77c2061d10
Signed-off-by: Walter Goldens <goldenstranger@yahoo.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
1213 lines
32 KiB
C
1213 lines
32 KiB
C
/* ZD1211 USB-WLAN driver for Linux
|
|
*
|
|
* Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
|
|
* Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
|
|
* Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
|
|
* Copyright (C) 2007-2008 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#include <linux/netdevice.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/usb.h>
|
|
#include <linux/jiffies.h>
|
|
#include <net/ieee80211_radiotap.h>
|
|
|
|
#include "zd_def.h"
|
|
#include "zd_chip.h"
|
|
#include "zd_mac.h"
|
|
#include "zd_rf.h"
|
|
|
|
struct zd_reg_alpha2_map {
|
|
u32 reg;
|
|
char alpha2[2];
|
|
};
|
|
|
|
static struct zd_reg_alpha2_map reg_alpha2_map[] = {
|
|
{ ZD_REGDOMAIN_FCC, "US" },
|
|
{ ZD_REGDOMAIN_IC, "CA" },
|
|
{ ZD_REGDOMAIN_ETSI, "DE" }, /* Generic ETSI, use most restrictive */
|
|
{ ZD_REGDOMAIN_JAPAN, "JP" },
|
|
{ ZD_REGDOMAIN_JAPAN_ADD, "JP" },
|
|
{ ZD_REGDOMAIN_SPAIN, "ES" },
|
|
{ ZD_REGDOMAIN_FRANCE, "FR" },
|
|
};
|
|
|
|
/* This table contains the hardware specific values for the modulation rates. */
|
|
static const struct ieee80211_rate zd_rates[] = {
|
|
{ .bitrate = 10,
|
|
.hw_value = ZD_CCK_RATE_1M, },
|
|
{ .bitrate = 20,
|
|
.hw_value = ZD_CCK_RATE_2M,
|
|
.hw_value_short = ZD_CCK_RATE_2M | ZD_CCK_PREA_SHORT,
|
|
.flags = IEEE80211_RATE_SHORT_PREAMBLE },
|
|
{ .bitrate = 55,
|
|
.hw_value = ZD_CCK_RATE_5_5M,
|
|
.hw_value_short = ZD_CCK_RATE_5_5M | ZD_CCK_PREA_SHORT,
|
|
.flags = IEEE80211_RATE_SHORT_PREAMBLE },
|
|
{ .bitrate = 110,
|
|
.hw_value = ZD_CCK_RATE_11M,
|
|
.hw_value_short = ZD_CCK_RATE_11M | ZD_CCK_PREA_SHORT,
|
|
.flags = IEEE80211_RATE_SHORT_PREAMBLE },
|
|
{ .bitrate = 60,
|
|
.hw_value = ZD_OFDM_RATE_6M,
|
|
.flags = 0 },
|
|
{ .bitrate = 90,
|
|
.hw_value = ZD_OFDM_RATE_9M,
|
|
.flags = 0 },
|
|
{ .bitrate = 120,
|
|
.hw_value = ZD_OFDM_RATE_12M,
|
|
.flags = 0 },
|
|
{ .bitrate = 180,
|
|
.hw_value = ZD_OFDM_RATE_18M,
|
|
.flags = 0 },
|
|
{ .bitrate = 240,
|
|
.hw_value = ZD_OFDM_RATE_24M,
|
|
.flags = 0 },
|
|
{ .bitrate = 360,
|
|
.hw_value = ZD_OFDM_RATE_36M,
|
|
.flags = 0 },
|
|
{ .bitrate = 480,
|
|
.hw_value = ZD_OFDM_RATE_48M,
|
|
.flags = 0 },
|
|
{ .bitrate = 540,
|
|
.hw_value = ZD_OFDM_RATE_54M,
|
|
.flags = 0 },
|
|
};
|
|
|
|
/*
|
|
* Zydas retry rates table. Each line is listed in the same order as
|
|
* in zd_rates[] and contains all the rate used when a packet is sent
|
|
* starting with a given rates. Let's consider an example :
|
|
*
|
|
* "11 Mbits : 4, 3, 2, 1, 0" means :
|
|
* - packet is sent using 4 different rates
|
|
* - 1st rate is index 3 (ie 11 Mbits)
|
|
* - 2nd rate is index 2 (ie 5.5 Mbits)
|
|
* - 3rd rate is index 1 (ie 2 Mbits)
|
|
* - 4th rate is index 0 (ie 1 Mbits)
|
|
*/
|
|
|
|
static const struct tx_retry_rate zd_retry_rates[] = {
|
|
{ /* 1 Mbits */ 1, { 0 }},
|
|
{ /* 2 Mbits */ 2, { 1, 0 }},
|
|
{ /* 5.5 Mbits */ 3, { 2, 1, 0 }},
|
|
{ /* 11 Mbits */ 4, { 3, 2, 1, 0 }},
|
|
{ /* 6 Mbits */ 5, { 4, 3, 2, 1, 0 }},
|
|
{ /* 9 Mbits */ 6, { 5, 4, 3, 2, 1, 0}},
|
|
{ /* 12 Mbits */ 5, { 6, 3, 2, 1, 0 }},
|
|
{ /* 18 Mbits */ 6, { 7, 6, 3, 2, 1, 0 }},
|
|
{ /* 24 Mbits */ 6, { 8, 6, 3, 2, 1, 0 }},
|
|
{ /* 36 Mbits */ 7, { 9, 8, 6, 3, 2, 1, 0 }},
|
|
{ /* 48 Mbits */ 8, {10, 9, 8, 6, 3, 2, 1, 0 }},
|
|
{ /* 54 Mbits */ 9, {11, 10, 9, 8, 6, 3, 2, 1, 0 }}
|
|
};
|
|
|
|
static const struct ieee80211_channel zd_channels[] = {
|
|
{ .center_freq = 2412, .hw_value = 1 },
|
|
{ .center_freq = 2417, .hw_value = 2 },
|
|
{ .center_freq = 2422, .hw_value = 3 },
|
|
{ .center_freq = 2427, .hw_value = 4 },
|
|
{ .center_freq = 2432, .hw_value = 5 },
|
|
{ .center_freq = 2437, .hw_value = 6 },
|
|
{ .center_freq = 2442, .hw_value = 7 },
|
|
{ .center_freq = 2447, .hw_value = 8 },
|
|
{ .center_freq = 2452, .hw_value = 9 },
|
|
{ .center_freq = 2457, .hw_value = 10 },
|
|
{ .center_freq = 2462, .hw_value = 11 },
|
|
{ .center_freq = 2467, .hw_value = 12 },
|
|
{ .center_freq = 2472, .hw_value = 13 },
