1
linux/virt/kvm/kvm_main.c
Takuya Yoshikawa 50e92b3c97 KVM: Fix __set_bit() race in mark_page_dirty() during dirty logging
It is possible that the __set_bit() in mark_page_dirty() is called
simultaneously on the same region of memory, which may result in only
one bit being set, because some callers do not take mmu_lock before
mark_page_dirty().

This problem is hard to produce because when we reach mark_page_dirty()
beginning from, e.g., tdp_page_fault(), mmu_lock is being held during
__direct_map():  making kvm-unit-tests' dirty log api test write to two
pages concurrently was not useful for this reason.

So we have confirmed that there can actually be race condition by
checking if some callers really reach there without holding mmu_lock
using spin_is_locked():  probably they were from kvm_write_guest_page().

To fix this race, this patch changes the bit operation to the atomic
version:  note that nr_dirty_pages also suffers from the race but we do
not need exactly correct numbers for now.

Signed-off-by: Takuya Yoshikawa <yoshikawa.takuya@oss.ntt.co.jp>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2012-02-01 11:42:32 +02:00

2875 lines
62 KiB
C

/*
* Kernel-based Virtual Machine driver for Linux
*
* This module enables machines with Intel VT-x extensions to run virtual
* machines without emulation or binary translation.
*
* Copyright (C) 2006 Qumranet, Inc.
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
*
* Authors:
* Avi Kivity <avi@qumranet.com>
* Yaniv Kamay <yaniv@qumranet.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
*/
#include "iodev.h"
#include <linux/kvm_host.h>
#include <linux/kvm.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/percpu.h>
#include <linux/mm.h>
#include <linux/miscdevice.h>
#include <linux/vmalloc.h>
#include <linux/reboot.h>
#include <linux/debugfs.h>
#include <linux/highmem.h>
#include <linux/file.h>
#include <linux/syscore_ops.h>
#include <linux/cpu.h>
#include <linux/sched.h>
#include <linux/cpumask.h>
#include <linux/smp.h>
#include <linux/anon_inodes.h>
#include <linux/profile.h>
#include <linux/kvm_para.h>
#include <linux/pagemap.h>
#include <linux/mman.h>
#include <linux/swap.h>
#include <linux/bitops.h>
#include <linux/spinlock.h>
#include <linux/compat.h>
#include <linux/srcu.h>
#include <linux/hugetlb.h>
#include <linux/slab.h>
#include <linux/sort.h>
#include <linux/bsearch.h>
#include <asm/processor.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/pgtable.h>
#include "coalesced_mmio.h"
#include "async_pf.h"
#define CREATE_TRACE_POINTS
#include <trace/events/kvm.h>
MODULE_AUTHOR("Qumranet");
MODULE_LICENSE("GPL");
/*
* Ordering of locks:
*
* kvm->lock --> kvm->slots_lock --> kvm->irq_lock
*/
DEFINE_RAW_SPINLOCK(kvm_lock);
LIST_HEAD(vm_list);
static cpumask_var_t cpus_hardware_enabled;
static int kvm_usage_count = 0;
static atomic_t hardware_enable_failed;
struct kmem_cache *kvm_vcpu_cache;
EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
static __read_mostly struct preempt_ops kvm_preempt_ops;
struct dentry *kvm_debugfs_dir;
static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
unsigned long arg);
#ifdef CONFIG_COMPAT
static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
unsigned long arg);
#endif
static int hardware_enable_all(void);
static void hardware_disable_all(void);
static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
bool kvm_rebooting;
EXPORT_SYMBOL_GPL(kvm_rebooting);
static bool largepages_enabled = true;
static struct page *hwpoison_page;
static pfn_t hwpoison_pfn;
struct page *fault_page;
pfn_t fault_pfn;
inline int kvm_is_mmio_pfn(pfn_t pfn)
{
if (pfn_valid(pfn)) {
int reserved;
struct page *tail = pfn_to_page(pfn);
struct page *head = compound_trans_head(tail);
reserved = PageReserved(head);
if (head != tail) {
/*
* "head" is not a dangling pointer
* (compound_trans_head takes care of that)
* but the hugepage may have been splitted
* from under us (and we may not hold a
* reference count on the head page so it can
* be reused before we run PageReferenced), so
* we've to check PageTail before returning
* what we just read.
*/
smp_rmb();
if (PageTail(tail))
return reserved;
}
return PageReserved(tail);
}
return true;
}
/*
* Switches to specified vcpu, until a matching vcpu_put()
*/
void vcpu_load(struct kvm_vcpu *vcpu)
{
int cpu;
mutex_lock(&vcpu->mutex);
if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
/* The thread running this VCPU changed. */
struct pid *oldpid = vcpu->pid;
struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
rcu_assign_pointer(vcpu->pid, newpid);
synchronize_rcu();
put_pid(oldpid);
}
cpu = get_cpu();
preempt_notifier_register(&vcpu->preempt_notifier);
kvm_arch_vcpu_load(vcpu, cpu);
put_cpu();
}
void vcpu_put(struct kvm_vcpu *vcpu)
{
preempt_disable();
kvm_arch_vcpu_put(vcpu);
preempt_notifier_unregister(&vcpu->preempt_notifier);
preempt_enable();
mutex_unlock(&vcpu->mutex);
}
static void ack_flush(void *_completed)
{
}
static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
{
int i, cpu, me;
cpumask_var_t cpus;
bool called = true;
struct kvm_vcpu *vcpu;
zalloc_cpumask_var(&cpus, GFP_ATOMIC);
me = get_cpu();
kvm_for_each_vcpu(i, vcpu, kvm) {
kvm_make_request(req, vcpu);
cpu = vcpu->cpu;
/* Set ->requests bit before we read ->mode */
smp_mb();
if (cpus != NULL && cpu != -1 && cpu != me &&
kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
cpumask_set_cpu(cpu, cpus);
}
if (unlikely(cpus == NULL))
smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
else if (!cpumask_empty(cpus))
smp_call_function_many(cpus, ack_flush, NULL, 1);
else
called = false;
put_cpu();
free_cpumask_var(cpus);
return called;
}
void kvm_flush_remote_tlbs(struct kvm *kvm)
{
int dirty_count = kvm->tlbs_dirty;
smp_mb();
if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
++kvm->stat.remote_tlb_flush;
cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
}
void kvm_reload_remote_mmus(struct kvm *kvm)
{
make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
}
int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
{
struct page *page;
int r;
mutex_init(&vcpu->mutex);
vcpu->cpu = -1;
vcpu->kvm = kvm;
vcpu->vcpu_id = id;
vcpu->pid = NULL;
init_waitqueue_head(&vcpu->wq);
kvm_async_pf_vcpu_init(vcpu);
page = alloc_page(GFP_KERNEL | __GFP_ZERO);
if (!page) {
r = -ENOMEM;
goto fail;
}
vcpu->run = page_address(page);
r = kvm_arch_vcpu_init(vcpu);
if (r < 0)
goto fail_free_run;
return 0;
fail_free_run:
free_page((unsigned long)vcpu->run);
fail:
return r;
}
EXPORT_SYMBOL_GPL(kvm_vcpu_init);
void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
{
put_pid(vcpu->pid);
kvm_arch_vcpu_uninit(vcpu);
free_page((unsigned long)vcpu->run);
}
EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
{
return container_of(mn, struct kvm, mmu_notifier);
}
static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
struct mm_struct *mm,
unsigned long address)
{
struct kvm *kvm = mmu_notifier_to_kvm(mn);
int need_tlb_flush, idx;
/*
* When ->invalidate_page runs, the linux pte has been zapped
* already but the page is still allocated until
* ->invalidate_page returns. So if we increase the sequence
* here the kvm page fault will notice if the spte can't be
* established because the page is going to be freed. If
* instead the kvm page fault establishes the spte before
* ->invalidate_page runs, kvm_unmap_hva will release it
* before returning.
*
* The sequence increase only need to be seen at spin_unlock
* time, and not at spin_lock time.
*
* Increasing the sequence after the spin_unlock would be
* unsafe because the kvm page fault could then establish the
* pte after kvm_unmap_hva returned, without noticing the page
* is going to be freed.
