1
linux/drivers/media/dvb/bt8xx/dst.c
Manu Abraham 62867429d0 [PATCH] dvb: dst: fix DVB-C tuning
Fix BUG in DVB-C frequency setting.  Thanks to Peng Cao <caopeng75@gmail.com>

Signed-off-by: Manu Abraham <manu@linuxtv.org>
Signed-off-by: Johannes Stezenbach <js@linuxtv.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 13:57:44 -07:00

1441 lines
37 KiB
C

/*
Frontend/Card driver for TwinHan DST Frontend
Copyright (C) 2003 Jamie Honan
Copyright (C) 2004, 2005 Manu Abraham (manu@kromtek.com)
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/delay.h>
#include <asm/div64.h>
#include "dvb_frontend.h"
#include "dst_priv.h"
#include "dst_common.h"
static unsigned int verbose = 1;
module_param(verbose, int, 0644);
MODULE_PARM_DESC(verbose, "verbose startup messages, default is 1 (yes)");
static unsigned int dst_addons;
module_param(dst_addons, int, 0644);
MODULE_PARM_DESC(dst_addons, "CA daughterboard, default is 0 (No addons)");
#define HAS_LOCK 1
#define ATTEMPT_TUNE 2
#define HAS_POWER 4
#define DST_ERROR 0
#define DST_NOTICE 1
#define DST_INFO 2
#define DST_DEBUG 3
#define dprintk(x, y, z, format, arg...) do { \
if (z) { \
if ((x > DST_ERROR) && (x > y)) \
printk(KERN_ERR "%s: " format "\n", __FUNCTION__ , ##arg); \
else if ((x > DST_NOTICE) && (x > y)) \
printk(KERN_NOTICE "%s: " format "\n", __FUNCTION__ , ##arg); \
else if ((x > DST_INFO) && (x > y)) \
printk(KERN_INFO "%s: " format "\n", __FUNCTION__ , ##arg); \
else if ((x > DST_DEBUG) && (x > y)) \
printk(KERN_DEBUG "%s: " format "\n", __FUNCTION__ , ##arg); \
} else { \
if (x > y) \
printk(format, ##arg); \
} \
} while(0)
static void dst_packsize(struct dst_state *state, int psize)
{
union dst_gpio_packet bits;
bits.psize = psize;
bt878_device_control(state->bt, DST_IG_TS, &bits);
}
int dst_gpio_outb(struct dst_state *state, u32 mask, u32 enbb, u32 outhigh, int delay)
{
union dst_gpio_packet enb;
union dst_gpio_packet bits;
int err;
enb.enb.mask = mask;
enb.enb.enable = enbb;
dprintk(verbose, DST_INFO, 1, "mask=[%04x], enbb=[%04x], outhigh=[%04x]", mask, enbb, outhigh);
if ((err = bt878_device_control(state->bt, DST_IG_ENABLE, &enb)) < 0) {
dprintk(verbose, DST_INFO, 1, "dst_gpio_enb error (err == %i, mask == %02x, enb == %02x)", err, mask, enbb);
return -EREMOTEIO;
}
udelay(1000);
/* because complete disabling means no output, no need to do output packet */
if (enbb == 0)
return 0;
if (delay)
msleep(10);
bits.outp.mask = enbb;
bits.outp.highvals = outhigh;
if ((err = bt878_device_control(state->bt, DST_IG_WRITE, &bits)) < 0) {
dprintk(verbose, DST_INFO, 1, "dst_gpio_outb error (err == %i, enbb == %02x, outhigh == %02x)", err, enbb, outhigh);
return -EREMOTEIO;
}
return 0;
}
EXPORT_SYMBOL(dst_gpio_outb);
int dst_gpio_inb(struct dst_state *state, u8 *result)
{
union dst_gpio_packet rd_packet;
int err;
*result = 0;
if ((err = bt878_device_control(state->bt, DST_IG_READ, &rd_packet)) < 0) {
dprintk(verbose, DST_ERROR, 1, "dst_gpio_inb error (err == %i)\n", err);
return -EREMOTEIO;
}
*result = (u8) rd_packet.rd.value;
return 0;
}
EXPORT_SYMBOL(dst_gpio_inb);
int rdc_reset_state(struct dst_state *state)
{
dprintk(verbose, DST_INFO, 1, "Resetting state machine");
if (dst_gpio_outb(state, RDC_8820_INT, RDC_8820_INT, 0, NO_DELAY) < 0) {
dprintk(verbose, DST_ERROR, 1, "dst_gpio_outb ERROR !");
return -1;
}
msleep(10);
if (dst_gpio_outb(state, RDC_8820_INT, RDC_8820_INT, RDC_8820_INT, NO_DELAY) < 0) {
dprintk(verbose, DST_ERROR, 1, "dst_gpio_outb ERROR !");
msleep(10);
return -1;
}
return 0;
}
EXPORT_SYMBOL(rdc_reset_state);
int rdc_8820_reset(struct dst_state *state)
{
dprintk(verbose, DST_DEBUG, 1, "Resetting DST");
if (dst_gpio_outb(state, RDC_8820_RESET, RDC_8820_RESET, 0, NO_DELAY) < 0) {
dprintk(verbose, DST_ERROR, 1, "dst_gpio_outb ERROR !");
return -1;
}
udelay(1000);
if (dst_gpio_outb(state, RDC_8820_RESET, RDC_8820_RESET, RDC_8820_RESET, DELAY) < 0) {
dprintk(verbose, DST_ERROR, 1, "dst_gpio_outb ERROR !");
return -1;
}
return 0;
}
EXPORT_SYMBOL(rdc_8820_reset);
int dst_pio_enable(struct dst_state *state)
{
if (dst_gpio_outb(state, ~0, RDC_8820_PIO_0_ENABLE, 0, NO_DELAY) < 0) {
dprintk(verbose, DST_ERROR, 1, "dst_gpio_outb ERROR !");
return -1;
}
udelay(1000);
return 0;
}
EXPORT_SYMBOL(dst_pio_enable);
int dst_pio_disable(struct dst_state *state)
{
if (dst_gpio_outb(state, ~0, RDC_8820_PIO_0_DISABLE, RDC_8820_PIO_0_DISABLE, NO_DELAY) < 0) {
dprintk(verbose, DST_ERROR, 1, "dst_gpio_outb ERROR !");
return -1;
}