|
|
{ .center_freq = 2484, .hw_value = 14 },
|
|
};
|
|
|
|
static void housekeeping_init(struct zd_mac *mac);
|
|
static void housekeeping_enable(struct zd_mac *mac);
|
|
static void housekeeping_disable(struct zd_mac *mac);
|
|
|
|
static int zd_reg2alpha2(u8 regdomain, char *alpha2)
|
|
{
|
|
unsigned int i;
|
|
struct zd_reg_alpha2_map *reg_map;
|
|
for (i = 0; i < ARRAY_SIZE(reg_alpha2_map); i++) {
|
|
reg_map = ®_alpha2_map[i];
|
|
if (regdomain == reg_map->reg) {
|
|
alpha2[0] = reg_map->alpha2[0];
|
|
alpha2[1] = reg_map->alpha2[1];
|
|
return 0;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
int zd_mac_preinit_hw(struct ieee80211_hw *hw)
|
|
{
|
|
int r;
|
|
u8 addr[ETH_ALEN];
|
|
struct zd_mac *mac = zd_hw_mac(hw);
|
|
|
|
r = zd_chip_read_mac_addr_fw(&mac->chip, addr);
|
|
if (r)
|
|
return r;
|
|
|
|
SET_IEEE80211_PERM_ADDR(hw, addr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int zd_mac_init_hw(struct ieee80211_hw *hw)
|
|
{
|
|
int r;
|
|
struct zd_mac *mac = zd_hw_mac(hw);
|
|
struct zd_chip *chip = &mac->chip;
|
|
char alpha2[2];
|
|
u8 default_regdomain;
|
|
|
|
r = zd_chip_enable_int(chip);
|
|
if (r)
|
|
goto out;
|
|
r = zd_chip_init_hw(chip);
|
|
if (r)
|
|
goto disable_int;
|
|
|
|
ZD_ASSERT(!irqs_disabled());
|
|
|
|
r = zd_read_regdomain(chip, &default_regdomain);
|
|
if (r)
|
|
goto disable_int;
|
|
spin_lock_irq(&mac->lock);
|
|
mac->regdomain = mac->default_regdomain = default_regdomain;
|
|
spin_unlock_irq(&mac->lock);
|
|
|
|
/* We must inform the device that we are doing encryption/decryption in
|
|
* software at the moment. */
|
|
r = zd_set_encryption_type(chip, ENC_SNIFFER);
|
|
if (r)
|
|
goto disable_int;
|
|
|
|
r = zd_reg2alpha2(mac->regdomain, alpha2);
|
|
if (r)
|
|
goto disable_int;
|
|
|
|
r = regulatory_hint(hw->wiphy, alpha2);
|
|
disable_int:
|
|
zd_chip_disable_int(chip);
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
void zd_mac_clear(struct zd_mac *mac)
|
|
{
|
|
flush_workqueue(zd_workqueue);
|
|
zd_chip_clear(&mac->chip);
|
|
ZD_ASSERT(!spin_is_locked(&mac->lock));
|
|
ZD_MEMCLEAR(mac, sizeof(struct zd_mac));
|
|
}
|
|
|
|
static int set_rx_filter(struct zd_mac *mac)
|
|
{
|
|
unsigned long flags;
|
|
u32 filter = STA_RX_FILTER;
|
|
|
|
spin_lock_irqsave(&mac->lock, flags);
|
|
if (mac->pass_ctrl)
|
|
filter |= RX_FILTER_CTRL;
|
|
spin_unlock_irqrestore(&mac->lock, flags);
|
|
|
|
return zd_iowrite32(&mac->chip, CR_RX_FILTER, filter);
|
|
}
|
|
|
|
static int set_mc_hash(struct zd_mac *mac)
|
|
{
|
|
struct zd_mc_hash hash;
|
|
zd_mc_clear(&hash);
|
|
return zd_chip_set_multicast_hash(&mac->chip, &hash);
|
|
}
|
|
|
|
static int zd_op_start(struct ieee80211_hw *hw)
|
|
{
|
|
struct zd_mac *mac = zd_hw_mac(hw);
|
|
struct zd_chip *chip = &mac->chip;
|
|
struct zd_usb *usb = &chip->usb;
|
|
int r;
|
|
|
|
if (!usb->initialized) {
|
|
r = zd_usb_init_hw(usb);
|
|
if (r)
|
|
goto out;
|
|
}
|
|
|
|
r = zd_chip_enable_int(chip);
|
|
if (r < 0)
|
|
goto out;
|
|
|
|
r = zd_chip_set_basic_rates(chip, CR_RATES_80211B | CR_RATES_80211G);
|
|
if (r < 0)
|
|
goto disable_int;
|
|
r = set_rx_filter(mac);
|
|
if (r)
|
|
goto disable_int;
|
|
r = set_mc_hash(mac);
|
|
if (r)
|
|
goto disable_int;
|
|
r = zd_chip_switch_radio_on(chip);
|
|
if (r < 0)
|
|
goto disable_int;
|
|
r = zd_chip_enable_rxtx(chip);
|
|
if (r < 0)
|
|
goto disable_radio;
|
|
r = zd_chip_enable_hwint(chip);
|
|
if (r < 0)
|
|
goto disable_rxtx;
|
|
|
|
housekeeping_enable(mac);
|
|
return 0;
|
|
disable_rxtx:
|
|
zd_chip_disable_rxtx(chip);
|
|
disable_radio:
|
|
zd_chip_switch_radio_off(chip);
|
|
disable_int:
|
|
zd_chip_disable_int(chip);
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
static void zd_op_stop(struct ieee80211_hw *hw)
|
|
{
|
|
struct zd_mac *mac = zd_hw_mac(hw);
|
|
struct zd_chip *chip = &mac->chip;
|
|
struct sk_buff *skb;
|
|
struct sk_buff_head *ack_wait_queue = &mac->ack_wait_queue;
|
|
|
|
/* The order here deliberately is a little different from the open()
|
|
* method, since we need to make sure there is no opportunity for RX
|
|
* frames to be processed by mac80211 after we have stopped it.
