1
linux/net/dsa/dsa2.c
Andrew Lunn 7b314362a2 net: dsa: Allow the DSA driver to indicate the tag protocol
DSA drivers may drive different families of switches which need
different tag protocol. Rather than hard code the tag protocol in the
driver structure, have a callback for the DSA core to call.

Signed-off-by: Andrew Lunn <andrew@lunn.ch>
Reviewed-by: Vivien Didelot <vivien.didelot@savoirfairelinux.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-22 21:08:08 -07:00

698 lines
14 KiB
C

/*
* net/dsa/dsa2.c - Hardware switch handling, binding version 2
* Copyright (c) 2008-2009 Marvell Semiconductor
* Copyright (c) 2013 Florian Fainelli <florian@openwrt.org>
* Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/device.h>
#include <linux/err.h>
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/rtnetlink.h>
#include <net/dsa.h>
#include <linux/of.h>
#include <linux/of_net.h>
#include "dsa_priv.h"
static LIST_HEAD(dsa_switch_trees);
static DEFINE_MUTEX(dsa2_mutex);
static struct dsa_switch_tree *dsa_get_dst(u32 tree)
{
struct dsa_switch_tree *dst;
list_for_each_entry(dst, &dsa_switch_trees, list)
if (dst->tree == tree)
return dst;
return NULL;
}
static void dsa_free_dst(struct kref *ref)
{
struct dsa_switch_tree *dst = container_of(ref, struct dsa_switch_tree,
refcount);
list_del(&dst->list);
kfree(dst);
}
static void dsa_put_dst(struct dsa_switch_tree *dst)
{
kref_put(&dst->refcount, dsa_free_dst);
}
static struct dsa_switch_tree *dsa_add_dst(u32 tree)
{
struct dsa_switch_tree *dst;
dst = kzalloc(sizeof(*dst), GFP_KERNEL);
if (!dst)
return NULL;
dst->tree = tree;
dst->cpu_switch = -1;
INIT_LIST_HEAD(&dst->list);
list_add_tail(&dsa_switch_trees, &dst->list);
kref_init(&dst->refcount);
return dst;
}
static void dsa_dst_add_ds(struct dsa_switch_tree *dst,
struct dsa_switch *ds, u32 index)
{
kref_get(&dst->refcount);
dst->ds[index] = ds;
}
static void dsa_dst_del_ds(struct dsa_switch_tree *dst,
struct dsa_switch *ds, u32 index)
{
dst->ds[index] = NULL;
kref_put(&dst->refcount, dsa_free_dst);
}
static bool dsa_port_is_dsa(struct device_node *port)
{
const char *name;
name = of_get_property(port, "label", NULL);
if (!name)
return false;
if (!strcmp(name, "dsa"))
return true;
return false;
}
static bool dsa_port_is_cpu(struct device_node *port)
{
const char *name;
name = of_get_property(port, "label", NULL);
if (!name)
return false;
if (!strcmp(name, "cpu"))
return true;
return false;
}
static bool dsa_ds_find_port(struct dsa_switch *ds,
struct device_node *port)
{
u32 index;
for (index = 0; index < DSA_MAX_PORTS; index++)
if (ds->ports[index].dn == port)
return true;
return false;
}
static struct dsa_switch *dsa_dst_find_port(struct dsa_switch_tree *dst,
struct device_node *port)
{
struct dsa_switch *ds;
u32 index;
for (index = 0; index < DSA_MAX_SWITCHES; index++) {
ds = dst->ds[index];
if (!ds)
continue;
if (dsa_ds_find_port(ds, port))
return ds;
}
return NULL;
}
static int dsa_port_complete(struct dsa_switch_tree *dst,
struct dsa_switch *src_ds,
struct device_node *port,
u32 src_port)
{
struct device_node *link;
int index;
struct dsa_switch *dst_ds;
for (index = 0;; index++) {
link = of_parse_phandle(port, "link", index);
if (!link)
break;
dst_ds = dsa_dst_find_port(dst, link);
of_node_put(link);
if (!dst_ds)
return 1;
src_ds->rtable[dst_ds->index] = src_port;
}
return 0;
}
/* A switch is complete if all the DSA ports phandles point to ports
* known in the tree. A return value of 1 means the tree is not
* complete. This is not an error condition. A value of 0 is
* success.