if (state->type_flags & DST_TYPE_HAS_FW_1)
udelay(1000);
return 0;
}
EXPORT_SYMBOL(dst_pio_disable);
int dst_wait_dst_ready(struct dst_state *state, u8 delay_mode)
{
u8 reply;
int i;
for (i = 0; i < 200; i++) {
if (dst_gpio_inb(state, &reply) < 0) {
dprintk(verbose, DST_ERROR, 1, "dst_gpio_inb ERROR !");
return -1;
}
if ((reply & RDC_8820_PIO_0_ENABLE) == 0) {
dprintk(verbose, DST_INFO, 1, "dst wait ready after %d", i);
return 1;
}
msleep(10);
}
dprintk(verbose, DST_NOTICE, 1, "dst wait NOT ready after %d", i);
return 0;
}
EXPORT_SYMBOL(dst_wait_dst_ready);
int dst_error_recovery(struct dst_state *state)
{
dprintk(verbose, DST_NOTICE, 1, "Trying to return from previous errors.");
dst_pio_disable(state);
msleep(10);
dst_pio_enable(state);
msleep(10);
return 0;
}
EXPORT_SYMBOL(dst_error_recovery);
int dst_error_bailout(struct dst_state *state)
{
dprintk(verbose, DST_INFO, 1, "Trying to bailout from previous error.");
rdc_8820_reset(state);
dst_pio_disable(state);
msleep(10);
return 0;
}
EXPORT_SYMBOL(dst_error_bailout);
int dst_comm_init(struct dst_state *state)
{
dprintk(verbose, DST_INFO, 1, "Initializing DST.");
if ((dst_pio_enable(state)) < 0) {
dprintk(verbose, DST_ERROR, 1, "PIO Enable Failed");
return -1;
}
if ((rdc_reset_state(state)) < 0) {
dprintk(verbose, DST_ERROR, 1, "RDC 8820 State RESET Failed.");
return -1;
}
if (state->type_flags & DST_TYPE_HAS_FW_1)
msleep(100);
else
msleep(5);
return 0;
}
EXPORT_SYMBOL(dst_comm_init);
int write_dst(struct dst_state *state, u8 *data, u8 len)
{
struct i2c_msg msg = {
.addr = state->config->demod_address,
.flags = 0,
.buf = data,
.len = len
};
int err;
u8 cnt, i;
dprintk(verbose, DST_NOTICE, 0, "writing [ ");
for (i = 0; i < len; i++)
dprintk(verbose, DST_NOTICE, 0, "%02x ", data[i]);
dprintk(verbose, DST_NOTICE, 0, "]\n");
for (cnt = 0; cnt < 2; cnt++) {
if ((err = i2c_transfer(state->i2c, &msg, 1)) < 0) {
dprintk(verbose, DST_INFO, 1, "_write_dst error (err == %i, len == 0x%02x, b0 == 0x%02x)", err, len, data[0]);
dst_error_recovery(state);
continue;
} else
break;
}
if (cnt >= 2) {
dprintk(verbose, DST_INFO, 1, "RDC 8820 RESET");
dst_error_bailout(state);
return -1;
}
return 0;
}
EXPORT_SYMBOL(write_dst);
int read_dst(struct dst_state *state, u8 *ret, u8 len)
{
struct i2c_msg msg = {
.addr = state->config->demod_address,
.flags = I2C_M_RD,
.buf = ret,
.len = len
};
int err;
int cnt;
for (cnt = 0; cnt < 2; cnt++) {
if ((err = i2c_transfer(state->i2c, &msg, 1)) < 0) {
dprintk(verbose, DST_INFO, 1, "read_dst error (err == %i, len == 0x%02x, b0 == 0x%02x)", err, len, ret[0]);
dst_error_recovery(state);
continue;
} else
break;
}
if (cnt >= 2) {
dprintk(verbose, DST_INFO, 1, "RDC 8820 RESET");
dst_error_bailout(state);
return -1;
}
dprintk(verbose, DST_DEBUG, 1, "reply is 0x%x", ret[0]);
for (err = 1; err < len; err++)
dprintk(verbose, DST_DEBUG, 0, " 0x%x", ret[err]);
if (err > 1)
dprintk(verbose, DST_DEBUG, 0, "\n");
return 0;
}
EXPORT_SYMBOL(read_dst);
static int dst_set_polarization(struct dst_state *state)
{
switch (state->voltage) {
case SEC_VOLTAGE_13: /* Vertical */
dprintk(verbose, DST_INFO, 1, "Polarization=[Vertical]");
state->tx_tuna[8] &= ~0x40;
break;
case SEC_VOLTAGE_18: /* Horizontal */
dprintk(verbose, DST_INFO, 1, "Polarization=[Horizontal]");
state->tx_tuna[8] |= 0x40;
break;
case SEC_VOLTAGE_OFF:
break;
}
return 0;
}
static int dst_set_freq(struct dst_state *state, u32 freq)
{
state->frequency = freq;
dprintk(verbose, DST_INFO, 1, "set Frequency %u", freq);
if (state->dst_type == DST_TYPE_IS_SAT) {
freq = freq / 1000;
if (freq < 950 || freq > 2150)
return -EINVAL;
state->tx_tuna[2] = (freq >> 8);
state->tx_tuna[3] = (u8) freq;
state->tx_tuna[4] = 0x01;
state->tx_tuna[8] &= ~0x04;
if (state->type_flags & DST_TYPE_HAS_OBS_REGS) {
if (freq < 1531)
state->tx_tuna[8] |= 0x04;
}
} else if (state->dst_type == DST_TYPE_IS_TERR) {
freq = freq / 1000;
if (freq < 137000 || freq > 858000)
return -EINVAL;
state->tx_tuna[2] = (freq >> 16) & 0xff;
state->tx_tuna[3] = (freq >> 8) & 0xff;
state->tx_tuna[4] = (u8) freq;
} else if (state->dst_type == DST_TYPE_IS_CABLE) {
freq = freq / 1000;
state->tx_tuna[2] = (freq >> 16) & 0xff;
state->tx_tuna[3] = (freq >> 8) & 0xff;
state->tx_tuna[4] = (u8) freq;
} else
return -EINVAL;
return 0;
}
static int dst_set_bandwidth(struct dst_state *state, fe_bandwidth_t bandwidth)
{
state->bandwidth = bandwidth;
if (state->dst_type != DST_TYPE_IS_TERR)
return 0;
switch (bandwidth) {
case BANDWIDTH_6_MHZ:
if (state->dst_hw_cap & DST_TYPE_HAS_CA)
state->tx_tuna[7] = 0x06;
else {
state->tx_tuna[6] = 0x06;
state->tx_tuna[7] = 0x00;
}
break;
case BANDWIDTH_7_MHZ:
if (state->dst_hw_cap & DST_TYPE_HAS_CA)
state->tx_tuna[7] = 0x07;
else {
state->tx_tuna[6] = 0x07;
state->tx_tuna[7] = 0x00;
}
break;
case BANDWIDTH_8_MHZ:
if (state->dst_hw_cap & DST_TYPE_HAS_CA)
state->tx_tuna[7] = 0x08;
else {
state->tx_tuna[6] = 0x08;
state->tx_tuna[7] = 0x00;
}
break;
default:
return -EINVAL;
}
return 0;
}
static int dst_set_inversion(struct dst_state *state, fe_spectral_inversion_t inversion)
{
state->inversion = inversion;
switch (inversion) {
case INVERSION_OFF: /* Inversion = Normal */
state->tx_tuna[8] &= ~0x80;
break;
case INVERSION_ON:
state->tx_tuna[8] |= 0x80;
break;
default:
return -EINVAL;
}
return 0;
}
static int dst_set_fec(struct dst_state *state, fe_code_rate_t fec)
{
state->fec = fec;
return 0;
}
static fe_code_rate_t dst_get_fec(struct dst_state *state)
{
return state->fec;
}
static int dst_set_symbolrate(struct dst_state *state, u32 srate)
{
u32 symcalc;
u64 sval;
state->symbol_rate = srate;
if (state->dst_type == DST_TYPE_IS_TERR) {
return 0;
}
dprintk(verbose, DST_INFO, 1, "set symrate %u", srate);
srate /= 1000;
if (state->type_flags & DST_TYPE_HAS_SYMDIV) {
sval = srate;
sval <<= 20;
do_div(sval, 88000);
symcalc = (u32) sval;
dprintk(verbose, DST_INFO, 1, "set symcalc %u", symcalc);
state->tx_tuna[5] = (u8) (symcalc >> 12);
state->tx_tuna[6] = (u8) (symcalc >> 4);
state->tx_tuna[7] = (u8) (symcalc << 4);
} else {
state->tx_tuna[5] = (u8) (srate >> 16) & 0x7f;
state->tx_tuna[6] = (u8) (srate >> 8);
state->tx_tuna[7] = (u8) srate;
}
state->tx_tuna[8] &= ~0x20;
if (state->type_flags & DST_TYPE_HAS_OBS_REGS) {
if (srate > 8000)
state->tx_tuna[8] |= 0x20;
}
return 0;
}
static int dst_set_modulation(struct dst_state *state, fe_modulation_t modulation)
{
if (state->dst_type != DST_TYPE_IS_CABLE)
return 0;
state->modulation = modulation;
switch (modulation) {
case QAM_16:
state->tx_tuna[8] = 0x10;
break;
case QAM_32:
state->tx_tuna[8] = 0x20;
break;
case QAM_64:
state->tx_tuna[8] = 0x40;
break;
case QAM_128:
state->tx_tuna[8] = 0x80;
break;
case QAM_256:
state->tx_tuna[8] = 0x00;
break;
case QPSK:
case QAM_AUTO:
case VSB_8:
case VSB_16:
default:
return -EINVAL;
}
return 0;
}
static fe_modulation_t dst_get_modulation(struct dst_state *state)
{
return state->modulation;
}
u8 dst_check_sum(u8 *buf, u32 len)
{
u32 i;
u8 val = 0;
if (!len)
return 0;
for (i = 0; i < len; i++) {
val += buf[i];
}
return ((~val) + 1);
}
EXPORT_SYMBOL(dst_check_sum);
static void dst_type_flags_print(u32 type_flags)
{
dprintk(verbose, DST_ERROR, 0, "DST type flags :");
if (type_flags & DST_TYPE_HAS_NEWTUNE)
dprintk(verbose, DST_ERROR, 0, " 0x%x newtuner", DST_TYPE_HAS_NEWTUNE);
if (type_flags & DST_TYPE_HAS_TS204)
dprintk(verbose, DST_ERROR, 0, " 0x%x ts204", DST_TYPE_HAS_TS204);
if (type_flags & DST_TYPE_HAS_SYMDIV)
dprintk(verbose, DST_ERROR, 0, " 0x%x symdiv", DST_TYPE_HAS_SYMDIV);
if (type_flags & DST_TYPE_HAS_FW_1)
dprintk(verbose, DST_ERROR, 0, " 0x%x firmware version = 1", DST_TYPE_HAS_FW_1);
if (type_flags & DST_TYPE_HAS_FW_2)
dprintk(verbose, DST_ERROR, 0, " 0x%x firmware version = 2", DST_TYPE_HAS_FW_2);
if (type_flags & DST_TYPE_HAS_FW_3)
dprintk(verbose, DST_ERROR, 0, " 0x%x firmware version = 3", DST_TYPE_HAS_FW_3);
dprintk(verbose, DST_ERROR, 0, "\n");
}
static int dst_type_print(u8 type)
{
char *otype;
switch (type) {
case DST_TYPE_IS_SAT:
otype = "satellite";
break;
case DST_TYPE_IS_TERR:
otype = "terrestrial";
break;
case DST_TYPE_IS_CABLE:
otype = "cable";
break;
default:
dprintk(verbose, DST_INFO, 1, "invalid dst type %d", type);
return -EINVAL;
}
dprintk(verbose, DST_INFO, 1, "DST type: %s", otype);
return 0;
}
/*
Known cards list
Satellite
-------------------
200103A
VP-1020 DST-MOT LG(old), TS=188
VP-1020 DST-03T LG(new), TS=204
VP-1022 DST-03T LG(new), TS=204
VP-1025 DST-03T LG(new), TS=204
VP-1030 DSTMCI, LG(new), TS=188
VP-1032 DSTMCI, LG(new), TS=188
Cable
-------------------
VP-2030 DCT-CI, Samsung, TS=204
VP-2021 DCT-CI, Unknown, TS=204
VP-2031 DCT-CI, Philips, TS=188
VP-2040 DCT-CI, Philips, TS=188, with CA daughter board
VP-2040 DCT-CI, Philips, TS=204, without CA daughter board
Terrestrial
-------------------
VP-3050 DTTNXT TS=188
VP-3040 DTT-CI, Philips, TS=188
VP-3040 DTT-CI, Philips, TS=204
ATSC
-------------------
VP-3220 ATSCDI, TS=188
VP-3250 ATSCAD, TS=188
*/