|
|
*/
|
|
|
|
zd_chip_disable_rxtx(chip);
|
|
housekeeping_disable(mac);
|
|
flush_workqueue(zd_workqueue);
|
|
|
|
zd_chip_disable_hwint(chip);
|
|
zd_chip_switch_radio_off(chip);
|
|
zd_chip_disable_int(chip);
|
|
|
|
|
|
while ((skb = skb_dequeue(ack_wait_queue)))
|
|
dev_kfree_skb_any(skb);
|
|
}
|
|
|
|
/**
|
|
* zd_mac_tx_status - reports tx status of a packet if required
|
|
* @hw - a &struct ieee80211_hw pointer
|
|
* @skb - a sk-buffer
|
|
* @flags: extra flags to set in the TX status info
|
|
* @ackssi: ACK signal strength
|
|
* @success - True for successful transmission of the frame
|
|
*
|
|
* This information calls ieee80211_tx_status_irqsafe() if required by the
|
|
* control information. It copies the control information into the status
|
|
* information.
|
|
*
|
|
* If no status information has been requested, the skb is freed.
|
|
*/
|
|
static void zd_mac_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb,
|
|
int ackssi, struct tx_status *tx_status)
|
|
{
|
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
|
|
int i;
|
|
int success = 1, retry = 1;
|
|
int first_idx;
|
|
const struct tx_retry_rate *retries;
|
|
|
|
ieee80211_tx_info_clear_status(info);
|
|
|
|
if (tx_status) {
|
|
success = !tx_status->failure;
|
|
retry = tx_status->retry + success;
|
|
}
|
|
|
|
if (success) {
|
|
/* success */
|
|
info->flags |= IEEE80211_TX_STAT_ACK;
|
|
} else {
|
|
/* failure */
|
|
info->flags &= ~IEEE80211_TX_STAT_ACK;
|
|
}
|
|
|
|
first_idx = info->status.rates[0].idx;
|
|
ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
|
|
retries = &zd_retry_rates[first_idx];
|
|
ZD_ASSERT(1 <= retry && retry <= retries->count);
|
|
|
|
info->status.rates[0].idx = retries->rate[0];
|
|
info->status.rates[0].count = 1; // (retry > 1 ? 2 : 1);
|
|
|
|
for (i=1; i<IEEE80211_TX_MAX_RATES-1 && i<retry; i++) {
|
|
info->status.rates[i].idx = retries->rate[i];
|
|
info->status.rates[i].count = 1; // ((i==retry-1) && success ? 1:2);
|
|
}
|
|
for (; i<IEEE80211_TX_MAX_RATES && i<retry; i++) {
|
|
info->status.rates[i].idx = retries->rate[retry - 1];
|
|
info->status.rates[i].count = 1; // (success ? 1:2);
|
|
}
|
|
if (i<IEEE80211_TX_MAX_RATES)
|
|
info->status.rates[i].idx = -1; /* terminate */
|
|
|
|
info->status.ack_signal = ackssi;
|
|
ieee80211_tx_status_irqsafe(hw, skb);
|
|
}
|
|
|
|
/**
|
|
* zd_mac_tx_failed - callback for failed frames
|
|
* @dev: the mac80211 wireless device
|
|
*
|
|
* This function is called if a frame couldn't be successfully
|
|
* transferred. The first frame from the tx queue, will be selected and
|
|
* reported as error to the upper layers.
|
|
*/
|
|
void zd_mac_tx_failed(struct urb *urb)
|
|
{
|
|
struct ieee80211_hw * hw = zd_usb_to_hw(urb->context);
|
|
struct zd_mac *mac = zd_hw_mac(hw);
|
|
struct sk_buff_head *q = &mac->ack_wait_queue;
|
|
struct sk_buff *skb;
|
|
struct tx_status *tx_status = (struct tx_status *)urb->transfer_buffer;
|
|
unsigned long flags;
|
|
int success = !tx_status->failure;
|
|
int retry = tx_status->retry + success;
|
|
int found = 0;
|
|
int i, position = 0;
|
|
|
|
q = &mac->ack_wait_queue;
|
|
spin_lock_irqsave(&q->lock, flags);
|
|
|
|
skb_queue_walk(q, skb) {
|
|
struct ieee80211_hdr *tx_hdr;
|
|
struct ieee80211_tx_info *info;
|
|
int first_idx, final_idx;
|
|
const struct tx_retry_rate *retries;
|
|
u8 final_rate;
|
|
|
|
position ++;
|
|
|
|
/* if the hardware reports a failure and we had a 802.11 ACK
|
|
* pending, then we skip the first skb when searching for a
|
|
* matching frame */
|
|
if (tx_status->failure && mac->ack_pending &&
|
|
skb_queue_is_first(q, skb)) {
|
|
continue;
|
|
}
|
|
|
|
tx_hdr = (struct ieee80211_hdr *)skb->data;
|
|
|
|
/* we skip all frames not matching the reported destination */
|
|
if (unlikely(memcmp(tx_hdr->addr1, tx_status->mac, ETH_ALEN))) {
|
|
continue;
|
|
}
|
|
|
|
/* we skip all frames not matching the reported final rate */
|
|
|
|
info = IEEE80211_SKB_CB(skb);
|
|
first_idx = info->status.rates[0].idx;
|
|
ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
|
|
retries = &zd_retry_rates[first_idx];
|
|
if (retry <= 0 || retry > retries->count)
|
|
continue;
|
|
|
|
final_idx = retries->rate[retry - 1];
|
|
final_rate = zd_rates[final_idx].hw_value;
|
|
|
|
if (final_rate != tx_status->rate) {
|
|
continue;
|
|
}
|
|
|
|
found = 1;
|
|
break;
|
|
}
|
|
|
|
if (found) {
|
|
for (i=1; i<=position; i++) {
|
|
skb = __skb_dequeue(q);
|
|
zd_mac_tx_status(hw, skb,
|
|
mac->ack_pending ? mac->ack_signal : 0,
|
|
i == position ? tx_status : NULL);
|
|
mac->ack_pending = 0;
|
|
}
|
|
}
|
|
|
|
spin_unlock_irqrestore(&q->lock, flags);
|
|
}
|
|
|
|
/**
|
|
* zd_mac_tx_to_dev - callback for USB layer
|
|
* @skb: a &sk_buff pointer
|
|
* @error: error value, 0 if transmission successful
|
|
*
|
|
* Informs the MAC layer that the frame has successfully transferred to the
|
|
* device. If an ACK is required and the transfer to the device has been
|
|
* successful, the packets are put on the @ack_wait_queue with
|
|
* the control set removed.
