1
linux/drivers/isdn/hisax/hfc_sx.c
Adrian Bunk 672c3fd906 [PATCH] drivers/isdn/hisax/: possible cleanups
This patch contains the following possible cleanups:
- make needlessly global code static
- remove the compiled but unused st5481_hdlc.{c,h}
- kill enternow.h
- enternow_pci.c: kill InByte/OutByte/BYTE
- isdnl2.c: kill FreeSkb
- remove or #if 0 the following unused functions:
  - config.c: IsdnCardState
  - ipacx.c: ipacx_new_ph
  - ipacx.c: dch_bh
  - ipacx.c: setup_ipacx
  - isdnl2.c: IsRR

Signed-off-by: Adrian Bunk <bunk@stusta.de>
Acked-by: Kai Germaschewski <kai@germaschewski.name>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-25 16:25:07 -07:00

1522 lines
44 KiB
C

/* $Id: hfc_sx.c,v 1.12.2.5 2004/02/11 13:21:33 keil Exp $
*
* level driver for Cologne Chip Designs hfc-s+/sp based cards
*
* Author Werner Cornelius
* based on existing driver for CCD HFC PCI cards
* Copyright by Werner Cornelius <werner@isdn4linux.de>
*
* This software may be used and distributed according to the terms
* of the GNU General Public License, incorporated herein by reference.
*
*/
#include <linux/init.h>
#include "hisax.h"
#include "hfc_sx.h"
#include "isdnl1.h"
#include <linux/interrupt.h>
#include <linux/isapnp.h>
extern const char *CardType[];
static const char *hfcsx_revision = "$Revision: 1.12.2.5 $";
/***************************************/
/* IRQ-table for CCDs demo board */
/* IRQs 6,5,10,11,12,15 are supported */
/***************************************/
/* Teles 16.3c Vendor Id TAG2620, Version 1.0, Vendor version 2.1
*
* Thanks to Uwe Wisniewski
*
* ISA-SLOT Signal PIN
* B25 IRQ3 92 IRQ_G
* B23 IRQ5 94 IRQ_A
* B4 IRQ2/9 95 IRQ_B
* D3 IRQ10 96 IRQ_C
* D4 IRQ11 97 IRQ_D
* D5 IRQ12 98 IRQ_E
* D6 IRQ15 99 IRQ_F
*/
#undef CCD_DEMO_BOARD
#ifdef CCD_DEMO_BOARD
static u_char ccd_sp_irqtab[16] = {
0,0,0,0,0,2,1,0,0,0,3,4,5,0,0,6
};
#else /* Teles 16.3c */
static u_char ccd_sp_irqtab[16] = {
0,0,0,7,0,1,0,0,0,2,3,4,5,0,0,6
};
#endif
#define NT_T1_COUNT 20 /* number of 3.125ms interrupts for G2 timeout */
#define byteout(addr,val) outb(val,addr)
#define bytein(addr) inb(addr)
/******************************/
/* In/Out access to registers */
/******************************/
static inline void
Write_hfc(struct IsdnCardState *cs, u_char regnum, u_char val)
{
byteout(cs->hw.hfcsx.base+1, regnum);
byteout(cs->hw.hfcsx.base, val);
}
static inline u_char
Read_hfc(struct IsdnCardState *cs, u_char regnum)
{
u_char ret;
byteout(cs->hw.hfcsx.base+1, regnum);
ret = bytein(cs->hw.hfcsx.base);
return(ret);
}
/**************************************************/
/* select a fifo and remember which one for reuse */
/**************************************************/
static void
fifo_select(struct IsdnCardState *cs, u_char fifo)
{
if (fifo == cs->hw.hfcsx.last_fifo)
return; /* still valid */
byteout(cs->hw.hfcsx.base+1, HFCSX_FIF_SEL);
byteout(cs->hw.hfcsx.base, fifo);
while (bytein(cs->hw.hfcsx.base+1) & 1); /* wait for busy */
udelay(4);
byteout(cs->hw.hfcsx.base, fifo);