struct dst_types dst_tlist[] = {
{
.device_id = "200103A",
.offset = 0,
.dst_type = DST_TYPE_IS_SAT,
.type_flags = DST_TYPE_HAS_SYMDIV | DST_TYPE_HAS_FW_1 | DST_TYPE_HAS_OBS_REGS,
.dst_feature = 0
}, /* obsolete */
{
.device_id = "DST-020",
.offset = 0,
.dst_type = DST_TYPE_IS_SAT,
.type_flags = DST_TYPE_HAS_SYMDIV | DST_TYPE_HAS_FW_1,
.dst_feature = 0
}, /* obsolete */
{
.device_id = "DST-030",
.offset = 0,
.dst_type = DST_TYPE_IS_SAT,
.type_flags = DST_TYPE_HAS_TS204 | DST_TYPE_HAS_NEWTUNE | DST_TYPE_HAS_FW_1,
.dst_feature = 0
}, /* obsolete */
{
.device_id = "DST-03T",
.offset = 0,
.dst_type = DST_TYPE_IS_SAT,
.type_flags = DST_TYPE_HAS_SYMDIV | DST_TYPE_HAS_TS204 | DST_TYPE_HAS_FW_2,
.dst_feature = DST_TYPE_HAS_DISEQC3 | DST_TYPE_HAS_DISEQC4 | DST_TYPE_HAS_DISEQC5
| DST_TYPE_HAS_MAC | DST_TYPE_HAS_MOTO
},
{
.device_id = "DST-MOT",
.offset = 0,
.dst_type = DST_TYPE_IS_SAT,
.type_flags = DST_TYPE_HAS_SYMDIV | DST_TYPE_HAS_FW_1,
.dst_feature = 0
}, /* obsolete */
{
.device_id = "DST-CI",
.offset = 1,
.dst_type = DST_TYPE_IS_SAT,
.type_flags = DST_TYPE_HAS_TS204 | DST_TYPE_HAS_NEWTUNE | DST_TYPE_HAS_FW_1,
.dst_feature = DST_TYPE_HAS_CA
}, /* An OEM board */
{
.device_id = "DSTMCI",
.offset = 1,
.dst_type = DST_TYPE_IS_SAT,
.type_flags = DST_TYPE_HAS_NEWTUNE | DST_TYPE_HAS_FW_2 | DST_TYPE_HAS_FW_BUILD | DST_TYPE_HAS_INC_COUNT,
.dst_feature = DST_TYPE_HAS_CA | DST_TYPE_HAS_DISEQC3 | DST_TYPE_HAS_DISEQC4
| DST_TYPE_HAS_MOTO | DST_TYPE_HAS_MAC
},
{
.device_id = "DSTFCI",
.offset = 1,
.dst_type = DST_TYPE_IS_SAT,
.type_flags = DST_TYPE_HAS_NEWTUNE | DST_TYPE_HAS_FW_1,
.dst_feature = 0
}, /* unknown to vendor */
{
.device_id = "DCT-CI",
.offset = 1,
.dst_type = DST_TYPE_IS_CABLE,
.type_flags = DST_TYPE_HAS_TS204 | DST_TYPE_HAS_NEWTUNE | DST_TYPE_HAS_FW_1
| DST_TYPE_HAS_FW_2,
.dst_feature = DST_TYPE_HAS_CA
},
{
.device_id = "DCTNEW",
.offset = 1,
.dst_type = DST_TYPE_IS_CABLE,
.type_flags = DST_TYPE_HAS_NEWTUNE | DST_TYPE_HAS_FW_3 | DST_TYPE_HAS_FW_BUILD,
.dst_feature = 0
},
{
.device_id = "DTT-CI",
.offset = 1,
.dst_type = DST_TYPE_IS_TERR,
.type_flags = DST_TYPE_HAS_TS204 | DST_TYPE_HAS_FW_2,
.dst_feature = 0
},
{
.device_id = "DTTDIG",
.offset = 1,
.dst_type = DST_TYPE_IS_TERR,
.type_flags = DST_TYPE_HAS_FW_2,
.dst_feature = 0
},
{
.device_id = "DTTNXT",
.offset = 1,
.dst_type = DST_TYPE_IS_TERR,
.type_flags = DST_TYPE_HAS_FW_2,
.dst_feature = DST_TYPE_HAS_ANALOG
},
{
.device_id = "ATSCDI",
.offset = 1,
.dst_type = DST_TYPE_IS_ATSC,
.type_flags = DST_TYPE_HAS_FW_2,
.dst_feature = 0
},
{
.device_id = "ATSCAD",
.offset = 1,
.dst_type = DST_TYPE_IS_ATSC,
.type_flags = DST_TYPE_HAS_FW_2,
.dst_feature = 0
},
{ }
};
static int dst_get_mac(struct dst_state *state)
{
u8 get_mac[] = { 0x00, 0x0a, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
get_mac[7] = dst_check_sum(get_mac, 7);
if (dst_command(state, get_mac, 8) < 0) {
dprintk(verbose, DST_INFO, 1, "Unsupported Command");
return -1;
}
memset(&state->mac_address, '\0', 8);
memcpy(&state->mac_address, &state->rxbuffer, 6);
dprintk(verbose, DST_ERROR, 1, "MAC Address=[%02x:%02x:%02x:%02x:%02x:%02x]",
state->mac_address[0], state->mac_address[1], state->mac_address[2],
state->mac_address[4], state->mac_address[5], state->mac_address[6]);
return 0;
}
static int dst_fw_ver(struct dst_state *state)
{
u8 get_ver[] = { 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
get_ver[7] = dst_check_sum(get_ver, 7);
if (dst_command(state, get_ver, 8) < 0) {
dprintk(verbose, DST_INFO, 1, "Unsupported Command");
return -1;
}
memset(&state->fw_version, '\0', 8);
memcpy(&state->fw_version, &state->rxbuffer, 8);
dprintk(verbose, DST_ERROR, 1, "Firmware Ver = %x.%x Build = %02x, on %x:%x, %x-%x-20%02x",
state->fw_version[0] >> 4, state->fw_version[0] & 0x0f,
state->fw_version[1],
state->fw_version[5], state->fw_version[6],
state->fw_version[4], state->fw_version[3], state->fw_version[2]);
return 0;
}
static int dst_card_type(struct dst_state *state)
{
u8 get_type[] = { 0x00, 0x11, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
get_type[7] = dst_check_sum(get_type, 7);
if (dst_command(state, get_type, 8) < 0) {
dprintk(verbose, DST_INFO, 1, "Unsupported Command");
return -1;
}
memset(&state->card_info, '\0', 8);
memcpy(&state->card_info, &state->rxbuffer, 8);
dprintk(verbose, DST_ERROR, 1, "Device Model=[%s]", &state->card_info[0]);
return 0;
}
static int dst_get_vendor(struct dst_state *state)
{
u8 get_vendor[] = { 0x00, 0x12, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