|
|
*/
|
|
void zd_mac_tx_to_dev(struct sk_buff *skb, int error)
|
|
{
|
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
|
|
struct ieee80211_hw *hw = info->rate_driver_data[0];
|
|
struct zd_mac *mac = zd_hw_mac(hw);
|
|
|
|
ieee80211_tx_info_clear_status(info);
|
|
|
|
skb_pull(skb, sizeof(struct zd_ctrlset));
|
|
if (unlikely(error ||
|
|
(info->flags & IEEE80211_TX_CTL_NO_ACK))) {
|
|
/*
|
|
* FIXME : do we need to fill in anything ?
|
|
*/
|
|
ieee80211_tx_status_irqsafe(hw, skb);
|
|
} else {
|
|
struct sk_buff_head *q = &mac->ack_wait_queue;
|
|
|
|
skb_queue_tail(q, skb);
|
|
while (skb_queue_len(q) > ZD_MAC_MAX_ACK_WAITERS) {
|
|
zd_mac_tx_status(hw, skb_dequeue(q),
|
|
mac->ack_pending ? mac->ack_signal : 0,
|
|
NULL);
|
|
mac->ack_pending = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int zd_calc_tx_length_us(u8 *service, u8 zd_rate, u16 tx_length)
|
|
{
|
|
/* ZD_PURE_RATE() must be used to remove the modulation type flag of
|
|
* the zd-rate values.
|
|
*/
|
|
static const u8 rate_divisor[] = {
|
|
[ZD_PURE_RATE(ZD_CCK_RATE_1M)] = 1,
|
|
[ZD_PURE_RATE(ZD_CCK_RATE_2M)] = 2,
|
|
/* Bits must be doubled. */
|
|
[ZD_PURE_RATE(ZD_CCK_RATE_5_5M)] = 11,
|
|
[ZD_PURE_RATE(ZD_CCK_RATE_11M)] = 11,
|
|
[ZD_PURE_RATE(ZD_OFDM_RATE_6M)] = 6,
|
|
[ZD_PURE_RATE(ZD_OFDM_RATE_9M)] = 9,
|
|
[ZD_PURE_RATE(ZD_OFDM_RATE_12M)] = 12,
|
|
[ZD_PURE_RATE(ZD_OFDM_RATE_18M)] = 18,
|
|
[ZD_PURE_RATE(ZD_OFDM_RATE_24M)] = 24,
|
|
[ZD_PURE_RATE(ZD_OFDM_RATE_36M)] = 36,
|
|
[ZD_PURE_RATE(ZD_OFDM_RATE_48M)] = 48,
|
|
[ZD_PURE_RATE(ZD_OFDM_RATE_54M)] = 54,
|
|
};
|
|
|
|
u32 bits = (u32)tx_length * 8;
|
|
u32 divisor;
|
|
|
|
divisor = rate_divisor[ZD_PURE_RATE(zd_rate)];
|
|
if (divisor == 0)
|
|
return -EINVAL;
|
|
|
|
switch (zd_rate) {
|
|
case ZD_CCK_RATE_5_5M:
|
|
bits = (2*bits) + 10; /* round up to the next integer */
|
|
break;
|
|
case ZD_CCK_RATE_11M:
|
|
if (service) {
|
|
u32 t = bits % 11;
|
|
*service &= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION;
|
|
if (0 < t && t <= 3) {
|
|
*service |= ZD_PLCP_SERVICE_LENGTH_EXTENSION;
|
|
}
|
|
}
|
|
bits += 10; /* round up to the next integer */
|
|
break;
|
|
}
|
|
|
|
return bits/divisor;
|
|
}
|
|
|
|
static void cs_set_control(struct zd_mac *mac, struct zd_ctrlset *cs,
|
|
struct ieee80211_hdr *header,
|
|
struct ieee80211_tx_info *info)
|
|
{
|
|
/*
|
|
* CONTROL TODO:
|
|
* - if backoff needed, enable bit 0
|
|
* - if burst (backoff not needed) disable bit 0
|
|
*/
|
|
|
|
cs->control = 0;
|
|
|
|
/* First fragment */
|
|
if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
|
|
cs->control |= ZD_CS_NEED_RANDOM_BACKOFF;
|
|
|
|
/* No ACK expected (multicast, etc.) */
|
|
if (info->flags & IEEE80211_TX_CTL_NO_ACK)
|
|
cs->control |= ZD_CS_NO_ACK;
|
|
|
|
/* PS-POLL */
|
|
if (ieee80211_is_pspoll(header->frame_control))
|
|
cs->control |= ZD_CS_PS_POLL_FRAME;
|
|
|
|
if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)
|
|
cs->control |= ZD_CS_RTS;
|
|
|
|
if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
|
|
cs->control |= ZD_CS_SELF_CTS;
|
|
|
|
/* FIXME: Management frame? */
|
|
}
|
|
|
|
static int zd_mac_config_beacon(struct ieee80211_hw *hw, struct sk_buff *beacon)
|
|
{
|
|
struct zd_mac *mac = zd_hw_mac(hw);
|
|
int r;
|
|
u32 tmp, j = 0;
|
|
/* 4 more bytes for tail CRC */
|
|
u32 full_len = beacon->len + 4;
|
|
|
|
r = zd_iowrite32(&mac->chip, CR_BCN_FIFO_SEMAPHORE, 0);
|
|
if (r < 0)
|
|
return r;
|
|
r = zd_ioread32(&mac->chip, CR_BCN_FIFO_SEMAPHORE, &tmp);
|
|
if (r < 0)
|
|
return r;
|
|
|
|
while (tmp & 0x2) {
|
|
r = zd_ioread32(&mac->chip, CR_BCN_FIFO_SEMAPHORE, &tmp);
|
|
if (r < 0)
|
|
return r;
|
|
if ((++j % 100) == 0) {
|
|
printk(KERN_ERR "CR_BCN_FIFO_SEMAPHORE not ready\n");
|
|
if (j >= 500) {
|
|
printk(KERN_ERR "Giving up beacon config.\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
}
|
|
msleep(1);
|
|
}
|
|
|
|
r = zd_iowrite32(&mac->chip, CR_BCN_FIFO, full_len - 1);
|
|
if (r < 0)
|
|
return r;
|
|
if (zd_chip_is_zd1211b(&mac->chip)) {
|
|
r = zd_iowrite32(&mac->chip, CR_BCN_LENGTH, full_len - 1);
|
|
if (r < 0)
|
|
return r;
|
|
}
|
|
|
|
for (j = 0 ; j < beacon->len; j++) {
|
|
r = zd_iowrite32(&mac->chip, CR_BCN_FIFO,
|
|
*((u8 *)(beacon->data + j)));
|
|
if (r < 0)
|
|
return r;
|
|
}
|
|
|
|
for (j = 0; j < 4; j++) {
|
|
r = zd_iowrite32(&mac->chip, CR_BCN_FIFO, 0x0);
|
|
if (r < 0)
|
|
return r;
|
|
}
|
|
|
|
r = zd_iowrite32(&mac->chip, CR_BCN_FIFO_SEMAPHORE, 1);
|
|
if (r < 0)
|
|
return r;
|
|
|
|
/* 802.11b/g 2.4G CCK 1Mb
|
|
* 802.11a, not yet implemented, uses different values (see GPL vendor
|
|
* driver)
|
|
*/
|
|
return zd_iowrite32(&mac->chip, CR_BCN_PLCP_CFG, 0x00000400 |
|
|
(full_len << 19));
|
|
}
|
|
|
|
static int fill_ctrlset(struct zd_mac *mac,
|
|
struct sk_buff *skb)
|
|
{
|
|
int r;
|
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
|
|
unsigned int frag_len = skb->len + FCS_LEN;
|
|
unsigned int packet_length;