*/
idx = srcu_read_lock(&kvm->srcu);
spin_lock(&kvm->mmu_lock);
kvm->mmu_notifier_seq++;
need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
spin_unlock(&kvm->mmu_lock);
srcu_read_unlock(&kvm->srcu, idx);
/* we've to flush the tlb before the pages can be freed */
if (need_tlb_flush)
kvm_flush_remote_tlbs(kvm);
}
static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
struct mm_struct *mm,
unsigned long address,
pte_t pte)
{
struct kvm *kvm = mmu_notifier_to_kvm(mn);
int idx;
idx = srcu_read_lock(&kvm->srcu);
spin_lock(&kvm->mmu_lock);
kvm->mmu_notifier_seq++;
kvm_set_spte_hva(kvm, address, pte);
spin_unlock(&kvm->mmu_lock);
srcu_read_unlock(&kvm->srcu, idx);
}
static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
struct mm_struct *mm,
unsigned long start,
unsigned long end)
{
struct kvm *kvm = mmu_notifier_to_kvm(mn);
int need_tlb_flush = 0, idx;
idx = srcu_read_lock(&kvm->srcu);
spin_lock(&kvm->mmu_lock);
/*
* The count increase must become visible at unlock time as no
* spte can be established without taking the mmu_lock and
* count is also read inside the mmu_lock critical section.
*/
kvm->mmu_notifier_count++;
for (; start < end; start += PAGE_SIZE)
need_tlb_flush |= kvm_unmap_hva(kvm, start);
need_tlb_flush |= kvm->tlbs_dirty;
spin_unlock(&kvm->mmu_lock);
srcu_read_unlock(&kvm->srcu, idx);
/* we've to flush the tlb before the pages can be freed */
if (need_tlb_flush)
kvm_flush_remote_tlbs(kvm);
}
static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
struct mm_struct *mm,
unsigned long start,
unsigned long end)
{
struct kvm *kvm = mmu_notifier_to_kvm(mn);
spin_lock(&kvm->mmu_lock);
/*
* This sequence increase will notify the kvm page fault that
* the page that is going to be mapped in the spte could have
* been freed.
*/
kvm->mmu_notifier_seq++;
/*
* The above sequence increase must be visible before the
* below count decrease but both values are read by the kvm
* page fault under mmu_lock spinlock so we don't need to add
* a smb_wmb() here in between the two.
*/
kvm->mmu_notifier_count--;
spin_unlock(&kvm->mmu_lock);
BUG_ON(kvm->mmu_notifier_count < 0);
}
static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
struct mm_struct *mm,
unsigned long address)
{
struct kvm *kvm = mmu_notifier_to_kvm(mn);
int young, idx;
idx = srcu_read_lock(&kvm->srcu);
spin_lock(&kvm->mmu_lock);
young = kvm_age_hva(kvm, address);
spin_unlock(&kvm->mmu_lock);
srcu_read_unlock(&kvm->srcu, idx);
if (young)
kvm_flush_remote_tlbs(kvm);
return young;
}
static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
struct mm_struct *mm,
unsigned long address)
{
struct kvm *kvm = mmu_notifier_to_kvm(mn);
int young, idx;
idx = srcu_read_lock(&kvm->srcu);
spin_lock(&kvm->mmu_lock);
young = kvm_test_age_hva(kvm, address);
spin_unlock(&kvm->mmu_lock);
srcu_read_unlock(&kvm->srcu, idx);
return young;
}
static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
struct mm_struct *mm)
{
struct kvm *kvm = mmu_notifier_to_kvm(mn);
int idx;
idx = srcu_read_lock(&kvm->srcu);
kvm_arch_flush_shadow(kvm);
srcu_read_unlock(&kvm->srcu, idx);
}
static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
.invalidate_page = kvm_mmu_notifier_invalidate_page,
.invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
.invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
.clear_flush_young = kvm_mmu_notifier_clear_flush_young,
.test_young = kvm_mmu_notifier_test_young,
.change_pte = kvm_mmu_notifier_change_pte,
.release = kvm_mmu_notifier_release,
};
static int kvm_init_mmu_notifier(struct kvm *kvm)
{
kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
}
#else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
static int kvm_init_mmu_notifier(struct kvm *kvm)
{
return 0;
}
#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
static void kvm_init_memslots_id(struct kvm *kvm)
{
int i;
struct kvm_memslots *slots = kvm->memslots;
for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
slots->id_to_index[i] = slots->memslots[i].id = i;
}
static struct kvm *kvm_create_vm(void)
{
int r, i;
struct kvm *kvm = kvm_arch_alloc_vm();
if (!kvm)
return ERR_PTR(-ENOMEM);
r = kvm_arch_init_vm(kvm);
if (r)
goto out_err_nodisable;
r = hardware_enable_all();
if (r)
goto out_err_nodisable;
#ifdef CONFIG_HAVE_KVM_IRQCHIP
INIT_HLIST_HEAD(&kvm->mask_notifier_list);
INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
#endif
r = -ENOMEM;
kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
if (!kvm->memslots)
goto out_err_nosrcu;
kvm_init_memslots_id(kvm);
if (init_srcu_struct(&kvm->srcu))
goto out_err_nosrcu;
for (i = 0; i < KVM_NR_BUSES; i++) {
kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
GFP_KERNEL);
if (!kvm->buses[i])
goto out_err;
}
spin_lock_init(&kvm->mmu_lock);
kvm->mm = current->mm;
atomic_inc(&kvm->mm->mm_count);
kvm_eventfd_init(kvm);
mutex_init(&kvm->lock);
mutex_init(&kvm->irq_lock);
mutex_init(&kvm->slots_lock);
atomic_set(&kvm->users_count, 1);
r = kvm_init_mmu_notifier(kvm);
if (r)
goto out_err;
raw_spin_lock(&kvm_lock);
list_add(&kvm->vm_list, &vm_list);
raw_spin_unlock(&kvm_lock);
return kvm;
out_err:
cleanup_srcu_struct(&kvm->srcu);
out_err_nosrcu:
hardware_disable_all();
out_err_nodisable:
for (i = 0; i < KVM_NR_BUSES; i++)
kfree(kvm->buses[i]);
kfree(kvm->memslots);
kvm_arch_free_vm(kvm);
return ERR_PTR(r);
}
static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
{
if (!memslot->dirty_bitmap)
return;
if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE)
vfree(memslot->dirty_bitmap_head);
else
kfree(memslot->dirty_bitmap_head);
memslot->dirty_bitmap = NULL;
memslot->dirty_bitmap_head = NULL;
}
/*
* Free any memory in @free but not in @dont.
*/
static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
struct kvm_memory_slot *dont)
{
int i;
if (!dont || free->rmap != dont->rmap)
vfree(free->rmap);
if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
kvm_destroy_dirty_bitmap(free);
for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
vfree(free->lpage_info[i]);
free->lpage_info[i] = NULL;
}
}
free->npages = 0;
free->rmap = NULL;
}
void kvm_free_physmem(struct kvm *kvm)
{
struct kvm_memslots *slots = kvm->memslots;
struct kvm_memory_slot *memslot;
kvm_for_each_memslot(memslot, slots)
kvm_free_physmem_slot(memslot, NULL);
kfree(kvm->memslots);
}
static void kvm_destroy_vm(struct kvm *kvm)
{
int i;
struct mm_struct *mm = kvm->mm;
kvm_arch_sync_events(kvm);
raw_spin_lock(&kvm_lock);
list_del(&kvm->vm_list);
raw_spin_unlock(&kvm_lock);
kvm_free_irq_routing(kvm);
for (i = 0; i < KVM_NR_BUSES; i++)
kvm_io_bus_destroy(kvm->buses[i]);
kvm_coalesced_mmio_free(kvm);
#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
#else
kvm_arch_flush_shadow(kvm);
#endif
kvm_arch_destroy_vm(kvm);
kvm_free_physmem(kvm);
cleanup_srcu_struct(&kvm->srcu);
kvm_arch_free_vm(kvm);
hardware_disable_all();
mmdrop(mm);
}
void kvm_get_kvm(struct kvm *kvm)
{
atomic_inc(&kvm->users_count);
}
EXPORT_SYMBOL_GPL(kvm_get_kvm);
void kvm_put_kvm(struct kvm *kvm)
{
if (atomic_dec_and_test(&kvm->users_count))
kvm_destroy_vm(kvm);
}
EXPORT_SYMBOL_GPL(kvm_put_kvm);
static int kvm_vm_release(struct inode *inode, struct file *filp)
{
struct kvm *kvm = filp->private_data;
kvm_irqfd_release(kvm);
kvm_put_kvm(kvm);
return 0;
}
#ifndef CONFIG_S390
/*
* Allocation size is twice as large as the actual dirty bitmap size.