get_vendor[7] = dst_check_sum(get_vendor, 7);
if (dst_command(state, get_vendor, 8) < 0) {
dprintk(verbose, DST_INFO, 1, "Unsupported Command");
return -1;
}
memset(&state->vendor, '\0', 8);
memcpy(&state->vendor, &state->rxbuffer, 8);
dprintk(verbose, DST_ERROR, 1, "Vendor=[%s]", &state->vendor[0]);
return 0;
}
static int dst_get_device_id(struct dst_state *state)
{
u8 reply;
int i;
struct dst_types *p_dst_type;
u8 use_dst_type = 0;
u32 use_type_flags = 0;
static u8 device_type[8] = {0x00, 0x06, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff};
device_type[7] = dst_check_sum(device_type, 7);
if (write_dst(state, device_type, FIXED_COMM))
return -1; /* Write failed */
if ((dst_pio_disable(state)) < 0)
return -1;
if (read_dst(state, &reply, GET_ACK))
return -1; /* Read failure */
if (reply != ACK) {
dprintk(verbose, DST_INFO, 1, "Write not Acknowledged! [Reply=0x%02x]", reply);
return -1; /* Unack'd write */
}
if (!dst_wait_dst_ready(state, DEVICE_INIT))
return -1; /* DST not ready yet */
if (read_dst(state, state->rxbuffer, FIXED_COMM))
return -1;
dst_pio_disable(state);
if (state->rxbuffer[7] != dst_check_sum(state->rxbuffer, 7)) {
dprintk(verbose, DST_INFO, 1, "Checksum failure!");
return -1; /* Checksum failure */
}
state->rxbuffer[7] = '\0';
for (i = 0, p_dst_type = dst_tlist; i < ARRAY_SIZE(dst_tlist); i++, p_dst_type++) {
if (!strncmp (&state->rxbuffer[p_dst_type->offset], p_dst_type->device_id, strlen (p_dst_type->device_id))) {
use_type_flags = p_dst_type->type_flags;
use_dst_type = p_dst_type->dst_type;
/* Card capabilities */
state->dst_hw_cap = p_dst_type->dst_feature;
dprintk(verbose, DST_ERROR, 1, "Recognise [%s]\n", p_dst_type->device_id);
break;
}
}
if (i >= sizeof (dst_tlist) / sizeof (dst_tlist [0])) {
dprintk(verbose, DST_ERROR, 1, "Unable to recognize %s or %s", &state->rxbuffer[0], &state->rxbuffer[1]);
dprintk(verbose, DST_ERROR, 1, "please email linux-dvb@linuxtv.org with this type in");
use_dst_type = DST_TYPE_IS_SAT;
use_type_flags = DST_TYPE_HAS_SYMDIV;
}
dst_type_print(use_dst_type);
state->type_flags = use_type_flags;
state->dst_type = use_dst_type;
dst_type_flags_print(state->type_flags);
if (state->type_flags & DST_TYPE_HAS_TS204) {
dst_packsize(state, 204);
}
return 0;
}
static int dst_probe(struct dst_state *state)
{
if ((rdc_8820_reset(state)) < 0) {
dprintk(verbose, DST_ERROR, 1, "RDC 8820 RESET Failed.");
return -1;
}
if (dst_addons & DST_TYPE_HAS_CA)
msleep(4000);
else
msleep(100);
if ((dst_comm_init(state)) < 0) {
dprintk(verbose, DST_ERROR, 1, "DST Initialization Failed.");
return -1;
}
msleep(100);
if (dst_get_device_id(state) < 0) {
dprintk(verbose, DST_ERROR, 1, "unknown device.");
return -1;
}
if (dst_get_mac(state) < 0) {
dprintk(verbose, DST_INFO, 1, "MAC: Unsupported command");
return 0;
}
if (state->type_flags & DST_TYPE_HAS_FW_BUILD) {
if (dst_fw_ver(state) < 0) {
dprintk(verbose, DST_INFO, 1, "FW: Unsupported command");
return 0;
}
if (dst_card_type(state) < 0) {
dprintk(verbose, DST_INFO, 1, "Card: Unsupported command");
return 0;
}
if (dst_get_vendor(state) < 0) {
dprintk(verbose, DST_INFO, 1, "Vendor: Unsupported command");
return 0;
}
}
return 0;
}
int dst_command(struct dst_state *state, u8 *data, u8 len)
{
u8 reply;
if ((dst_comm_init(state)) < 0) {
dprintk(verbose, DST_NOTICE, 1, "DST Communication Initialization Failed.");
return -1;
}
if (write_dst(state, data, len)) {
dprintk(verbose, DST_INFO, 1, "Tring to recover.. ");
if ((dst_error_recovery(state)) < 0) {
dprintk(verbose, DST_ERROR, 1, "Recovery Failed.");
return -1;
}
return -1;
}
if ((dst_pio_disable(state)) < 0) {
dprintk(verbose, DST_ERROR, 1, "PIO Disable Failed.");
return -1;
}
if (state->type_flags & DST_TYPE_HAS_FW_1)
udelay(3000);
if (read_dst(state, &reply, GET_ACK)) {
dprintk(verbose, DST_DEBUG, 1, "Trying to recover.. ");
if ((dst_error_recovery(state)) < 0) {
dprintk(verbose, DST_INFO, 1, "Recovery Failed.");
return -1;
}
return -1;
}
if (reply != ACK) {
dprintk(verbose, DST_INFO, 1, "write not acknowledged 0x%02x ", reply);
return -1;
}
if (len >= 2 && data[0] == 0 && (data[1] == 1 || data[1] == 3))
return 0;
if (state->type_flags & DST_TYPE_HAS_FW_1)
udelay(3000);
else
udelay(2000);
if (!dst_wait_dst_ready(state, NO_DELAY))
return -1;
if (read_dst(state, state->rxbuffer, FIXED_COMM)) {
dprintk(verbose, DST_DEBUG, 1, "Trying to recover.. ");
if ((dst_error_recovery(state)) < 0) {