|
|
struct ieee80211_rate *txrate;
|
|
struct zd_ctrlset *cs = (struct zd_ctrlset *)
|
|
skb_push(skb, sizeof(struct zd_ctrlset));
|
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
|
|
|
|
ZD_ASSERT(frag_len <= 0xffff);
|
|
|
|
txrate = ieee80211_get_tx_rate(mac->hw, info);
|
|
|
|
cs->modulation = txrate->hw_value;
|
|
if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
|
|
cs->modulation = txrate->hw_value_short;
|
|
|
|
cs->tx_length = cpu_to_le16(frag_len);
|
|
|
|
cs_set_control(mac, cs, hdr, info);
|
|
|
|
packet_length = frag_len + sizeof(struct zd_ctrlset) + 10;
|
|
ZD_ASSERT(packet_length <= 0xffff);
|
|
/* ZD1211B: Computing the length difference this way, gives us
|
|
* flexibility to compute the packet length.
|
|
*/
|
|
cs->packet_length = cpu_to_le16(zd_chip_is_zd1211b(&mac->chip) ?
|
|
packet_length - frag_len : packet_length);
|
|
|
|
/*
|
|
* CURRENT LENGTH:
|
|
* - transmit frame length in microseconds
|
|
* - seems to be derived from frame length
|
|
* - see Cal_Us_Service() in zdinlinef.h
|
|
* - if macp->bTxBurstEnable is enabled, then multiply by 4
|
|
* - bTxBurstEnable is never set in the vendor driver
|
|
*
|
|
* SERVICE:
|
|
* - "for PLCP configuration"
|
|
* - always 0 except in some situations at 802.11b 11M
|
|
* - see line 53 of zdinlinef.h
|
|
*/
|
|
cs->service = 0;
|
|
r = zd_calc_tx_length_us(&cs->service, ZD_RATE(cs->modulation),
|
|
le16_to_cpu(cs->tx_length));
|
|
if (r < 0)
|
|
return r;
|
|
cs->current_length = cpu_to_le16(r);
|
|
cs->next_frame_length = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* zd_op_tx - transmits a network frame to the device
|
|
*
|
|
* @dev: mac80211 hardware device
|
|
* @skb: socket buffer
|
|
* @control: the control structure
|
|
*
|
|
* This function transmit an IEEE 802.11 network frame to the device. The
|
|
* control block of the skbuff will be initialized. If necessary the incoming
|
|
* mac80211 queues will be stopped.
|
|
*/
|
|
static int zd_op_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
|
|
{
|
|
struct zd_mac *mac = zd_hw_mac(hw);
|
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
|
|
int r;
|
|
|
|
r = fill_ctrlset(mac, skb);
|
|
if (r)
|
|
goto fail;
|
|
|
|
info->rate_driver_data[0] = hw;
|
|
|
|
r = zd_usb_tx(&mac->chip.usb, skb);
|
|
if (r)
|
|
goto fail;
|
|
return 0;
|
|
|
|
fail:
|
|
dev_kfree_skb(skb);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* filter_ack - filters incoming packets for acknowledgements
|
|
* @dev: the mac80211 device
|
|
* @rx_hdr: received header
|
|
* @stats: the status for the received packet
|
|
*
|
|
* This functions looks for ACK packets and tries to match them with the
|
|
* frames in the tx queue. If a match is found the frame will be dequeued and
|
|
* the upper layers is informed about the successful transmission. If
|
|
* mac80211 queues have been stopped and the number of frames still to be
|
|
* transmitted is low the queues will be opened again.
|
|
*
|
|
* Returns 1 if the frame was an ACK, 0 if it was ignored.
|
|
*/
|
|
static int filter_ack(struct ieee80211_hw *hw, struct ieee80211_hdr *rx_hdr,
|
|
struct ieee80211_rx_status *stats)
|
|
{
|
|
struct zd_mac *mac = zd_hw_mac(hw);
|
|
struct sk_buff *skb;
|
|
struct sk_buff_head *q;
|
|
unsigned long flags;
|
|
int found = 0;
|
|
int i, position = 0;
|
|
|
|
if (!ieee80211_is_ack(rx_hdr->frame_control))
|
|
return 0;
|
|
|
|
q = &mac->ack_wait_queue;
|
|
spin_lock_irqsave(&q->lock, flags);
|
|
skb_queue_walk(q, skb) {
|
|
struct ieee80211_hdr *tx_hdr;
|
|
|
|
position ++;
|
|
|
|
if (mac->ack_pending && skb_queue_is_first(q, skb))
|
|
continue;
|
|
|
|
tx_hdr = (struct ieee80211_hdr *)skb->data;
|
|
if (likely(!memcmp(tx_hdr->addr2, rx_hdr->addr1, ETH_ALEN)))
|
|
{
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (found) {
|
|
for (i=1; i<position; i++) {
|
|
skb = __skb_dequeue(q);
|
|
zd_mac_tx_status(hw, skb,
|
|
mac->ack_pending ? mac->ack_signal : 0,
|
|
NULL);
|
|
mac->ack_pending = 0;
|
|
}
|
|
|
|
mac->ack_pending = 1;
|
|
mac->ack_signal = stats->signal;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&q->lock, flags);
|
|
return 1;
|
|
}
|
|
|
|
int zd_mac_rx(struct ieee80211_hw *hw, const u8 *buffer, unsigned int length)
|
|
{
|
|
struct zd_mac *mac = zd_hw_mac(hw);
|
|
struct ieee80211_rx_status stats;
|
|
const struct rx_status *status;
|
|
struct sk_buff *skb;
|
|
int bad_frame = 0;
|
|
__le16 fc;
|
|
int need_padding;
|
|
int i;
|
|
u8 rate;
|
|
|
|
if (length < ZD_PLCP_HEADER_SIZE + 10 /* IEEE80211_1ADDR_LEN */ +
|
|
FCS_LEN + sizeof(struct rx_status))
|
|
return -EINVAL;
|
|
|
|
memset(&stats, 0, sizeof(stats));
|
|
|
|
/* Note about pass_failed_fcs and pass_ctrl access below:
|
|
* mac locking intentionally omitted here, as this is the only unlocked
|
|
* reader and the only writer is configure_filter. Plus, if there were
|
|
* any races accessing these variables, it wouldn't really matter.