*/
static int dsa_ds_complete(struct dsa_switch_tree *dst, struct dsa_switch *ds)
{
struct device_node *port;
u32 index;
int err;
for (index = 0; index < DSA_MAX_PORTS; index++) {
port = ds->ports[index].dn;
if (!port)
continue;
if (!dsa_port_is_dsa(port))
continue;
err = dsa_port_complete(dst, ds, port, index);
if (err != 0)
return err;
ds->dsa_port_mask |= BIT(index);
}
return 0;
}
/* A tree is complete if all the DSA ports phandles point to ports
* known in the tree. A return value of 1 means the tree is not
* complete. This is not an error condition. A value of 0 is
* success.
*/
static int dsa_dst_complete(struct dsa_switch_tree *dst)
{
struct dsa_switch *ds;
u32 index;
int err;
for (index = 0; index < DSA_MAX_SWITCHES; index++) {
ds = dst->ds[index];
if (!ds)
continue;
err = dsa_ds_complete(dst, ds);
if (err != 0)
return err;
}
return 0;
}
static int dsa_dsa_port_apply(struct device_node *port, u32 index,
struct dsa_switch *ds)
{
int err;
err = dsa_cpu_dsa_setup(ds, ds->dev, port, index);
if (err) {
dev_warn(ds->dev, "Failed to setup dsa port %d: %d\n",
index, err);
return err;
}
return 0;
}
static void dsa_dsa_port_unapply(struct device_node *port, u32 index,
struct dsa_switch *ds)
{
dsa_cpu_dsa_destroy(port);
}
static int dsa_cpu_port_apply(struct device_node *port, u32 index,
struct dsa_switch *ds)
{
int err;
err = dsa_cpu_dsa_setup(ds, ds->dev, port, index);
if (err) {
dev_warn(ds->dev, "Failed to setup cpu port %d: %d\n",
index, err);
return err;
}
ds->cpu_port_mask |= BIT(index);
return 0;
}
static void dsa_cpu_port_unapply(struct device_node *port, u32 index,
struct dsa_switch *ds)
{
dsa_cpu_dsa_destroy(port);
ds->cpu_port_mask &= ~BIT(index);
}
static int dsa_user_port_apply(struct device_node *port, u32 index,
struct dsa_switch *ds)
{
const char *name;
int err;
name = of_get_property(port, "label", NULL);
err = dsa_slave_create(ds, ds->dev, index, name);
if (err) {
dev_warn(ds->dev, "Failed to create slave %d: %d\n",
index, err);
return err;
}
return 0;
}
static void dsa_user_port_unapply(struct device_node *port, u32 index,
struct dsa_switch *ds)
{
if (ds->ports[index].netdev) {
dsa_slave_destroy(ds->ports[index].netdev);
ds->ports[index].netdev = NULL;
ds->enabled_port_mask &= ~(1 << index);
}
}
static int dsa_ds_apply(struct dsa_switch_tree *dst, struct dsa_switch *ds)
{
struct device_node *port;
u32 index;
int err;
/* Initialize ds->phys_mii_mask before registering the slave MDIO bus
* driver and before drv->setup() has run, since the switch drivers and
* the slave MDIO bus driver rely on these values for probing PHY
* devices or not
*/
ds->phys_mii_mask = ds->enabled_port_mask;
err = ds->drv->setup(ds);
if (err < 0)
return err;
err = ds->drv->set_addr(ds, dst->master_netdev->dev_addr);
if (err < 0)
return err;
err = ds->drv->set_addr(ds, dst->master_netdev->dev_addr);
if (err < 0)
return err;
if (!ds->slave_mii_bus && ds->drv->phy_read) {
ds->slave_mii_bus = devm_mdiobus_alloc(ds->dev);
if (!ds->slave_mii_bus)
return -ENOMEM;
dsa_slave_mii_bus_init(ds);
err = mdiobus_register(ds->slave_mii_bus);
if (err < 0)
return err;
}
for (index = 0; index < DSA_MAX_PORTS; index++) {
port = ds->ports[index].dn;
if (!port)
continue;
if (dsa_port_is_dsa(port)) {
err = dsa_dsa_port_apply(port, index, ds);
if (err)
return err;
continue;
}
if (dsa_port_is_cpu(port)) {
err = dsa_cpu_port_apply(port, index, ds);
if (err)
return err;
continue;
}
err = dsa_user_port_apply(port, index, ds);
if (err)
continue;
}
return 0;
}
static void dsa_ds_unapply(struct dsa_switch_tree *dst, struct dsa_switch *ds)
{
struct device_node *port;
u32 index;