dprintk(verbose, DST_INFO, 1, "Recovery failed.");
return -1;
}
return -1;
}
if (state->rxbuffer[7] != dst_check_sum(state->rxbuffer, 7)) {
dprintk(verbose, DST_INFO, 1, "checksum failure");
return -1;
}
return 0;
}
EXPORT_SYMBOL(dst_command);
static int dst_get_signal(struct dst_state *state)
{
int retval;
u8 get_signal[] = { 0x00, 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0xfb };
//dprintk("%s: Getting Signal strength and other parameters\n", __FUNCTION__);
if ((state->diseq_flags & ATTEMPT_TUNE) == 0) {
state->decode_lock = state->decode_strength = state->decode_snr = 0;
return 0;
}
if (0 == (state->diseq_flags & HAS_LOCK)) {
state->decode_lock = state->decode_strength = state->decode_snr = 0;
return 0;
}
if (time_after_eq(jiffies, state->cur_jiff + (HZ / 5))) {
retval = dst_command(state, get_signal, 8);
if (retval < 0)
return retval;
if (state->dst_type == DST_TYPE_IS_SAT) {
state->decode_lock = ((state->rxbuffer[6] & 0x10) == 0) ? 1 : 0;
state->decode_strength = state->rxbuffer[5] << 8;
state->decode_snr = state->rxbuffer[2] << 8 | state->rxbuffer[3];
} else if ((state->dst_type == DST_TYPE_IS_TERR) || (state->dst_type == DST_TYPE_IS_CABLE)) {
state->decode_lock = (state->rxbuffer[1]) ? 1 : 0;
state->decode_strength = state->rxbuffer[4] << 8;
state->decode_snr = state->rxbuffer[3] << 8;
}
state->cur_jiff = jiffies;
}
return 0;
}
static int dst_tone_power_cmd(struct dst_state *state)
{
u8 paket[8] = { 0x00, 0x09, 0xff, 0xff, 0x01, 0x00, 0x00, 0x00 };
if (state->dst_type == DST_TYPE_IS_TERR)
return 0;
paket[4] = state->tx_tuna[4];
paket[2] = state->tx_tuna[2];
paket[3] = state->tx_tuna[3];
paket[7] = dst_check_sum (paket, 7);
dst_command(state, paket, 8);
return 0;
}
static int dst_get_tuna(struct dst_state *state)
{
int retval;
if ((state->diseq_flags & ATTEMPT_TUNE) == 0)
return 0;
state->diseq_flags &= ~(HAS_LOCK);
if (!dst_wait_dst_ready(state, NO_DELAY))
return 0;
if (state->type_flags & DST_TYPE_HAS_NEWTUNE)
/* how to get variable length reply ???? */
retval = read_dst(state, state->rx_tuna, 10);
else
retval = read_dst(state, &state->rx_tuna[2], FIXED_COMM);
if (retval < 0) {
dprintk(verbose, DST_DEBUG, 1, "read not successful");
return 0;
}
if (state->type_flags & DST_TYPE_HAS_NEWTUNE) {
if (state->rx_tuna[9] != dst_check_sum(&state->rx_tuna[0], 9)) {
dprintk(verbose, DST_INFO, 1, "checksum failure ? ");
return 0;
}
} else {
if (state->rx_tuna[9] != dst_check_sum(&state->rx_tuna[2], 7)) {
dprintk(verbose, DST_INFO, 1, "checksum failure? ");
return 0;
}
}
if (state->rx_tuna[2] == 0 && state->rx_tuna[3] == 0)
return 0;
state->decode_freq = ((state->rx_tuna[2] & 0x7f) << 8) + state->rx_tuna[3];
state->decode_lock = 1;
state->diseq_flags |= HAS_LOCK;
return 1;
}
static int dst_set_voltage(struct dvb_frontend *fe, fe_sec_voltage_t voltage);
static int dst_write_tuna(struct dvb_frontend *fe)
{
struct dst_state *state = fe->demodulator_priv;
int retval;
u8 reply;
dprintk(verbose, DST_INFO, 1, "type_flags 0x%x ", state->type_flags);
state->decode_freq = 0;
state->decode_lock = state->decode_strength = state->decode_snr = 0;
if (state->dst_type == DST_TYPE_IS_SAT) {
if (!(state->diseq_flags & HAS_POWER))
dst_set_voltage(fe, SEC_VOLTAGE_13);
}
state->diseq_flags &= ~(HAS_LOCK | ATTEMPT_TUNE);
if ((dst_comm_init(state)) < 0) {
dprintk(verbose, DST_DEBUG, 1, "DST Communication initialization failed.");
return -1;
}
if (state->type_flags & DST_TYPE_HAS_NEWTUNE) {
state->tx_tuna[9] = dst_check_sum(&state->tx_tuna[0], 9);
retval = write_dst(state, &state->tx_tuna[0], 10);
} else {
state->tx_tuna[9] = dst_check_sum(&state->tx_tuna[2], 7);
retval = write_dst(state, &state->tx_tuna[2], FIXED_COMM);
}
if (retval < 0) {
dst_pio_disable(state);
dprintk(verbose, DST_DEBUG, 1, "write not successful");
return retval;
}
if ((dst_pio_disable(state)) < 0) {
dprintk(verbose, DST_DEBUG, 1, "DST PIO disable failed !");
return -1;
}
if ((read_dst(state, &reply, GET_ACK) < 0)) {
dprintk(verbose, DST_DEBUG, 1, "read verify not successful.");
return -1;
}
if (reply != ACK) {
dprintk(verbose, DST_DEBUG, 1, "write not acknowledged 0x%02x ", reply);
return 0;
}
state->diseq_flags |= ATTEMPT_TUNE;
return dst_get_tuna(state);
}
/*
* line22k0 0x00, 0x09, 0x00, 0xff, 0x01, 0x00, 0x00, 0x00
* line22k1 0x00, 0x09, 0x01, 0xff, 0x01, 0x00, 0x00, 0x00
* line22k2 0x00, 0x09, 0x02, 0xff, 0x01, 0x00, 0x00, 0x00
* tone 0x00, 0x09, 0xff, 0x00, 0x01, 0x00, 0x00, 0x00
* data 0x00, 0x09, 0xff, 0x01, 0x01, 0x00, 0x00, 0x00
