
cleanup_resmap(dispc.res_map[i]);
}
rg = &dispc.mem_desc.region[0];
for (i = 0; i < dispc.mem_desc.region_cnt; i++, rg++) {
if (rg->alloc)
free_fbmem(rg);
else {
if (rg->map)
unmap_kern(rg);
}
}
}
static int omap_dispc_init(struct omapfb_device *fbdev, int ext_mode,
struct omapfb_mem_desc *req_vram)
{
int r;
u32 l;
struct lcd_panel *panel = fbdev->panel;
int tmo = 10000;
int skip_init = 0;
int i;
memset(&dispc, 0, sizeof(dispc));
dispc.base = ioremap(DISPC_BASE, SZ_1K);
if (!dispc.base) {
dev_err(fbdev->dev, "can't ioremap DISPC\n");
return -ENOMEM;
}
dispc.fbdev = fbdev;
dispc.ext_mode = ext_mode;
init_completion(&dispc.frame_done);
if ((r = get_dss_clocks()) < 0)
goto fail0;
enable_interface_clocks(1);
enable_lcd_clocks(1);
#ifdef CONFIG_FB_OMAP_BOOTLOADER_INIT
l = dispc_read_reg(DISPC_CONTROL);
/* LCD enabled ? */
if (l & 1) {
pr_info("omapfb: skipping hardware initialization\n");
skip_init = 1;
}
#endif
if (!skip_init) {
/* Reset monitoring works only w/ the 54M clk */
enable_digit_clocks(1);
/* Soft reset */
MOD_REG_FLD(DISPC_SYSCONFIG, 1 << 1, 1 << 1);
while (!(dispc_read_reg(DISPC_SYSSTATUS) & 1)) {
if (!--tmo) {
dev_err(dispc.fbdev->dev, "soft reset failed\n");
r = -ENODEV;
enable_digit_clocks(0);
goto fail1;
}
}
enable_digit_clocks(0);
}
/* Enable smart idle and autoidle */
l = dispc_read_reg(DISPC_CONTROL);
l &= ~((3 << 12) | (3 << 3));
l |= (2 << 12) | (2 << 3) | (1 << 0);
dispc_write_reg(DISPC_SYSCONFIG, l);
omap_writel(1 << 0, DSS_BASE + DSS_SYSCONFIG);
/* Set functional clock autogating */
l = dispc_read_reg(DISPC_CONFIG);
l |= 1 << 9;
dispc_write_reg(DISPC_CONFIG, l);
l = dispc_read_reg(DISPC_IRQSTATUS);
dispc_write_reg(l, DISPC_IRQSTATUS);
/* Enable those that we handle always */
omap_dispc_enable_irqs(DISPC_IRQ_FRAMEMASK);
if ((r = request_irq(INT_24XX_DSS_IRQ, omap_dispc_irq_handler,
0, MODULE_NAME, fbdev)) < 0) {
dev_err(dispc.fbdev->dev, "can't get DSS IRQ\n");
goto fail1;
}
/* L3 firewall setting: enable access to OCM RAM */
__raw_writel(0x402000b0, IO_ADDRESS(0x680050a0));
if ((r = alloc_palette_ram()) < 0)
goto fail2;
if ((r = setup_fbmem(req_vram)) < 0)
goto fail3;
if (!skip_init) {
for (i = 0; i < dispc.mem_desc.region_cnt; i++) {
memset(dispc.mem_desc.region[i].vaddr, 0,
dispc.mem_desc.region[i].size);
}
/* Set logic clock to fck, pixel clock to fck/2 for now */
MOD_REG_FLD(DISPC_DIVISOR, FLD_MASK(16, 8), 1 << 16);
MOD_REG_FLD(DISPC_DIVISOR, FLD_MASK(0, 8), 2 << 0);
setup_plane_fifo(0, ext_mode);
setup_plane_fifo(1, ext_mode);
setup_plane_fifo(2, ext_mode);
setup_color_conv_coef();
set_lcd_tft_mode(panel->config & OMAP_LCDC_PANEL_TFT);
set_load_mode(DISPC_LOAD_FRAME_ONLY);
if (!ext_mode) {
set_lcd_data_lines(panel->data_lines);
omap_dispc_set_lcd_size(panel->x_res, panel->y_res);
set_lcd_timings();
} else
set_lcd_data_lines(panel->bpp);
enable_rfbi_mode(ext_mode);
}
l = dispc_read_reg(DISPC_REVISION);
pr_info("omapfb: DISPC version %d.%d initialized\n",
l >> 4 & 0x0f, l & 0x0f);
enable_lcd_clocks(0);
return 0;
fail3:
free_palette_ram();
fail2:
free_irq(INT_24XX_DSS_IRQ, fbdev);
fail1:
enable_lcd_clocks(0);
enable_interface_clocks(0);
put_dss_clocks();
fail0:
iounmap(dispc.base);
return r;
}
static void omap_dispc_cleanup(void)
{
int i;
omap_dispc_set_update_mode(OMAPFB_UPDATE_DISABLED);
/* This will also disable clocks that are on */
for (i = 0; i < dispc.mem_desc.region_cnt; i++)
omap_dispc_enable_plane(i, 0);
cleanup_fbmem();
free_palette_ram();
free_irq(INT_24XX_DSS_IRQ, dispc.fbdev);
enable_interface_clocks(0);
put_dss_clocks();
iounmap(dispc.base);
}
const struct lcd_ctrl omap2_int_ctrl = {
.name = "internal",
.init = omap_dispc_init,
.cleanup = omap_dispc_cleanup,
.get_caps = omap_dispc_get_caps,
.set_update_mode = omap_dispc_set_update_mode,
.get_update_mode = omap_dispc_get_update_mode,
.update_window = omap_dispc_update_window,
.suspend = omap_dispc_suspend,
.resume = omap_dispc_resume,
.setup_plane = omap_dispc_setup_plane,
.setup_mem = omap_dispc_setup_mem,
.set_scale = omap_dispc_set_scale,
.enable_plane = omap_dispc_enable_plane,
.set_color_key = omap_dispc_set_color_key,
.get_color_key = omap_dispc_get_color_key,
.mmap = omap_dispc_mmap_user,
};