for (index = 0; index < DSA_MAX_PORTS; index++) {
port = ds->ports[index].dn;
if (!port)
continue;
if (dsa_port_is_dsa(port)) {
dsa_dsa_port_unapply(port, index, ds);
continue;
}
if (dsa_port_is_cpu(port)) {
dsa_cpu_port_unapply(port, index, ds);
continue;
}
dsa_user_port_unapply(port, index, ds);
}
if (ds->slave_mii_bus && ds->drv->phy_read)
mdiobus_unregister(ds->slave_mii_bus);
}
static int dsa_dst_apply(struct dsa_switch_tree *dst)
{
struct dsa_switch *ds;
u32 index;
int err;
for (index = 0; index < DSA_MAX_SWITCHES; index++) {
ds = dst->ds[index];
if (!ds)
continue;
err = dsa_ds_apply(dst, ds);
if (err)
return err;
}
err = dsa_cpu_port_ethtool_setup(dst->ds[0]);
if (err)
return err;
/* If we use a tagging format that doesn't have an ethertype
* field, make sure that all packets from this point on get
* sent to the tag format's receive function.
*/
wmb();
dst->master_netdev->dsa_ptr = (void *)dst;
dst->applied = true;
return 0;
}
static void dsa_dst_unapply(struct dsa_switch_tree *dst)
{
struct dsa_switch *ds;
u32 index;
if (!dst->applied)
return;
dst->master_netdev->dsa_ptr = NULL;
/* If we used a tagging format that doesn't have an ethertype
* field, make sure that all packets from this point get sent
* without the tag and go through the regular receive path.
*/
wmb();
for (index = 0; index < DSA_MAX_SWITCHES; index++) {
ds = dst->ds[index];
if (!ds)
continue;
dsa_ds_unapply(dst, ds);
}
dsa_cpu_port_ethtool_restore(dst->ds[0]);
pr_info("DSA: tree %d unapplied\n", dst->tree);
dst->applied = false;
}
static int dsa_cpu_parse(struct device_node *port, u32 index,
struct dsa_switch_tree *dst,
struct dsa_switch *ds)
{
enum dsa_tag_protocol tag_protocol;
struct net_device *ethernet_dev;
struct device_node *ethernet;
ethernet = of_parse_phandle(port, "ethernet", 0);
if (!ethernet)
return -EINVAL;
ethernet_dev = of_find_net_device_by_node(ethernet);
if (!ethernet_dev)
return -EPROBE_DEFER;
if (!ds->master_netdev)
ds->master_netdev = ethernet_dev;
if (!dst->master_netdev)
dst->master_netdev = ethernet_dev;
if (dst->cpu_switch == -1) {
dst->cpu_switch = ds->index;
dst->cpu_port = index;
}
tag_protocol = ds->drv->get_tag_protocol(ds);
dst->tag_ops = dsa_resolve_tag_protocol(tag_protocol);
if (IS_ERR(dst->tag_ops)) {
dev_warn(ds->dev, "No tagger for this switch\n");
return PTR_ERR(dst->tag_ops);
}
dst->rcv = dst->tag_ops->rcv;
return 0;
}
static int dsa_ds_parse(struct dsa_switch_tree *dst, struct dsa_switch *ds)
{
struct device_node *port;
u32 index;
int err;
for (index = 0; index < DSA_MAX_PORTS; index++) {
port = ds->ports[index].dn;
if (!port)
continue;
if (dsa_port_is_cpu(port)) {
err = dsa_cpu_parse(port, index, dst, ds);
if (err)
return err;
}
}
pr_info("DSA: switch %d %d parsed\n", dst->tree, ds->index);
return 0;
}
static int dsa_dst_parse(struct dsa_switch_tree *dst)
{
struct dsa_switch *ds;
u32 index;
int err;
for (index = 0; index < DSA_MAX_SWITCHES; index++) {
ds = dst->ds[index];
if (!ds)
continue;
err = dsa_ds_parse(dst, ds);
if (err)
return err;
}
if (!dst->master_netdev) {
pr_warn("Tree has no master device\n");
return -EINVAL;
}
pr_info("DSA: tree %d parsed\n", dst->tree);
return 0;
}
static int dsa_parse_ports_dn(struct device_node *ports, struct dsa_switch *ds)
{
struct device_node *port;
int err;
u32 reg;
for_each_available_child_of_node(ports, port) {
err = of_property_read_u32(port, "reg", &reg);
if (err)
return err;
if (reg >= DSA_MAX_PORTS)
return -EINVAL;
ds->ports[reg].dn = port;
/* Initialize enabled_port_mask now for drv->setup()
* to have access to a correct value, just like what
* net/dsa/dsa.c::dsa_switch_setup_one does.