|
|
* If mac80211 ever provides a way for us to access filter flags
|
|
* from outside configure_filter, we could improve on this. Also, this
|
|
* situation may change once we implement some kind of DMA-into-skb
|
|
* RX path. */
|
|
|
|
/* Caller has to ensure that length >= sizeof(struct rx_status). */
|
|
status = (struct rx_status *)
|
|
(buffer + (length - sizeof(struct rx_status)));
|
|
if (status->frame_status & ZD_RX_ERROR) {
|
|
if (mac->pass_failed_fcs &&
|
|
(status->frame_status & ZD_RX_CRC32_ERROR)) {
|
|
stats.flag |= RX_FLAG_FAILED_FCS_CRC;
|
|
bad_frame = 1;
|
|
} else {
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
stats.freq = zd_channels[_zd_chip_get_channel(&mac->chip) - 1].center_freq;
|
|
stats.band = IEEE80211_BAND_2GHZ;
|
|
stats.signal = status->signal_strength;
|
|
|
|
rate = zd_rx_rate(buffer, status);
|
|
|
|
/* todo: return index in the big switches in zd_rx_rate instead */
|
|
for (i = 0; i < mac->band.n_bitrates; i++)
|
|
if (rate == mac->band.bitrates[i].hw_value)
|
|
stats.rate_idx = i;
|
|
|
|
length -= ZD_PLCP_HEADER_SIZE + sizeof(struct rx_status);
|
|
buffer += ZD_PLCP_HEADER_SIZE;
|
|
|
|
/* Except for bad frames, filter each frame to see if it is an ACK, in
|
|
* which case our internal TX tracking is updated. Normally we then
|
|
* bail here as there's no need to pass ACKs on up to the stack, but
|
|
* there is also the case where the stack has requested us to pass
|
|
* control frames on up (pass_ctrl) which we must consider. */
|
|
if (!bad_frame &&
|
|
filter_ack(hw, (struct ieee80211_hdr *)buffer, &stats)
|
|
&& !mac->pass_ctrl)
|
|
return 0;
|
|
|
|
fc = get_unaligned((__le16*)buffer);
|
|
need_padding = ieee80211_is_data_qos(fc) ^ ieee80211_has_a4(fc);
|
|
|
|
skb = dev_alloc_skb(length + (need_padding ? 2 : 0));
|
|
if (skb == NULL)
|
|
return -ENOMEM;
|
|
if (need_padding) {
|
|
/* Make sure the payload data is 4 byte aligned. */
|
|
skb_reserve(skb, 2);
|
|
}
|
|
|
|
/* FIXME : could we avoid this big memcpy ? */
|
|
memcpy(skb_put(skb, length), buffer, length);
|
|
|
|
memcpy(IEEE80211_SKB_RXCB(skb), &stats, sizeof(stats));
|
|
ieee80211_rx_irqsafe(hw, skb);
|
|
return 0;
|
|
}
|
|
|
|
static int zd_op_add_interface(struct ieee80211_hw *hw,
|
|
struct ieee80211_vif *vif)
|
|
{
|
|
struct zd_mac *mac = zd_hw_mac(hw);
|
|
|
|
/* using NL80211_IFTYPE_UNSPECIFIED to indicate no mode selected */
|
|
if (mac->type != NL80211_IFTYPE_UNSPECIFIED)
|
|
return -EOPNOTSUPP;
|
|
|
|
switch (vif->type) {
|
|
case NL80211_IFTYPE_MONITOR:
|
|
case NL80211_IFTYPE_MESH_POINT:
|
|
case NL80211_IFTYPE_STATION:
|
|
case NL80211_IFTYPE_ADHOC:
|
|
mac->type = vif->type;
|
|
break;
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
return zd_write_mac_addr(&mac->chip, vif->addr);
|
|
}
|
|
|
|
static void zd_op_remove_interface(struct ieee80211_hw *hw,
|
|
struct ieee80211_vif *vif)
|
|
{
|
|
struct zd_mac *mac = zd_hw_mac(hw);
|
|
mac->type = NL80211_IFTYPE_UNSPECIFIED;
|
|
zd_set_beacon_interval(&mac->chip, 0);
|
|
zd_write_mac_addr(&mac->chip, NULL);
|
|
}
|
|
|
|
static int zd_op_config(struct ieee80211_hw *hw, u32 changed)
|
|
{
|
|
struct zd_mac *mac = zd_hw_mac(hw);
|
|
struct ieee80211_conf *conf = &hw->conf;
|
|
|
|
return zd_chip_set_channel(&mac->chip, conf->channel->hw_value);
|
|
}
|
|
|
|
static void zd_process_intr(struct work_struct *work)
|
|
{
|
|
u16 int_status;
|
|
struct zd_mac *mac = container_of(work, struct zd_mac, process_intr);
|
|
|
|
int_status = le16_to_cpu(*(__le16 *)(mac->intr_buffer+4));
|
|
if (int_status & INT_CFG_NEXT_BCN)
|
|
dev_dbg_f_limit(zd_mac_dev(mac), "INT_CFG_NEXT_BCN\n");
|
|
else
|
|
dev_dbg_f(zd_mac_dev(mac), "Unsupported interrupt\n");
|
|
|
|
zd_chip_enable_hwint(&mac->chip);
|
|
}
|
|
|
|
|
|
static void set_multicast_hash_handler(struct work_struct *work)
|
|
{
|
|
struct zd_mac *mac =
|
|
container_of(work, struct zd_mac, set_multicast_hash_work);
|
|
struct zd_mc_hash hash;
|
|
|
|
spin_lock_irq(&mac->lock);
|
|
hash = mac->multicast_hash;
|
|
spin_unlock_irq(&mac->lock);
|
|
|
|
zd_chip_set_multicast_hash(&mac->chip, &hash);
|
|
}
|
|
|
|
static void set_rx_filter_handler(struct work_struct *work)