* This makes it possible to do double buffering: see x86's
* kvm_vm_ioctl_get_dirty_log().
*/
static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
{
unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
if (dirty_bytes > PAGE_SIZE)
memslot->dirty_bitmap = vzalloc(dirty_bytes);
else
memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL);
if (!memslot->dirty_bitmap)
return -ENOMEM;
memslot->dirty_bitmap_head = memslot->dirty_bitmap;
memslot->nr_dirty_pages = 0;
return 0;
}
#endif /* !CONFIG_S390 */
static struct kvm_memory_slot *
search_memslots(struct kvm_memslots *slots, gfn_t gfn)
{
struct kvm_memory_slot *memslot;
kvm_for_each_memslot(memslot, slots)
if (gfn >= memslot->base_gfn &&
gfn < memslot->base_gfn + memslot->npages)
return memslot;
return NULL;
}
static int cmp_memslot(const void *slot1, const void *slot2)
{
struct kvm_memory_slot *s1, *s2;
s1 = (struct kvm_memory_slot *)slot1;
s2 = (struct kvm_memory_slot *)slot2;
if (s1->npages < s2->npages)
return 1;
if (s1->npages > s2->npages)
return -1;
return 0;
}
/*
* Sort the memslots base on its size, so the larger slots
* will get better fit.
*/
static void sort_memslots(struct kvm_memslots *slots)
{
int i;
sort(slots->memslots, KVM_MEM_SLOTS_NUM,
sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
slots->id_to_index[slots->memslots[i].id] = i;
}
void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new)
{
if (new) {
int id = new->id;
struct kvm_memory_slot *old = id_to_memslot(slots, id);
unsigned long npages = old->npages;
*old = *new;
if (new->npages != npages)
sort_memslots(slots);
}
slots->generation++;
}
/*
* Allocate some memory and give it an address in the guest physical address
* space.
*
* Discontiguous memory is allowed, mostly for framebuffers.
*
* Must be called holding mmap_sem for write.
*/
int __kvm_set_memory_region(struct kvm *kvm,
struct kvm_userspace_memory_region *mem,
int user_alloc)
{
int r;
gfn_t base_gfn;
unsigned long npages;
unsigned long i;
struct kvm_memory_slot *memslot;
struct kvm_memory_slot old, new;
struct kvm_memslots *slots, *old_memslots;
r = -EINVAL;
/* General sanity checks */
if (mem->memory_size & (PAGE_SIZE - 1))
goto out;
if (mem->guest_phys_addr & (PAGE_SIZE - 1))
goto out;
/* We can read the guest memory with __xxx_user() later on. */
if (user_alloc &&
((mem->userspace_addr & (PAGE_SIZE - 1)) ||
!access_ok(VERIFY_WRITE,
(void __user *)(unsigned long)mem->userspace_addr,
mem->memory_size)))
goto out;
if (mem->slot >= KVM_MEM_SLOTS_NUM)
goto out;
if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
goto out;
memslot = id_to_memslot(kvm->memslots, mem->slot);
base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
npages = mem->memory_size >> PAGE_SHIFT;
r = -EINVAL;
if (npages > KVM_MEM_MAX_NR_PAGES)
goto out;
if (!npages)
mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
new = old = *memslot;
new.id = mem->slot;
new.base_gfn = base_gfn;
new.npages = npages;
new.flags = mem->flags;
/* Disallow changing a memory slot's size. */
r = -EINVAL;
if (npages && old.npages && npages != old.npages)
goto out_free;
/* Check for overlaps */
r = -EEXIST;
for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
if (s == memslot || !s->npages)
continue;
if (!((base_gfn + npages <= s->base_gfn) ||
(base_gfn >= s->base_gfn + s->npages)))
goto out_free;
}
/* Free page dirty bitmap if unneeded */
if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
new.dirty_bitmap = NULL;
r = -ENOMEM;
/* Allocate if a slot is being created */
#ifndef CONFIG_S390
if (npages && !new.rmap) {
new.rmap = vzalloc(npages * sizeof(*new.rmap));
if (!new.rmap)
goto out_free;
new.user_alloc = user_alloc;
new.userspace_addr = mem->userspace_addr;
}
if (!npages)
goto skip_lpage;
for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
unsigned long ugfn;
unsigned long j;
int lpages;
int level = i + 2;
/* Avoid unused variable warning if no large pages */
(void)level;
if (new.lpage_info[i])
continue;
lpages = 1 + ((base_gfn + npages - 1)
>> KVM_HPAGE_GFN_SHIFT(level));
lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
new.lpage_info[i] = vzalloc(lpages * sizeof(*new.lpage_info[i]));
if (!new.lpage_info[i])
goto out_free;
if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
new.lpage_info[i][0].write_count = 1;
if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
new.lpage_info[i][lpages - 1].write_count = 1;
ugfn = new.userspace_addr >> PAGE_SHIFT;
/*
* If the gfn and userspace address are not aligned wrt each
* other, or if explicitly asked to, disable large page
* support for this slot
*/
if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
!largepages_enabled)
for (j = 0; j < lpages; ++j)
new.lpage_info[i][j].write_count = 1;
}
skip_lpage:
/* Allocate page dirty bitmap if needed */
if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
if (kvm_create_dirty_bitmap(&new) < 0)
goto out_free;
/* destroy any largepage mappings for dirty tracking */
}
#else /* not defined CONFIG_S390 */
new.user_alloc = user_alloc;
if (user_alloc)
new.userspace_addr = mem->userspace_addr;
#endif /* not defined CONFIG_S390 */
if (!npages) {
struct kvm_memory_slot *slot;
r = -ENOMEM;
slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
GFP_KERNEL);
if (!slots)
goto out_free;
slot = id_to_memslot(slots, mem->slot);
slot->flags |= KVM_MEMSLOT_INVALID;
update_memslots(slots, NULL);
old_memslots = kvm->memslots;
rcu_assign_pointer(kvm->memslots, slots);
synchronize_srcu_expedited(&kvm->srcu);
/* From this point no new shadow pages pointing to a deleted
* memslot will be created.
*
* validation of sp->gfn happens in:
* - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
* - kvm_is_visible_gfn (mmu_check_roots)
*/
kvm_arch_flush_shadow(kvm);
kfree(old_memslots);
}
r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
if (r)
goto out_free;
/* map the pages in iommu page table */
if (npages) {
r = kvm_iommu_map_pages(kvm, &new);
if (r)
goto out_free;
}
r = -ENOMEM;
slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
GFP_KERNEL);
if (!slots)
goto out_free;
/* actual memory is freed via old in kvm_free_physmem_slot below */
if (!npages) {
new.rmap = NULL;
new.dirty_bitmap = NULL;
for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
new.lpage_info[i] = NULL;
}
update_memslots(slots, &new);
old_memslots = kvm->memslots;
rcu_assign_pointer(kvm->memslots, slots);
synchronize_srcu_expedited(&kvm->srcu);
kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
/*
* If the new memory slot is created, we need to clear all
* mmio sptes.