* power_off 0x00, 0x09, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00
* power_on 0x00, 0x09, 0xff, 0xff, 0x01, 0x00, 0x00, 0x00
* Diseqc 1 0x00, 0x08, 0x04, 0xe0, 0x10, 0x38, 0xf0, 0xec
* Diseqc 2 0x00, 0x08, 0x04, 0xe0, 0x10, 0x38, 0xf4, 0xe8
* Diseqc 3 0x00, 0x08, 0x04, 0xe0, 0x10, 0x38, 0xf8, 0xe4
* Diseqc 4 0x00, 0x08, 0x04, 0xe0, 0x10, 0x38, 0xfc, 0xe0
*/
static int dst_set_diseqc(struct dvb_frontend *fe, struct dvb_diseqc_master_cmd *cmd)
{
struct dst_state *state = fe->demodulator_priv;
u8 paket[8] = { 0x00, 0x08, 0x04, 0xe0, 0x10, 0x38, 0xf0, 0xec };
if (state->dst_type != DST_TYPE_IS_SAT)
return 0;
if (cmd->msg_len == 0 || cmd->msg_len > 4)
return -EINVAL;
memcpy(&paket[3], cmd->msg, cmd->msg_len);
paket[7] = dst_check_sum(&paket[0], 7);
dst_command(state, paket, 8);
return 0;
}
static int dst_set_voltage(struct dvb_frontend *fe, fe_sec_voltage_t voltage)
{
int need_cmd;
struct dst_state *state = fe->demodulator_priv;
state->voltage = voltage;
if (state->dst_type != DST_TYPE_IS_SAT)
return 0;
need_cmd = 0;
switch (voltage) {
case SEC_VOLTAGE_13:
case SEC_VOLTAGE_18:
if ((state->diseq_flags & HAS_POWER) == 0)
need_cmd = 1;
state->diseq_flags |= HAS_POWER;
state->tx_tuna[4] = 0x01;
break;
case SEC_VOLTAGE_OFF:
need_cmd = 1;
state->diseq_flags &= ~(HAS_POWER | HAS_LOCK | ATTEMPT_TUNE);
state->tx_tuna[4] = 0x00;
break;
default:
return -EINVAL;
}
if (need_cmd)
dst_tone_power_cmd(state);
return 0;
}
static int dst_set_tone(struct dvb_frontend *fe, fe_sec_tone_mode_t tone)
{
struct dst_state *state = fe->demodulator_priv;
state->tone = tone;
if (state->dst_type != DST_TYPE_IS_SAT)
return 0;
switch (tone) {
case SEC_TONE_OFF:
if (state->type_flags & DST_TYPE_HAS_OBS_REGS)
state->tx_tuna[2] = 0x00;
else
state->tx_tuna[2] = 0xff;
break;
case SEC_TONE_ON:
state->tx_tuna[2] = 0x02;
break;
default:
return -EINVAL;
}
dst_tone_power_cmd(state);
return 0;
}
static int dst_send_burst(struct dvb_frontend *fe, fe_sec_mini_cmd_t minicmd)
{
struct dst_state *state = fe->demodulator_priv;
if (state->dst_type != DST_TYPE_IS_SAT)
return 0;
state->minicmd = minicmd;
switch (minicmd) {
case SEC_MINI_A:
state->tx_tuna[3] = 0x02;
break;
case SEC_MINI_B:
state->tx_tuna[3] = 0xff;
break;
}
dst_tone_power_cmd(state);
return 0;
}
static int dst_init(struct dvb_frontend *fe)
{
struct dst_state *state = fe->demodulator_priv;
static u8 sat_tuna_188[] = { 0x09, 0x00, 0x03, 0xb6, 0x01, 0x00, 0x73, 0x21, 0x00, 0x00 };
static u8 sat_tuna_204[] = { 0x00, 0x00, 0x03, 0xb6, 0x01, 0x55, 0xbd, 0x50, 0x00, 0x00 };
static u8 ter_tuna_188[] = { 0x09, 0x00, 0x03, 0xb6, 0x01, 0x07, 0x00, 0x00, 0x00, 0x00 };
static u8 ter_tuna_204[] = { 0x00, 0x00, 0x03, 0xb6, 0x01, 0x07, 0x00, 0x00, 0x00, 0x00 };
static u8 cab_tuna_204[] = { 0x00, 0x00, 0x03, 0xb6, 0x01, 0x07, 0x00, 0x00, 0x00, 0x00 };
static u8 cab_tuna_188[] = { 0x09, 0x00, 0x03, 0xb6, 0x01, 0x07, 0x00, 0x00, 0x00, 0x00 };
state->inversion = INVERSION_OFF;
state->voltage = SEC_VOLTAGE_13;
state->tone = SEC_TONE_OFF;
state->diseq_flags = 0;
state->k22 = 0x02;
state->bandwidth = BANDWIDTH_7_MHZ;
state->cur_jiff = jiffies;
if (state->dst_type == DST_TYPE_IS_SAT)
memcpy(state->tx_tuna, ((state->type_flags & DST_TYPE_HAS_NEWTUNE) ? sat_tuna_188 : sat_tuna_204), sizeof (sat_tuna_204));
else if (state->dst_type == DST_TYPE_IS_TERR)
memcpy(state->tx_tuna, ((state->type_flags & DST_TYPE_HAS_NEWTUNE) ? ter_tuna_188 : ter_tuna_204), sizeof (ter_tuna_204));
else if (state->dst_type == DST_TYPE_IS_CABLE)
memcpy(state->tx_tuna, ((state->type_flags & DST_TYPE_HAS_NEWTUNE) ? cab_tuna_188 : cab_tuna_204), sizeof (cab_tuna_204));
return 0;
}
static int dst_read_status(struct dvb_frontend *fe, fe_status_t *status)
{
struct dst_state *state = fe->demodulator_priv;
*status = 0;
if (state->diseq_flags & HAS_LOCK) {
// dst_get_signal(state); // don't require(?) to ask MCU
if (state->decode_lock)
*status |= FE_HAS_LOCK | FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_SYNC | FE_HAS_VITERBI;
}
return 0;
}
static int dst_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
{
struct dst_state *state = fe->demodulator_priv;
dst_get_signal(state);
*strength = state->decode_strength;
return 0;
}
static int dst_read_snr(struct dvb_frontend *fe, u16 *snr)
{
struct dst_state *state = fe->demodulator_priv;
dst_get_signal(state);
*snr = state->decode_snr;
return 0;
}
static int dst_set_frontend(struct dvb_frontend *fe, struct dvb_frontend_parameters *p)
{
struct dst_state *state = fe->demodulator_priv;