|
|
{
|
|
struct zd_mac *mac =
|
|
container_of(work, struct zd_mac, set_rx_filter_work);
|
|
int r;
|
|
|
|
dev_dbg_f(zd_mac_dev(mac), "\n");
|
|
r = set_rx_filter(mac);
|
|
if (r)
|
|
dev_err(zd_mac_dev(mac), "set_rx_filter_handler error %d\n", r);
|
|
}
|
|
|
|
static u64 zd_op_prepare_multicast(struct ieee80211_hw *hw,
|
|
struct netdev_hw_addr_list *mc_list)
|
|
{
|
|
struct zd_mac *mac = zd_hw_mac(hw);
|
|
struct zd_mc_hash hash;
|
|
struct netdev_hw_addr *ha;
|
|
|
|
zd_mc_clear(&hash);
|
|
|
|
netdev_hw_addr_list_for_each(ha, mc_list) {
|
|
dev_dbg_f(zd_mac_dev(mac), "mc addr %pM\n", ha->addr);
|
|
zd_mc_add_addr(&hash, ha->addr);
|
|
}
|
|
|
|
return hash.low | ((u64)hash.high << 32);
|
|
}
|
|
|
|
#define SUPPORTED_FIF_FLAGS \
|
|
(FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_FCSFAIL | FIF_CONTROL | \
|
|
FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC)
|
|
static void zd_op_configure_filter(struct ieee80211_hw *hw,
|
|
unsigned int changed_flags,
|
|
unsigned int *new_flags,
|
|
u64 multicast)
|
|
{
|
|
struct zd_mc_hash hash = {
|
|
.low = multicast,
|
|
.high = multicast >> 32,
|
|
};
|
|
struct zd_mac *mac = zd_hw_mac(hw);
|
|
unsigned long flags;
|
|
|
|
/* Only deal with supported flags */
|
|
changed_flags &= SUPPORTED_FIF_FLAGS;
|
|
*new_flags &= SUPPORTED_FIF_FLAGS;
|
|
|
|
/*
|
|
* If multicast parameter (as returned by zd_op_prepare_multicast)
|
|
* has changed, no bit in changed_flags is set. To handle this
|
|
* situation, we do not return if changed_flags is 0. If we do so,
|
|
* we will have some issue with IPv6 which uses multicast for link
|
|
* layer address resolution.
|
|
*/
|
|
if (*new_flags & (FIF_PROMISC_IN_BSS | FIF_ALLMULTI))
|
|
zd_mc_add_all(&hash);
|
|
|
|
spin_lock_irqsave(&mac->lock, flags);
|
|
mac->pass_failed_fcs = !!(*new_flags & FIF_FCSFAIL);
|
|
mac->pass_ctrl = !!(*new_flags & FIF_CONTROL);
|
|
mac->multicast_hash = hash;
|
|
spin_unlock_irqrestore(&mac->lock, flags);
|
|
|
|
/* XXX: these can be called here now, can sleep now! */
|
|
queue_work(zd_workqueue, &mac->set_multicast_hash_work);
|
|
|
|
if (changed_flags & FIF_CONTROL)
|
|
queue_work(zd_workqueue, &mac->set_rx_filter_work);
|
|
|
|
/* no handling required for FIF_OTHER_BSS as we don't currently
|
|
* do BSSID filtering */
|
|
/* FIXME: in future it would be nice to enable the probe response
|
|
* filter (so that the driver doesn't see them) until
|
|
* FIF_BCN_PRBRESP_PROMISC is set. however due to atomicity here, we'd
|
|
* have to schedule work to enable prbresp reception, which might
|
|
* happen too late. For now we'll just listen and forward them all the
|
|
* time. */
|
|
}
|
|
|
|
static void set_rts_cts_work(struct work_struct *work)
|
|
{
|
|
struct zd_mac *mac =
|
|
container_of(work, struct zd_mac, set_rts_cts_work);
|
|
unsigned long flags;
|
|
unsigned int short_preamble;
|
|
|
|
mutex_lock(&mac->chip.mutex);
|
|
|
|
spin_lock_irqsave(&mac->lock, flags);
|
|
mac->updating_rts_rate = 0;
|
|
short_preamble = mac->short_preamble;
|
|
spin_unlock_irqrestore(&mac->lock, flags);
|
|
|
|
zd_chip_set_rts_cts_rate_locked(&mac->chip, short_preamble);
|
|
mutex_unlock(&mac->chip.mutex);
|
|
}
|
|
|
|
static void zd_op_bss_info_changed(struct ieee80211_hw *hw,
|
|
struct ieee80211_vif *vif,
|
|
struct ieee80211_bss_conf *bss_conf,
|
|
u32 changes)
|
|
{
|
|
struct zd_mac *mac = zd_hw_mac(hw);
|
|
unsigned long flags;
|
|
int associated;
|
|
|
|
dev_dbg_f(zd_mac_dev(mac), "changes: %x\n", changes);
|
|
|
|
if (mac->type == NL80211_IFTYPE_MESH_POINT ||
|
|
mac->type == NL80211_IFTYPE_ADHOC) {
|
|
associated = true;
|
|
if (changes & BSS_CHANGED_BEACON) {
|
|
struct sk_buff *beacon = ieee80211_beacon_get(hw, vif);
|
|
|
|
if (beacon) {
|
|
zd_mac_config_beacon(hw, beacon);
|
|
kfree_skb(beacon);
|
|
}
|
|
}
|
|
|
|
if (changes & BSS_CHANGED_BEACON_ENABLED) {
|
|
u32 interval;
|
|
|
|
if (bss_conf->enable_beacon)
|
|
interval = BCN_MODE_IBSS |
|
|
bss_conf->beacon_int;
|
|
else
|
|
interval = 0;
|
|
|
|
zd_set_beacon_interval(&mac->chip, interval);
|
|
}
|
|
} else
|
|
associated = is_valid_ether_addr(bss_conf->bssid);
|
|
|
|
spin_lock_irq(&mac->lock);