*/
if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT)
kvm_arch_flush_shadow(kvm);
kvm_free_physmem_slot(&old, &new);
kfree(old_memslots);
return 0;
out_free:
kvm_free_physmem_slot(&new, &old);
out:
return r;
}
EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
int kvm_set_memory_region(struct kvm *kvm,
struct kvm_userspace_memory_region *mem,
int user_alloc)
{
int r;
mutex_lock(&kvm->slots_lock);
r = __kvm_set_memory_region(kvm, mem, user_alloc);
mutex_unlock(&kvm->slots_lock);
return r;
}
EXPORT_SYMBOL_GPL(kvm_set_memory_region);
int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
struct
kvm_userspace_memory_region *mem,
int user_alloc)
{
if (mem->slot >= KVM_MEMORY_SLOTS)
return -EINVAL;
return kvm_set_memory_region(kvm, mem, user_alloc);
}
int kvm_get_dirty_log(struct kvm *kvm,
struct kvm_dirty_log *log, int *is_dirty)
{
struct kvm_memory_slot *memslot;
int r, i;
unsigned long n;
unsigned long any = 0;
r = -EINVAL;
if (log->slot >= KVM_MEMORY_SLOTS)
goto out;
memslot = id_to_memslot(kvm->memslots, log->slot);
r = -ENOENT;
if (!memslot->dirty_bitmap)
goto out;
n = kvm_dirty_bitmap_bytes(memslot);
for (i = 0; !any && i < n/sizeof(long); ++i)
any = memslot->dirty_bitmap[i];
r = -EFAULT;
if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
goto out;
if (any)
*is_dirty = 1;
r = 0;
out:
return r;
}
void kvm_disable_largepages(void)
{
largepages_enabled = false;
}
EXPORT_SYMBOL_GPL(kvm_disable_largepages);
int is_error_page(struct page *page)
{
return page == bad_page || page == hwpoison_page || page == fault_page;
}
EXPORT_SYMBOL_GPL(is_error_page);
int is_error_pfn(pfn_t pfn)
{
return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
}
EXPORT_SYMBOL_GPL(is_error_pfn);
int is_hwpoison_pfn(pfn_t pfn)
{
return pfn == hwpoison_pfn;
}
EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
int is_fault_pfn(pfn_t pfn)
{
return pfn == fault_pfn;
}
EXPORT_SYMBOL_GPL(is_fault_pfn);
int is_noslot_pfn(pfn_t pfn)
{
return pfn == bad_pfn;
}
EXPORT_SYMBOL_GPL(is_noslot_pfn);
int is_invalid_pfn(pfn_t pfn)
{
return pfn == hwpoison_pfn || pfn == fault_pfn;
}
EXPORT_SYMBOL_GPL(is_invalid_pfn);
static inline unsigned long bad_hva(void)
{
return PAGE_OFFSET;
}
int kvm_is_error_hva(unsigned long addr)
{
return addr == bad_hva();
}
EXPORT_SYMBOL_GPL(kvm_is_error_hva);
static struct kvm_memory_slot *__gfn_to_memslot(struct kvm_memslots *slots,
gfn_t gfn)
{
return search_memslots(slots, gfn);
}
struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
{
return __gfn_to_memslot(kvm_memslots(kvm), gfn);
}
EXPORT_SYMBOL_GPL(gfn_to_memslot);
int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
{
struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
if (!memslot || memslot->id >= KVM_MEMORY_SLOTS ||
memslot->flags & KVM_MEMSLOT_INVALID)
return 0;
return 1;
}
EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
{
struct vm_area_struct *vma;
unsigned long addr, size;
size = PAGE_SIZE;
addr = gfn_to_hva(kvm, gfn);
if (kvm_is_error_hva(addr))
return PAGE_SIZE;
down_read(&current->mm->mmap_sem);
vma = find_vma(current->mm, addr);
if (!vma)
goto out;
size = vma_kernel_pagesize(vma);
out:
up_read(&current->mm->mmap_sem);
return size;
}
static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
gfn_t *nr_pages)
{
if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
return bad_hva();
if (nr_pages)
*nr_pages = slot->npages - (gfn - slot->base_gfn);
return gfn_to_hva_memslot(slot, gfn);
}
unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
{
return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
}
EXPORT_SYMBOL_GPL(gfn_to_hva);
static pfn_t get_fault_pfn(void)
{
get_page(fault_page);
return fault_pfn;
}
int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
unsigned long start, int write, struct page **page)
{
int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
if (write)
flags |= FOLL_WRITE;
return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
}
static inline int check_user_page_hwpoison(unsigned long addr)
{
int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
rc = __get_user_pages(current, current->mm, addr, 1,
flags, NULL, NULL, NULL);
return rc == -EHWPOISON;
}
static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
bool *async, bool write_fault, bool *writable)
{
struct page *page[1];
int npages = 0;
pfn_t pfn;
/* we can do it either atomically or asynchronously, not both */
BUG_ON(atomic && async);
BUG_ON(!write_fault && !writable);
if (writable)
*writable = true;
if (atomic || async)
npages = __get_user_pages_fast(addr, 1, 1, page);
if (unlikely(npages != 1) && !atomic) {
might_sleep();
if (writable)
*writable = write_fault;
if (async) {
down_read(&current->mm->mmap_sem);
npages = get_user_page_nowait(current, current->mm,
addr, write_fault, page);
up_read(&current->mm->mmap_sem);
} else
npages = get_user_pages_fast(addr, 1, write_fault,
page);
/* map read fault as writable if possible */
if (unlikely(!write_fault) && npages == 1) {
struct page *wpage[1];
npages = __get_user_pages_fast(addr, 1, 1, wpage);
if (npages == 1) {
*writable = true;
put_page(page[0]);
page[0] = wpage[0];
}
npages = 1;
}
}
if (unlikely(npages != 1)) {
struct vm_area_struct *vma;
if (atomic)
return get_fault_pfn();
down_read(&current->mm->mmap_sem);
if (npages == -EHWPOISON ||
(!async && check_user_page_hwpoison(addr))) {
up_read(&current->mm->mmap_sem);
get_page(hwpoison_page);
return page_to_pfn(hwpoison_page);
}
vma = find_vma_intersection(current->mm, addr, addr+1);
if (vma == NULL)
pfn = get_fault_pfn();
else if ((vma->vm_flags & VM_PFNMAP)) {
pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
vma->vm_pgoff;
BUG_ON(!kvm_is_mmio_pfn(pfn));
} else {
if (async && (vma->vm_flags & VM_WRITE))
*async = true;
pfn = get_fault_pfn();
}
up_read(&current->mm->mmap_sem);
} else
pfn = page_to_pfn(page[0]);
return pfn;
}
pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
{
return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
}
EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
bool write_fault, bool *writable)
{
unsigned long addr;
if (async)
*async = false;
addr = gfn_to_hva(kvm, gfn);
if (kvm_is_error_hva(addr)) {
get_page(bad_page);
return page_to_pfn(bad_page);
}
return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
}
pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
{
return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
}
EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
bool write_fault, bool *writable)
{
return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
}
EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
{
return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
}
EXPORT_SYMBOL_GPL(gfn_to_pfn);
pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
bool *writable)
{
return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
}
EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
struct kvm_memory_slot *slot, gfn_t gfn)
{
unsigned long addr = gfn_to_hva_memslot(slot, gfn);
return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
}
int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
int nr_pages)
{
unsigned long addr;
gfn_t entry;
addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
if (kvm_is_error_hva(addr))
return -1;
if (entry < nr_pages)
return 0;
return __get_user_pages_fast(addr, nr_pages, 1, pages);
}
EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
{
pfn_t pfn;
pfn = gfn_to_pfn(kvm, gfn);
if (!kvm_is_mmio_pfn(pfn))
return pfn_to_page(pfn);
WARN_ON(kvm_is_mmio_pfn(pfn));
get_page(bad_page);
return bad_page;
}
EXPORT_SYMBOL_GPL(gfn_to_page);
void kvm_release_page_clean(struct page *page)
{
kvm_release_pfn_clean(page_to_pfn(page));
}
EXPORT_SYMBOL_GPL(kvm_release_page_clean);
void kvm_release_pfn_clean(pfn_t pfn)
{
if (!kvm_is_mmio_pfn(pfn))
put_page(pfn_to_page(pfn));
}
EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