while (bytein(cs->hw.hfcsx.base+1) & 1); /* wait for busy */
}
/******************************************/
/* reset the specified fifo to defaults. */
/* If its a send fifo init needed markers */
/******************************************/
static void
reset_fifo(struct IsdnCardState *cs, u_char fifo)
{
fifo_select(cs, fifo); /* first select the fifo */
byteout(cs->hw.hfcsx.base+1, HFCSX_CIRM);
byteout(cs->hw.hfcsx.base, cs->hw.hfcsx.cirm | 0x80); /* reset cmd */
udelay(1);
while (bytein(cs->hw.hfcsx.base+1) & 1); /* wait for busy */
}
/*************************************************************/
/* write_fifo writes the skb contents to the desired fifo */
/* if no space is available or an error occurs 0 is returned */
/* the skb is not released in any way. */
/*************************************************************/
static int
write_fifo(struct IsdnCardState *cs, struct sk_buff *skb, u_char fifo, int trans_max)
{
unsigned short *msp;
int fifo_size, count, z1, z2;
u_char f_msk, f1, f2, *src;
if (skb->len <= 0) return(0);
if (fifo & 1) return(0); /* no write fifo */
fifo_select(cs, fifo);
if (fifo & 4) {
fifo_size = D_FIFO_SIZE; /* D-channel */
f_msk = MAX_D_FRAMES;
if (trans_max) return(0); /* only HDLC */
}
else {
fifo_size = cs->hw.hfcsx.b_fifo_size; /* B-channel */
f_msk = MAX_B_FRAMES;
}
z1 = Read_hfc(cs, HFCSX_FIF_Z1H);
z1 = ((z1 << 8) | Read_hfc(cs, HFCSX_FIF_Z1L));
/* Check for transparent mode */
if (trans_max) {
z2 = Read_hfc(cs, HFCSX_FIF_Z2H);
z2 = ((z2 << 8) | Read_hfc(cs, HFCSX_FIF_Z2L));
count = z2 - z1;
if (count <= 0)
count += fifo_size; /* free bytes */
if (count < skb->len+1) return(0); /* no room */
count = fifo_size - count; /* bytes still not send */
if (count > 2 * trans_max) return(0); /* delay to long */
count = skb->len;
src = skb->data;
while (count--)
Write_hfc(cs, HFCSX_FIF_DWR, *src++);
return(1); /* success */
}
msp = ((struct hfcsx_extra *)(cs->hw.hfcsx.extra))->marker;
msp += (((fifo >> 1) & 3) * (MAX_B_FRAMES+1));
f1 = Read_hfc(cs, HFCSX_FIF_F1) & f_msk;
f2 = Read_hfc(cs, HFCSX_FIF_F2) & f_msk;
count = f1 - f2; /* frame count actually buffered */
if (count < 0)
count += (f_msk + 1); /* if wrap around */
if (count > f_msk-1) {
if (cs->debug & L1_DEB_ISAC_FIFO)
debugl1(cs, "hfcsx_write_fifo %d more as %d frames",fifo,f_msk-1);
return(0);
}
*(msp + f1) = z1; /* remember marker */
if (cs->debug & L1_DEB_ISAC_FIFO)
debugl1(cs, "hfcsx_write_fifo %d f1(%x) f2(%x) z1(f1)(%x)",
fifo, f1, f2, z1);
/* now determine free bytes in FIFO buffer */
count = *(msp + f2) - z1;
if (count <= 0)
count += fifo_size; /* count now contains available bytes */
if (cs->debug & L1_DEB_ISAC_FIFO)
debugl1(cs, "hfcsx_write_fifo %d count(%ld/%d)",
fifo, skb->len, count);
if (count < skb->len) {
if (cs->debug & L1_DEB_ISAC_FIFO)
debugl1(cs, "hfcsx_write_fifo %d no fifo mem", fifo);
return(0);
}
count = skb->len; /* get frame len */
src = skb->data; /* source pointer */
while (count--)
Write_hfc(cs, HFCSX_FIF_DWR, *src++);
Read_hfc(cs, HFCSX_FIF_INCF1); /* increment F1 */
udelay(1);