|
|
mac->associated = associated;
|
|
spin_unlock_irq(&mac->lock);
|
|
|
|
/* TODO: do hardware bssid filtering */
|
|
|
|
if (changes & BSS_CHANGED_ERP_PREAMBLE) {
|
|
spin_lock_irqsave(&mac->lock, flags);
|
|
mac->short_preamble = bss_conf->use_short_preamble;
|
|
if (!mac->updating_rts_rate) {
|
|
mac->updating_rts_rate = 1;
|
|
/* FIXME: should disable TX here, until work has
|
|
* completed and RTS_CTS reg is updated */
|
|
queue_work(zd_workqueue, &mac->set_rts_cts_work);
|
|
}
|
|
spin_unlock_irqrestore(&mac->lock, flags);
|
|
}
|
|
}
|
|
|
|
static u64 zd_op_get_tsf(struct ieee80211_hw *hw)
|
|
{
|
|
struct zd_mac *mac = zd_hw_mac(hw);
|
|
return zd_chip_get_tsf(&mac->chip);
|
|
}
|
|
|
|
static const struct ieee80211_ops zd_ops = {
|
|
.tx = zd_op_tx,
|
|
.start = zd_op_start,
|
|
.stop = zd_op_stop,
|
|
.add_interface = zd_op_add_interface,
|
|
.remove_interface = zd_op_remove_interface,
|
|
.config = zd_op_config,
|
|
.prepare_multicast = zd_op_prepare_multicast,
|
|
.configure_filter = zd_op_configure_filter,
|
|
.bss_info_changed = zd_op_bss_info_changed,
|
|
.get_tsf = zd_op_get_tsf,
|
|
};
|
|
|
|
struct ieee80211_hw *zd_mac_alloc_hw(struct usb_interface *intf)
|
|
{
|
|
struct zd_mac *mac;
|
|
struct ieee80211_hw *hw;
|
|
|
|
hw = ieee80211_alloc_hw(sizeof(struct zd_mac), &zd_ops);
|
|
if (!hw) {
|
|
dev_dbg_f(&intf->dev, "out of memory\n");
|
|
return NULL;
|
|
}
|
|
|
|
mac = zd_hw_mac(hw);
|
|
|
|
memset(mac, 0, sizeof(*mac));
|
|
spin_lock_init(&mac->lock);
|
|
mac->hw = hw;
|
|
|
|
mac->type = NL80211_IFTYPE_UNSPECIFIED;
|
|
|
|
memcpy(mac->channels, zd_channels, sizeof(zd_channels));
|
|
memcpy(mac->rates, zd_rates, sizeof(zd_rates));
|
|
mac->band.n_bitrates = ARRAY_SIZE(zd_rates);
|
|
mac->band.bitrates = mac->rates;
|
|
mac->band.n_channels = ARRAY_SIZE(zd_channels);
|
|
mac->band.channels = mac->channels;
|
|
|
|
hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &mac->band;
|
|
|
|
hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
|
|
IEEE80211_HW_SIGNAL_UNSPEC;
|
|
|
|
hw->wiphy->interface_modes =
|
|
BIT(NL80211_IFTYPE_MESH_POINT) |
|
|
BIT(NL80211_IFTYPE_STATION) |
|
|
BIT(NL80211_IFTYPE_ADHOC);
|
|
|
|
hw->max_signal = 100;
|
|
hw->queues = 1;
|
|
hw->extra_tx_headroom = sizeof(struct zd_ctrlset);
|
|
|
|
/*
|
|
* Tell mac80211 that we support multi rate retries
|
|
*/
|
|
hw->max_rates = IEEE80211_TX_MAX_RATES;
|
|
hw->max_rate_tries = 18; /* 9 rates * 2 retries/rate */
|
|
|
|
skb_queue_head_init(&mac->ack_wait_queue);
|
|
mac->ack_pending = 0;
|
|
|
|
zd_chip_init(&mac->chip, hw, intf);
|
|
housekeeping_init(mac);
|
|
INIT_WORK(&mac->set_multicast_hash_work, set_multicast_hash_handler);
|
|
INIT_WORK(&mac->set_rts_cts_work, set_rts_cts_work);
|
|
INIT_WORK(&mac->set_rx_filter_work, set_rx_filter_handler);
|
|
INIT_WORK(&mac->process_intr, zd_process_intr);
|
|
|
|
SET_IEEE80211_DEV(hw, &intf->dev);
|
|
return hw;
|
|
}
|
|
|
|
#define LINK_LED_WORK_DELAY HZ
|
|
|
|
static void link_led_handler(struct work_struct *work)
|
|
{
|
|
struct zd_mac *mac =
|
|
container_of(work, struct zd_mac, housekeeping.link_led_work.work);
|
|
struct zd_chip *chip = &mac->chip;
|
|
int is_associated;
|
|
int r;
|
|
|
|
spin_lock_irq(&mac->lock);
|
|
is_associated = mac->associated;
|
|
spin_unlock_irq(&mac->lock);
|
|
|
|
r = zd_chip_control_leds(chip,
|
|
is_associated ? ZD_LED_ASSOCIATED : ZD_LED_SCANNING);
|
|
if (r)
|
|
dev_dbg_f(zd_mac_dev(mac), "zd_chip_control_leds error %d\n", r);
|
|
|
|
queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
|
|
LINK_LED_WORK_DELAY);
|
|
}
|
|
|
|
static void housekeeping_init(struct zd_mac *mac)
|
|
{
|
|
INIT_DELAYED_WORK(&mac->housekeeping.link_led_work, link_led_handler);
|
|
}
|
|
|
|
static void housekeeping_enable(struct zd_mac *mac)
|
|
{
|
|
dev_dbg_f(zd_mac_dev(mac), "\n");
|
|
queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
|
|
0);
|
|
}
|
|
|
|
static void housekeeping_disable(struct zd_mac *mac)
|
|
{
|
|
dev_dbg_f(zd_mac_dev(mac), "\n");
|
|
cancel_rearming_delayed_workqueue(zd_workqueue,
|
|
&mac->housekeeping.link_led_work);
|
|
zd_chip_control_leds(&mac->chip, ZD_LED_OFF);
|
|
}
|