void kvm_release_page_dirty(struct page *page)
{
kvm_release_pfn_dirty(page_to_pfn(page));
}
EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
void kvm_release_pfn_dirty(pfn_t pfn)
{
kvm_set_pfn_dirty(pfn);
kvm_release_pfn_clean(pfn);
}
EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
void kvm_set_page_dirty(struct page *page)
{
kvm_set_pfn_dirty(page_to_pfn(page));
}
EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
void kvm_set_pfn_dirty(pfn_t pfn)
{
if (!kvm_is_mmio_pfn(pfn)) {
struct page *page = pfn_to_page(pfn);
if (!PageReserved(page))
SetPageDirty(page);
}
}
EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
void kvm_set_pfn_accessed(pfn_t pfn)
{
if (!kvm_is_mmio_pfn(pfn))
mark_page_accessed(pfn_to_page(pfn));
}
EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
void kvm_get_pfn(pfn_t pfn)
{
if (!kvm_is_mmio_pfn(pfn))
get_page(pfn_to_page(pfn));
}
EXPORT_SYMBOL_GPL(kvm_get_pfn);
static int next_segment(unsigned long len, int offset)
{
if (len > PAGE_SIZE - offset)
return PAGE_SIZE - offset;
else
return len;
}
int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
int len)
{
int r;
unsigned long addr;
addr = gfn_to_hva(kvm, gfn);
if (kvm_is_error_hva(addr))
return -EFAULT;
r = __copy_from_user(data, (void __user *)addr + offset, len);
if (r)
return -EFAULT;
return 0;
}
EXPORT_SYMBOL_GPL(kvm_read_guest_page);
int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
{
gfn_t gfn = gpa >> PAGE_SHIFT;
int seg;
int offset = offset_in_page(gpa);
int ret;
while ((seg = next_segment(len, offset)) != 0) {
ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
if (ret < 0)
return ret;
offset = 0;
len -= seg;
data += seg;
++gfn;
}
return 0;
}
EXPORT_SYMBOL_GPL(kvm_read_guest);
int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
unsigned long len)
{
int r;
unsigned long addr;
gfn_t gfn = gpa >> PAGE_SHIFT;
int offset = offset_in_page(gpa);
addr = gfn_to_hva(kvm, gfn);
if (kvm_is_error_hva(addr))
return -EFAULT;
pagefault_disable();
r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
pagefault_enable();
if (r)
return -EFAULT;
return 0;
}
EXPORT_SYMBOL(kvm_read_guest_atomic);
int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
int offset, int len)
{
int r;
unsigned long addr;
addr = gfn_to_hva(kvm, gfn);
if (kvm_is_error_hva(addr))
return -EFAULT;
r = __copy_to_user((void __user *)addr + offset, data, len);
if (r)
return -EFAULT;
mark_page_dirty(kvm, gfn);
return 0;
}
EXPORT_SYMBOL_GPL(kvm_write_guest_page);
int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
unsigned long len)
{
gfn_t gfn = gpa >> PAGE_SHIFT;
int seg;
int offset = offset_in_page(gpa);
int ret;
while ((seg = next_segment(len, offset)) != 0) {
ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
if (ret < 0)
return ret;
offset = 0;
len -= seg;
data += seg;
++gfn;
}
return 0;
}
int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
gpa_t gpa)
{
struct kvm_memslots *slots = kvm_memslots(kvm);
int offset = offset_in_page(gpa);
gfn_t gfn = gpa >> PAGE_SHIFT;
ghc->gpa = gpa;
ghc->generation = slots->generation;
ghc->memslot = __gfn_to_memslot(slots, gfn);
ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
if (!kvm_is_error_hva(ghc->hva))
ghc->hva += offset;
else
return -EFAULT;
return 0;
}
EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
void *data, unsigned long len)
{
struct kvm_memslots *slots = kvm_memslots(kvm);
int r;
if (slots->generation != ghc->generation)
kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
if (kvm_is_error_hva(ghc->hva))
return -EFAULT;
r = __copy_to_user((void __user *)ghc->hva, data, len);
if (r)
return -EFAULT;
mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
return 0;
}
EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
void *data, unsigned long len)
{
struct kvm_memslots *slots = kvm_memslots(kvm);
int r;
if (slots->generation != ghc->generation)
kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
if (kvm_is_error_hva(ghc->hva))
return -EFAULT;
r = __copy_from_user(data, (void __user *)ghc->hva, len);
if (r)
return -EFAULT;
return 0;
}
EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
{
return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
offset, len);
}
EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
{
gfn_t gfn = gpa >> PAGE_SHIFT;
int seg;
int offset = offset_in_page(gpa);
int ret;
while ((seg = next_segment(len, offset)) != 0) {
ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
if (ret < 0)
return ret;
offset = 0;
len -= seg;
++gfn;
}
return 0;
}
EXPORT_SYMBOL_GPL(kvm_clear_guest);
void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
gfn_t gfn)
{
if (memslot && memslot->dirty_bitmap) {
unsigned long rel_gfn = gfn - memslot->base_gfn;
if (!test_and_set_bit_le(rel_gfn, memslot->dirty_bitmap))
memslot->nr_dirty_pages++;
}
}
void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
{
struct kvm_memory_slot *memslot;
memslot = gfn_to_memslot(kvm, gfn);
mark_page_dirty_in_slot(kvm, memslot, gfn);
}
/*
* The vCPU has executed a HLT instruction with in-kernel mode enabled.
*/
void kvm_vcpu_block(struct kvm_vcpu *vcpu)
{
DEFINE_WAIT(wait);
for (;;) {
prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
if (kvm_arch_vcpu_runnable(vcpu)) {
kvm_make_request(KVM_REQ_UNHALT, vcpu);
break;
}
if (kvm_cpu_has_pending_timer(vcpu))
break;
if (signal_pending(current))
break;
schedule();
}
finish_wait(&vcpu->wq, &wait);
}
void kvm_resched(struct kvm_vcpu *vcpu)
{
if (!need_resched())
return;
cond_resched();
}
EXPORT_SYMBOL_GPL(kvm_resched);
void kvm_vcpu_on_spin(struct kvm_vcpu *me)
{
struct kvm *kvm = me->kvm;
struct kvm_vcpu *vcpu;
int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
int yielded = 0;
int pass;
int i;
/*
* We boost the priority of a VCPU that is runnable but not
* currently running, because it got preempted by something
* else and called schedule in __vcpu_run. Hopefully that
* VCPU is holding the lock that we need and will release it.
* We approximate round-robin by starting at the last boosted VCPU.
*/
for (pass = 0; pass < 2 && !yielded; pass++) {
kvm_for_each_vcpu(i, vcpu, kvm) {
struct task_struct *task = NULL;
struct pid *pid;
if (!pass && i < last_boosted_vcpu) {
i = last_boosted_vcpu;
continue;
} else if (pass && i > last_boosted_vcpu)
break;
if (vcpu == me)
continue;
if (waitqueue_active(&vcpu->wq))
continue;
rcu_read_lock();
pid = rcu_dereference(vcpu->pid);
if (pid)
task = get_pid_task(vcpu->pid, PIDTYPE_PID);
rcu_read_unlock();
if (!task)
continue;
if (task->flags & PF_VCPU) {
put_task_struct(task);
continue;
}
if (yield_to(task, 1)) {
put_task_struct(task);
kvm->last_boosted_vcpu = i;
yielded = 1;
break;
}
put_task_struct(task);
}
}
}
EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
struct kvm_vcpu *vcpu = vma->vm_file->private_data;
struct page *page;
if (vmf->pgoff == 0)
page = virt_to_page(vcpu->run);
#ifdef CONFIG_X86
else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
page = virt_to_page(vcpu->arch.pio_data);
#endif
#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
#endif
else
return VM_FAULT_SIGBUS;
get_page(page);
vmf->page = page;
return 0;
}
static const struct vm_operations_struct kvm_vcpu_vm_ops = {
.fault = kvm_vcpu_fault,
};
static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
{
vma->vm_ops = &kvm_vcpu_vm_ops;
return 0;
}
static int kvm_vcpu_release(struct inode *inode, struct file *filp)
{
struct kvm_vcpu *vcpu = filp->private_data;
kvm_put_kvm(vcpu->kvm);
return 0;
}
static struct file_operations kvm_vcpu_fops = {
.release = kvm_vcpu_release,
.unlocked_ioctl = kvm_vcpu_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = kvm_vcpu_compat_ioctl,
#endif
.mmap = kvm_vcpu_mmap,
.llseek = noop_llseek,
};
/*
* Allocates an inode for the vcpu.
*/
static int create_vcpu_fd(struct kvm_vcpu *vcpu)
{
return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
}
/*
* Creates some virtual cpus. Good luck creating more than one.