*/
if (!dsa_port_is_cpu(port))
ds->enabled_port_mask |= 1 << reg;
}
return 0;
}
static int dsa_parse_member(struct device_node *np, u32 *tree, u32 *index)
{
int err;
*tree = *index = 0;
err = of_property_read_u32_index(np, "dsa,member", 0, tree);
if (err) {
/* Does not exist, but it is optional */
if (err == -EINVAL)
return 0;
return err;
}
err = of_property_read_u32_index(np, "dsa,member", 1, index);
if (err)
return err;
if (*index >= DSA_MAX_SWITCHES)
return -EINVAL;
return 0;
}
static struct device_node *dsa_get_ports(struct dsa_switch *ds,
struct device_node *np)
{
struct device_node *ports;
ports = of_get_child_by_name(np, "ports");
if (!ports) {
dev_err(ds->dev, "no ports child node found\n");
return ERR_PTR(-EINVAL);
}
return ports;
}
static int _dsa_register_switch(struct dsa_switch *ds, struct device_node *np)
{
struct device_node *ports = dsa_get_ports(ds, np);
struct dsa_switch_tree *dst;
u32 tree, index;
int i, err;
err = dsa_parse_member(np, &tree, &index);
if (err)
return err;
if (IS_ERR(ports))
return PTR_ERR(ports);
err = dsa_parse_ports_dn(ports, ds);
if (err)
return err;
dst = dsa_get_dst(tree);
if (!dst) {
dst = dsa_add_dst(tree);
if (!dst)
return -ENOMEM;
}
if (dst->ds[index]) {
err = -EBUSY;
goto out;
}
ds->dst = dst;
ds->index = index;
/* Initialize the routing table */
for (i = 0; i < DSA_MAX_SWITCHES; ++i)
ds->rtable[i] = DSA_RTABLE_NONE;
dsa_dst_add_ds(dst, ds, index);
err = dsa_dst_complete(dst);
if (err < 0)
goto out_del_dst;
if (err == 1) {
/* Not all switches registered yet */
err = 0;
goto out;
}
if (dst->applied) {
pr_info("DSA: Disjoint trees?\n");
return -EINVAL;
}
err = dsa_dst_parse(dst);
if (err)
goto out_del_dst;
err = dsa_dst_apply(dst);
if (err) {
dsa_dst_unapply(dst);
goto out_del_dst;
}
dsa_put_dst(dst);
return 0;
out_del_dst:
dsa_dst_del_ds(dst, ds, ds->index);
out:
dsa_put_dst(dst);
return err;
}
int dsa_register_switch(struct dsa_switch *ds, struct device_node *np)
{
int err;
mutex_lock(&dsa2_mutex);
err = _dsa_register_switch(ds, np);
mutex_unlock(&dsa2_mutex);
return err;
}
EXPORT_SYMBOL_GPL(dsa_register_switch);
static void _dsa_unregister_switch(struct dsa_switch *ds)
{
struct dsa_switch_tree *dst = ds->dst;
dsa_dst_unapply(dst);
dsa_dst_del_ds(dst, ds, ds->index);
}
void dsa_unregister_switch(struct dsa_switch *ds)
{
mutex_lock(&dsa2_mutex);
_dsa_unregister_switch(ds);
mutex_unlock(&dsa2_mutex);
}
EXPORT_SYMBOL_GPL(dsa_unregister_switch);