dst_set_freq(state, p->frequency);
dprintk(verbose, DST_DEBUG, 1, "Set Frequency=[%d]", p->frequency);
if (state->dst_type == DST_TYPE_IS_SAT) {
if (state->type_flags & DST_TYPE_HAS_OBS_REGS)
dst_set_inversion(state, p->inversion);
dst_set_fec(state, p->u.qpsk.fec_inner);
dst_set_symbolrate(state, p->u.qpsk.symbol_rate);
dst_set_polarization(state);
dprintk(verbose, DST_DEBUG, 1, "Set Symbolrate=[%d]", p->u.qpsk.symbol_rate);
} else if (state->dst_type == DST_TYPE_IS_TERR)
dst_set_bandwidth(state, p->u.ofdm.bandwidth);
else if (state->dst_type == DST_TYPE_IS_CABLE) {
dst_set_fec(state, p->u.qam.fec_inner);
dst_set_symbolrate(state, p->u.qam.symbol_rate);
dst_set_modulation(state, p->u.qam.modulation);
}
dst_write_tuna(fe);
return 0;
}
static int dst_get_frontend(struct dvb_frontend *fe, struct dvb_frontend_parameters *p)
{
struct dst_state *state = fe->demodulator_priv;
p->frequency = state->decode_freq;
if (state->dst_type == DST_TYPE_IS_SAT) {
if (state->type_flags & DST_TYPE_HAS_OBS_REGS)
p->inversion = state->inversion;
p->u.qpsk.symbol_rate = state->symbol_rate;
p->u.qpsk.fec_inner = dst_get_fec(state);
} else if (state->dst_type == DST_TYPE_IS_TERR) {
p->u.ofdm.bandwidth = state->bandwidth;
} else if (state->dst_type == DST_TYPE_IS_CABLE) {
p->u.qam.symbol_rate = state->symbol_rate;
p->u.qam.fec_inner = dst_get_fec(state);
p->u.qam.modulation = dst_get_modulation(state);
}
return 0;
}
static void dst_release(struct dvb_frontend *fe)
{
struct dst_state *state = fe->demodulator_priv;
kfree(state);
}
static struct dvb_frontend_ops dst_dvbt_ops;
static struct dvb_frontend_ops dst_dvbs_ops;
static struct dvb_frontend_ops dst_dvbc_ops;
struct dst_state *dst_attach(struct dst_state *state, struct dvb_adapter *dvb_adapter)
{
/* check if the ASIC is there */
if (dst_probe(state) < 0) {
if (state)
kfree(state);
return NULL;
}
/* determine settings based on type */
switch (state->dst_type) {
case DST_TYPE_IS_TERR:
memcpy(&state->ops, &dst_dvbt_ops, sizeof(struct dvb_frontend_ops));
break;
case DST_TYPE_IS_CABLE:
memcpy(&state->ops, &dst_dvbc_ops, sizeof(struct dvb_frontend_ops));
break;
case DST_TYPE_IS_SAT:
memcpy(&state->ops, &dst_dvbs_ops, sizeof(struct dvb_frontend_ops));
break;
default:
dprintk(verbose, DST_ERROR, 1, "unknown DST type. please report to the LinuxTV.org DVB mailinglist.");
if (state)
kfree(state);
return NULL;
}
/* create dvb_frontend */
state->frontend.ops = &state->ops;
state->frontend.demodulator_priv = state;
return state; /* Manu (DST is a card not a frontend) */
}
EXPORT_SYMBOL(dst_attach);
static struct dvb_frontend_ops dst_dvbt_ops = {
.info = {
.name = "DST DVB-T",
.type = FE_OFDM,
.frequency_min = 137000000,
.frequency_max = 858000000,
.frequency_stepsize = 166667,
.caps = FE_CAN_FEC_AUTO | FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO
},
.release = dst_release,
.init = dst_init,
.set_frontend = dst_set_frontend,
.get_frontend = dst_get_frontend,
.read_status = dst_read_status,
.read_signal_strength = dst_read_signal_strength,
.read_snr = dst_read_snr,
};
static struct dvb_frontend_ops dst_dvbs_ops = {
.info = {
.name = "DST DVB-S",
.type = FE_QPSK,
.frequency_min = 950000,
.frequency_max = 2150000,
.frequency_stepsize = 1000, /* kHz for QPSK frontends */
.frequency_tolerance = 29500,
.symbol_rate_min = 1000000,
.symbol_rate_max = 45000000,
/* . symbol_rate_tolerance = ???,*/
.caps = FE_CAN_FEC_AUTO | FE_CAN_QPSK
},
.release = dst_release,
.init = dst_init,
.set_frontend = dst_set_frontend,
.get_frontend = dst_get_frontend,
.read_status = dst_read_status,
.read_signal_strength = dst_read_signal_strength,
.read_snr = dst_read_snr,
.diseqc_send_burst = dst_send_burst,
.diseqc_send_master_cmd = dst_set_diseqc,
.set_voltage = dst_set_voltage,
.set_tone = dst_set_tone,
};
static struct dvb_frontend_ops dst_dvbc_ops = {
.info = {
.name = "DST DVB-C",
.type = FE_QAM,
.frequency_stepsize = 62500,
.frequency_min = 51000000,
.frequency_max = 858000000,
.symbol_rate_min = 1000000,
.symbol_rate_max = 45000000,
/* . symbol_rate_tolerance = ???,*/
.caps = FE_CAN_FEC_AUTO | FE_CAN_QAM_AUTO
},
.release = dst_release,
.init = dst_init,
.set_frontend = dst_set_frontend,
.get_frontend = dst_get_frontend,
.read_status = dst_read_status,
.read_signal_strength = dst_read_signal_strength,
.read_snr = dst_read_snr,
};
MODULE_DESCRIPTION("DST DVB-S/T/C Combo Frontend driver");
MODULE_AUTHOR("Jamie Honan, Manu Abraham");
MODULE_LICENSE("GPL");