*/
static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
{
int r;
struct kvm_vcpu *vcpu, *v;
vcpu = kvm_arch_vcpu_create(kvm, id);
if (IS_ERR(vcpu))
return PTR_ERR(vcpu);
preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
r = kvm_arch_vcpu_setup(vcpu);
if (r)
goto vcpu_destroy;
mutex_lock(&kvm->lock);
if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
r = -EINVAL;
goto unlock_vcpu_destroy;
}
kvm_for_each_vcpu(r, v, kvm)
if (v->vcpu_id == id) {
r = -EEXIST;
goto unlock_vcpu_destroy;
}
BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
/* Now it's all set up, let userspace reach it */
kvm_get_kvm(kvm);
r = create_vcpu_fd(vcpu);
if (r < 0) {
kvm_put_kvm(kvm);
goto unlock_vcpu_destroy;
}
kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
smp_wmb();
atomic_inc(&kvm->online_vcpus);
mutex_unlock(&kvm->lock);
return r;
unlock_vcpu_destroy:
mutex_unlock(&kvm->lock);
vcpu_destroy:
kvm_arch_vcpu_destroy(vcpu);
return r;
}
static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
{
if (sigset) {
sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
vcpu->sigset_active = 1;
vcpu->sigset = *sigset;
} else
vcpu->sigset_active = 0;
return 0;
}
static long kvm_vcpu_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
struct kvm_vcpu *vcpu = filp->private_data;
void __user *argp = (void __user *)arg;
int r;
struct kvm_fpu *fpu = NULL;
struct kvm_sregs *kvm_sregs = NULL;
if (vcpu->kvm->mm != current->mm)
return -EIO;
#if defined(CONFIG_S390) || defined(CONFIG_PPC)
/*
* Special cases: vcpu ioctls that are asynchronous to vcpu execution,
* so vcpu_load() would break it.
*/
if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
#endif
vcpu_load(vcpu);
switch (ioctl) {
case KVM_RUN:
r = -EINVAL;
if (arg)
goto out;
r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
break;
case KVM_GET_REGS: {
struct kvm_regs *kvm_regs;
r = -ENOMEM;
kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
if (!kvm_regs)
goto out;
r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
if (r)
goto out_free1;
r = -EFAULT;
if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
goto out_free1;
r = 0;
out_free1:
kfree(kvm_regs);
break;
}
case KVM_SET_REGS: {
struct kvm_regs *kvm_regs;
r = -ENOMEM;
kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
if (IS_ERR(kvm_regs)) {
r = PTR_ERR(kvm_regs);
goto out;
}
r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
if (r)
goto out_free2;
r = 0;
out_free2:
kfree(kvm_regs);
break;
}
case KVM_GET_SREGS: {
kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
r = -ENOMEM;
if (!kvm_sregs)
goto out;
r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
goto out;
r = 0;
break;
}
case KVM_SET_SREGS: {
kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
if (IS_ERR(kvm_sregs)) {
r = PTR_ERR(kvm_sregs);
goto out;
}
r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
if (r)
goto out;
r = 0;
break;
}
case KVM_GET_MP_STATE: {
struct kvm_mp_state mp_state;
r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(argp, &mp_state, sizeof mp_state))
goto out;
r = 0;
break;
}
case KVM_SET_MP_STATE: {
struct kvm_mp_state mp_state;
r = -EFAULT;
if (copy_from_user(&mp_state, argp, sizeof mp_state))
goto out;
r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
if (r)
goto out;
r = 0;
break;
}
case KVM_TRANSLATE: {
struct kvm_translation tr;
r = -EFAULT;
if (copy_from_user(&tr, argp, sizeof tr))
goto out;
r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(argp, &tr, sizeof tr))
goto out;
r = 0;
break;
}
case KVM_SET_GUEST_DEBUG: {
struct kvm_guest_debug dbg;
r = -EFAULT;
if (copy_from_user(&dbg, argp, sizeof dbg))
goto out;
r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
if (r)
goto out;
r = 0;
break;
}
case KVM_SET_SIGNAL_MASK: {
struct kvm_signal_mask __user *sigmask_arg = argp;
struct kvm_signal_mask kvm_sigmask;
sigset_t sigset, *p;
p = NULL;
if (argp) {
r = -EFAULT;
if (copy_from_user(&kvm_sigmask, argp,
sizeof kvm_sigmask))
goto out;
r = -EINVAL;
if (kvm_sigmask.len != sizeof sigset)
goto out;
r = -EFAULT;
if (copy_from_user(&sigset, sigmask_arg->sigset,
sizeof sigset))
goto out;
p = &sigset;
}
r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
break;
}
case KVM_GET_FPU: {
fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
r = -ENOMEM;
if (!fpu)
goto out;
r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
goto out;
r = 0;
break;
}
case KVM_SET_FPU: {
fpu = memdup_user(argp, sizeof(*fpu));
if (IS_ERR(fpu)) {
r = PTR_ERR(fpu);
goto out;
}
r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
if (r)
goto out;
r = 0;
break;
}
default:
r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
}
out:
vcpu_put(vcpu);
kfree(fpu);
kfree(kvm_sregs);
return r;
}
#ifdef CONFIG_COMPAT
static long kvm_vcpu_compat_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
struct kvm_vcpu *vcpu = filp->private_data;
void __user *argp = compat_ptr(arg);
int r;
if (vcpu->kvm->mm != current->mm)
return -EIO;
switch (ioctl) {
case KVM_SET_SIGNAL_MASK: {
struct kvm_signal_mask __user *sigmask_arg = argp;
struct kvm_signal_mask kvm_sigmask;
compat_sigset_t csigset;
sigset_t sigset;
if (argp) {
r = -EFAULT;
if (copy_from_user(&kvm_sigmask, argp,
sizeof kvm_sigmask))
goto out;
r = -EINVAL;
if (kvm_sigmask.len != sizeof csigset)
goto out;
r = -EFAULT;
if (copy_from_user(&csigset, sigmask_arg->sigset,
sizeof csigset))
goto out;
}
sigset_from_compat(&sigset, &csigset);
r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
break;
}
default:
r = kvm_vcpu_ioctl(filp, ioctl, arg);
}
out:
return r;
}
#endif
static long kvm_vm_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
struct kvm *kvm = filp->private_data;
void __user *argp = (void __user *)arg;
int r;
if (kvm->mm != current->mm)
return -EIO;
switch (ioctl) {
case KVM_CREATE_VCPU:
r = kvm_vm_ioctl_create_vcpu(kvm, arg);
if (r < 0)
goto out;
break;
case KVM_SET_USER_MEMORY_REGION: {
struct kvm_userspace_memory_region kvm_userspace_mem;
r = -EFAULT;
if (copy_from_user(&kvm_userspace_mem, argp,
sizeof kvm_userspace_mem))
goto out;
r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
if (r)
goto out;
break;
}
case KVM_GET_DIRTY_LOG: {
struct kvm_dirty_log log;
r = -EFAULT;
if (copy_from_user(&log, argp, sizeof log))
goto out;
r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
if (r)
goto out;
break;
}
#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
case KVM_REGISTER_COALESCED_MMIO: {
struct kvm_coalesced_mmio_zone zone;
r = -EFAULT;
if (copy_from_user(&zone, argp, sizeof zone))
goto out;
r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
if (r)
goto out;
r = 0;
break;
}
case KVM_UNREGISTER_COALESCED_MMIO: {
struct kvm_coalesced_mmio_zone zone;
r = -EFAULT;
if (copy_from_user(&zone, argp, sizeof zone))
goto out;
r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
if (r)
goto out;
r = 0;
break;
}
#endif
case KVM_IRQFD: {
struct kvm_irqfd data;
r = -EFAULT;
if (copy_from_user(&data, argp, sizeof data))
goto out;
r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
break;
}
case KVM_IOEVENTFD: {
struct kvm_ioeventfd data;
r = -EFAULT;
if (copy_from_user(&data, argp, sizeof data))
goto out;
r = kvm_ioeventfd(kvm, &data);
break;
}
#ifdef CONFIG_KVM_APIC_ARCHITECTURE
case KVM_SET_BOOT_CPU_ID:
r = 0;
mutex_lock(&kvm->lock);
if (atomic_read(&kvm->online_vcpus) != 0)
r = -EBUSY;
else
kvm->bsp_vcpu_id = arg;
mutex_unlock(&kvm->lock);
break;
#endif
default:
r = kvm_arch_vm_ioctl(filp, ioctl, arg);
if (r == -ENOTTY)
r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
}
out:
return r;
}
#ifdef CONFIG_COMPAT
struct compat_kvm_dirty_log {
__u32 slot;
__u32 padding1;
union {
compat_uptr_t dirty_bitmap; /* one bit per page */
__u64 padding2;
};
};
static long kvm_vm_compat_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
struct kvm *kvm = filp->private_data;
int r;
if (kvm->mm != current->mm)
return -EIO;
switch (ioctl) {
case KVM_GET_DIRTY_LOG: {
struct compat_kvm_dirty_log compat_log;
struct kvm_dirty_log log;
r = -EFAULT;
if (copy_from_user(&compat_log, (void __user *)arg,
sizeof(compat_log)))
goto out;
log.slot = compat_log.slot;
log.padding1 = compat_log.padding1;
log.padding2 = compat_log.padding2;
log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
if (r)
goto out;
break;
}
default:
r = kvm_vm_ioctl(filp, ioctl, arg);
}
out:
return r;
}
#endif
static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
struct page *page[1];
unsigned long addr;
int npages;
gfn_t gfn = vmf->pgoff;
struct kvm *kvm = vma->vm_file->private_data;
addr = gfn_to_hva(kvm, gfn);
if (kvm_is_error_hva(addr))
return VM_FAULT_SIGBUS;
npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
NULL);
if (unlikely(npages != 1))
return VM_FAULT_SIGBUS;
vmf->page = page[0];
return 0;
}
static const struct vm_operations_struct kvm_vm_vm_ops = {
.fault = kvm_vm_fault,
};
static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
{
vma->vm_ops = &kvm_vm_vm_ops;
return 0;
}
static struct file_operations kvm_vm_fops = {
.release = kvm_vm_release,
.unlocked_ioctl = kvm_vm_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = kvm_vm_compat_ioctl,
#endif
.mmap = kvm_vm_mmap,
.llseek = noop_llseek,
};
static int kvm_dev_ioctl_create_vm(void)
{
int r;
struct kvm *kvm;
kvm = kvm_create_vm();
if (IS_ERR(kvm))
return PTR_ERR(kvm);
#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
r = kvm_coalesced_mmio_init(kvm);
if (r < 0) {
kvm_put_kvm(kvm);
return r;
}
#endif
r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
if (r < 0)
kvm_put_kvm(kvm);
return r;
}
static long kvm_dev_ioctl_check_extension_generic(long arg)
{
switch (arg) {
case KVM_CAP_USER_MEMORY:
case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
#ifdef CONFIG_KVM_APIC_ARCHITECTURE
case KVM_CAP_SET_BOOT_CPU_ID:
#endif
case KVM_CAP_INTERNAL_ERROR_DATA:
return 1;
#ifdef CONFIG_HAVE_KVM_IRQCHIP
case KVM_CAP_IRQ_ROUTING:
return KVM_MAX_IRQ_ROUTES;
#endif
default:
break;
}
return kvm_dev_ioctl_check_extension(arg);
}
static long kvm_dev_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
long r = -EINVAL;
switch (ioctl) {
case KVM_GET_API_VERSION:
r = -EINVAL;
if (arg)
goto out;
r = KVM_API_VERSION;
break;
case KVM_CREATE_VM:
r = -EINVAL;
if (arg)
goto out;
r = kvm_dev_ioctl_create_vm();
break;
case KVM_CHECK_EXTENSION:
r = kvm_dev_ioctl_check_extension_generic(arg);
break;
case KVM_GET_VCPU_MMAP_SIZE:
r = -EINVAL;
if (arg)
goto out;
r = PAGE_SIZE; /* struct kvm_run */
#ifdef CONFIG_X86
r += PAGE_SIZE; /* pio data page */
#endif
#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
r += PAGE_SIZE; /* coalesced mmio ring page */
#endif
break;
case KVM_TRACE_ENABLE:
case KVM_TRACE_PAUSE:
case KVM_TRACE_DISABLE:
r = -EOPNOTSUPP;
break;
default:
return kvm_arch_dev_ioctl(filp, ioctl, arg);
}
out:
return r;
}
static struct file_operations kvm_chardev_ops = {
.unlocked_ioctl = kvm_dev_ioctl,
.compat_ioctl = kvm_dev_ioctl,
.llseek = noop_llseek,
};
static struct miscdevice kvm_dev = {
KVM_MINOR,
"kvm",
&kvm_chardev_ops,
};
static void hardware_enable_nolock(void *junk)
{
int cpu = raw_smp_processor_id();
int r;
if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
return;
cpumask_set_cpu(cpu, cpus_hardware_enabled);
r = kvm_arch_hardware_enable(NULL);
if (r) {
cpumask_clear_cpu(cpu, cpus_hardware_enabled);
atomic_inc(&hardware_enable_failed);
printk(KERN_INFO "kvm: enabling virtualization on "
"CPU%d failed\n", cpu);
}
}
static void hardware_enable(void *junk)
{
raw_spin_lock(&kvm_lock);
hardware_enable_nolock(junk);
raw_spin_unlock(&kvm_lock);
}
static void hardware_disable_nolock(void *junk)
{
int cpu = raw_smp_processor_id();
if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
return;
cpumask_clear_cpu(cpu, cpus_hardware_enabled);
kvm_arch_hardware_disable(NULL);
}
static void hardware_disable(void *junk)
{
raw_spin_lock(&kvm_lock);
hardware_disable_nolock(junk);
raw_spin_unlock(&kvm_lock);
}
static void hardware_disable_all_nolock(void)
{
BUG_ON(!kvm_usage_count);
kvm_usage_count--;
if (!kvm_usage_count)
on_each_cpu(hardware_disable_nolock, NULL, 1);
}
static void hardware_disable_all(void)
{
raw_spin_lock(&kvm_lock);
hardware_disable_all_nolock();
raw_spin_unlock(&kvm_lock);
}
static int hardware_enable_all(void)
{
int r = 0;
raw_spin_lock(&kvm_lock);
kvm_usage_count++;
if (kvm_usage_count == 1) {
atomic_set(&hardware_enable_failed, 0);
on_each_cpu(hardware_enable_nolock, NULL, 1);
if (atomic_read(&hardware_enable_failed)) {
hardware_disable_all_nolock();
r = -EBUSY;
}
}
raw_spin_unlock(&kvm_lock);
return r;
}
static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
void *v)
{
int cpu = (long)v;
if (!kvm_usage_count)
return NOTIFY_OK;
val &= ~CPU_TASKS_FROZEN;
switch (val) {
case CPU_DYING:
printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
cpu);
hardware_disable(NULL);
break;
case CPU_STARTING:
printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
cpu);
hardware_enable(NULL);
break;
}
return NOTIFY_OK;
}
asmlinkage void kvm_spurious_fault(void)
{
/* Fault while not rebooting. We want the trace. */
BUG();
}
EXPORT_SYMBOL_GPL(kvm_spurious_fault);
static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
void *v)
{
/*
* Some (well, at least mine) BIOSes hang on reboot if
* in vmx root mode.
*
* And Intel TXT required VMX off for all cpu when system shutdown.
*/
printk(KERN_INFO "kvm: exiting hardware virtualization\n");
kvm_rebooting = true;
on_each_cpu(hardware_disable_nolock, NULL, 1);
return NOTIFY_OK;
}
static struct notifier_block kvm_reboot_notifier = {
.notifier_call = kvm_reboot,
.priority = 0,
};
static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
{
int i;
for (i = 0; i < bus->dev_count; i++) {
struct kvm_io_device *pos = bus->range[i].dev;
kvm_iodevice_destructor(pos);
}
kfree(bus);
}
int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
{
const struct kvm_io_range *r1 = p1;
const struct kvm_io_range *r2 = p2;
if (r1->addr < r2->addr)
return -1;
if (r1->addr + r1->len > r2->addr + r2->len)
return 1;
return 0;
}
int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
gpa_t addr, int len)
{
if (bus->dev_count == NR_IOBUS_DEVS)
return -ENOSPC;
bus->range[bus->dev_count++] = (struct kvm_io_range) {
.addr = addr,
.len = len,
.dev = dev,
};
sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
kvm_io_bus_sort_cmp, NULL);
return 0;
}
int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
gpa_t addr, int len)
{
struct kvm_io_range *range, key;
int off;
key = (struct kvm_io_range) {
.addr = addr,
.len = len,
};
range = bsearch(&key, bus->range, bus->dev_count,
sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
if (range == NULL)
return -ENOENT;
off = range - bus->range;
while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
off--;
return off;
}
/* kvm_io_bus_write - called under kvm->slots_lock */
int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
int len, const void *val)
{
int idx;
struct kvm_io_bus *bus;
struct kvm_io_range range;
range = (struct kvm_io_range) {
.addr = addr,
.len = len,
};
bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
idx = kvm_io_bus_get_first_dev(bus, addr, len);
if (idx < 0)
return -EOPNOTSUPP;
while (idx < bus->dev_count &&
kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
return 0;
idx++;
}
return -EOPNOTSUPP;
}
/* kvm_io_bus_read - called under kvm->slots_lock */
int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
int len, void *val)
{
int idx;
struct kvm_io_bus *bus;
struct kvm_io_range range;
range = (struct kvm_io_range) {
.addr = addr,
.len = len,
};
bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
idx = kvm_io_bus_get_first_dev(bus, addr, len);
if (idx < 0)
return -EOPNOTSUPP;
while (idx < bus->dev_count &&
kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
return 0;
idx++;
}
return -EOPNOTSUPP;
}
/* Caller must hold slots_lock. */
int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
int len, struct kvm_io_device *dev)
{
struct kvm_io_bus *new_bus, *bus;
bus = kvm->buses[bus_idx];
if (bus->dev_count > NR_IOBUS_DEVS-1)
return -ENOSPC;
new_bus = kmemdup(bus, sizeof(struct kvm_io_bus), GFP_KERNEL);
if (!new_bus)
return -ENOMEM;
kvm_io_bus_insert_dev(new_bus, dev, addr, len);
rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
synchronize_srcu_expedited(&kvm->srcu);
kfree(bus);
return 0;
}
/* Caller must hold slots_lock. */
int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
struct kvm_io_device *dev)
{
int i, r;
struct kvm_io_bus *new_bus, *bus;
bus = kvm->buses[bus_idx];
new_bus = kmemdup(bus, sizeof(*bus), GFP_KERNEL);
if (!new_bus)
return -ENOMEM;
r = -ENOENT;
for (i = 0; i < new_bus->dev_count; i++)
if (new_bus->range[i].dev == dev) {
r = 0;
new_bus->dev_count--;
new_bus->range[i] = new_bus->range[new_bus->dev_count];
sort(new_bus->range, new_bus->dev_count,
sizeof(struct kvm_io_range),
kvm_io_bus_sort_cmp, NULL);
break;
}
if (r) {
kfree(new_bus);
return r;
}
rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
synchronize_srcu_expedited(&kvm->srcu);
kfree(bus);
return r;
}
static struct notifier_block kvm_cpu_notifier = {
.notifier_call = kvm_cpu_hotplug,
};
static int vm_stat_get(void *_offset, u64 *val)
{
unsigned offset = (long)_offset;
struct kvm *kvm;
*val = 0;
raw_spin_lock(&kvm_lock);
list_for_each_entry(kvm, &vm_list, vm_list)
*val += *(u32 *)((void *)kvm + offset);
raw_spin_unlock(&kvm_lock);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
static int vcpu_stat_get(void *_offset, u64 *val)
{
unsigned offset = (long)_offset;
struct kvm *kvm;
struct kvm_vcpu *vcpu;
int i;
*val = 0;
raw_spin_lock(&kvm_lock);
list_for_each_entry(kvm, &vm_list, vm_list)
kvm_for_each_vcpu(i, vcpu, kvm)
*val += *(u32 *)((void *)vcpu + offset);
raw_spin_unlock(&kvm_lock);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
static const struct file_operations *stat_fops[] = {
[KVM_STAT_VCPU] = &vcpu_stat_fops,
[KVM_STAT_VM] = &vm_stat_fops,
};
static int kvm_init_debug(void)
{
int r = -EFAULT;
struct kvm_stats_debugfs_item *p;
kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
if (kvm_debugfs_dir == NULL)
goto out;
for (p = debugfs_entries; p->name; ++p) {
p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
(void *)(long)p->offset,
stat_fops[p->kind]);
if (p->dentry == NULL)
goto out_dir;
}
return 0;
out_dir:
debugfs_remove_recursive(kvm_debugfs_dir);
out:
return r;
}
static void kvm_exit_debug(void)
{
struct kvm_stats_debugfs_item *p;
for (p = debugfs_entries; p->name; ++p)
debugfs_remove(p->dentry);
debugfs_remove(kvm_debugfs_dir);
}
static int kvm_suspend(void)
{
if (kvm_usage_count)
hardware_disable_nolock(NULL);
return 0;
}
static void kvm_resume(void)
{
if (kvm_usage_count) {
WARN_ON(raw_spin_is_locked(&kvm_lock));
hardware_enable_nolock(NULL);
}
}
static struct syscore_ops kvm_syscore_ops = {
.suspend = kvm_suspend,
.resume = kvm_resume,
};
struct page *bad_page;
pfn_t bad_pfn;
static inline
struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
{
return container_of(pn, struct kvm_vcpu, preempt_notifier);
}
static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
{
struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
kvm_arch_vcpu_load(vcpu, cpu);
}
static void kvm_sched_out(struct preempt_notifier *pn,
struct task_struct *next)
{
struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
kvm_arch_vcpu_put(vcpu);
}
int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
struct module *module)
{
int r;
int cpu;
r = kvm_arch_init(opaque);
if (r)
goto out_fail;
bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
if (bad_page == NULL) {
r = -ENOMEM;
goto out;
}
bad_pfn = page_to_pfn(bad_page);
hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
if (hwpoison_page == NULL) {
r = -ENOMEM;
goto out_free_0;
}
hwpoison_pfn = page_to_pfn(hwpoison_page);
fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
if (fault_page == NULL) {
r = -ENOMEM;
goto out_free_0;
}
fault_pfn = page_to_pfn(fault_page);
if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
r = -ENOMEM;
goto out_free_0;
}
r = kvm_arch_hardware_setup();
if (r < 0)
goto out_free_0a;
for_each_online_cpu(cpu) {
smp_call_function_single(cpu,
kvm_arch_check_processor_compat,
&r, 1);
if (r < 0)
goto out_free_1;
}
r = register_cpu_notifier(&kvm_cpu_notifier);
if (r)
goto out_free_2;
register_reboot_notifier(&kvm_reboot_notifier);
/* A kmem cache lets us meet the alignment requirements of fx_save. */
if (!vcpu_align)
vcpu_align = __alignof__(struct kvm_vcpu);
kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
0, NULL);
if (!kvm_vcpu_cache) {
r = -ENOMEM;
goto out_free_3;
}
r = kvm_async_pf_init();
if (r)
goto out_free;
kvm_chardev_ops.owner = module;
kvm_vm_fops.owner = module;
kvm_vcpu_fops.owner = module;
r = misc_register(&kvm_dev);
if (r) {
printk(KERN_ERR "kvm: misc device register failed\n");
goto out_unreg;
}
register_syscore_ops(&kvm_syscore_ops);
kvm_preempt_ops.sched_in = kvm_sched_in;
kvm_preempt_ops.sched_out = kvm_sched_out;
r = kvm_init_debug();
if (r) {
printk(KERN_ERR "kvm: create debugfs files failed\n");
goto out_undebugfs;
}
return 0;
out_undebugfs:
unregister_syscore_ops(&kvm_syscore_ops);
out_unreg:
kvm_async_pf_deinit();
out_free:
kmem_cache_destroy(kvm_vcpu_cache);
out_free_3:
unregister_reboot_notifier(&kvm_reboot_notifier);
unregister_cpu_notifier(&kvm_cpu_notifier);
out_free_2:
out_free_1:
kvm_arch_hardware_unsetup();
out_free_0a:
free_cpumask_var(cpus_hardware_enabled);
out_free_0:
if (fault_page)
__free_page(fault_page);
if (hwpoison_page)
__free_page(hwpoison_page);
__free_page(bad_page);
out:
kvm_arch_exit();
out_fail:
return r;
}
EXPORT_SYMBOL_GPL(kvm_init);
void kvm_exit(void)
{
kvm_exit_debug();
misc_deregister(&kvm_dev);
kmem_cache_destroy(kvm_vcpu_cache);
kvm_async_pf_deinit();
unregister_syscore_ops(&kvm_syscore_ops);
unregister_reboot_notifier(&kvm_reboot_notifier);
unregister_cpu_notifier(&kvm_cpu_notifier);
on_each_cpu(hardware_disable_nolock, NULL, 1);
kvm_arch_hardware_unsetup();
kvm_arch_exit();
free_cpumask_var(cpus_hardware_enabled);
__free_page(hwpoison_page);
__free_page(bad_page);
}
EXPORT_SYMBOL_GPL(kvm_exit);