while (bytein(cs->hw.hfcsx.base+1) & 1); /* wait for busy */
return(1);
}
/***************************************************************/
/* read_fifo reads data to an skb from the desired fifo */
/* if no data is available or an error occurs NULL is returned */
/* the skb is not released in any way. */
/***************************************************************/
static struct sk_buff *
read_fifo(struct IsdnCardState *cs, u_char fifo, int trans_max)
{ int fifo_size, count, z1, z2;
u_char f_msk, f1, f2, *dst;
struct sk_buff *skb;
if (!(fifo & 1)) return(NULL); /* no read fifo */
fifo_select(cs, fifo);
if (fifo & 4) {
fifo_size = D_FIFO_SIZE; /* D-channel */
f_msk = MAX_D_FRAMES;
if (trans_max) return(NULL); /* only hdlc */
}
else {
fifo_size = cs->hw.hfcsx.b_fifo_size; /* B-channel */
f_msk = MAX_B_FRAMES;
}
/* transparent mode */
if (trans_max) {
z1 = Read_hfc(cs, HFCSX_FIF_Z1H);
z1 = ((z1 << 8) | Read_hfc(cs, HFCSX_FIF_Z1L));
z2 = Read_hfc(cs, HFCSX_FIF_Z2H);
z2 = ((z2 << 8) | Read_hfc(cs, HFCSX_FIF_Z2L));
/* now determine bytes in actual FIFO buffer */
count = z1 - z2;
if (count <= 0)
count += fifo_size; /* count now contains buffered bytes */
count++;
if (count > trans_max)
count = trans_max; /* limit length */
if ((skb = dev_alloc_skb(count))) {
dst = skb_put(skb, count);
while (count--)
*dst++ = Read_hfc(cs, HFCSX_FIF_DRD);
return(skb);
}
else return(NULL); /* no memory */
}
do {
f1 = Read_hfc(cs, HFCSX_FIF_F1) & f_msk;
f2 = Read_hfc(cs, HFCSX_FIF_F2) & f_msk;
if (f1 == f2) return(NULL); /* no frame available */
z1 = Read_hfc(cs, HFCSX_FIF_Z1H);
z1 = ((z1 << 8) | Read_hfc(cs, HFCSX_FIF_Z1L));
z2 = Read_hfc(cs, HFCSX_FIF_Z2H);
z2 = ((z2 << 8) | Read_hfc(cs, HFCSX_FIF_Z2L));
if (cs->debug & L1_DEB_ISAC_FIFO)
debugl1(cs, "hfcsx_read_fifo %d f1(%x) f2(%x) z1(f2)(%x) z2(f2)(%x)",
fifo, f1, f2, z1, z2);
/* now determine bytes in actual FIFO buffer */
count = z1 - z2;
if (count <= 0)
count += fifo_size; /* count now contains buffered bytes */
count++;
if (cs->debug & L1_DEB_ISAC_FIFO)
debugl1(cs, "hfcsx_read_fifo %d count %ld)",
fifo, count);
if ((count > fifo_size) || (count < 4)) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "hfcsx_read_fifo %d paket inv. len %d ", fifo , count);
while (count) {
count--; /* empty fifo */
Read_hfc(cs, HFCSX_FIF_DRD);
}
skb = NULL;
} else
if ((skb = dev_alloc_skb(count - 3))) {
count -= 3;
dst = skb_put(skb, count);
while (count--)
*dst++ = Read_hfc(cs, HFCSX_FIF_DRD);
Read_hfc(cs, HFCSX_FIF_DRD); /* CRC 1 */
Read_hfc(cs, HFCSX_FIF_DRD); /* CRC 2 */
if (Read_hfc(cs, HFCSX_FIF_DRD)) {
dev_kfree_skb_irq(skb);
if (cs->debug & L1_DEB_ISAC_FIFO)
debugl1(cs, "hfcsx_read_fifo %d crc error", fifo);
skb = NULL;
}
} else {
printk(KERN_WARNING "HFC-SX: receive out of memory\n");
return(NULL);
}
Read_hfc(cs, HFCSX_FIF_INCF2); /* increment F2 */
udelay(1);
while (bytein(cs->hw.hfcsx.base+1) & 1); /* wait for busy */
udelay(1);
} while (!skb); /* retry in case of crc error */
return(skb);
}
/******************************************/
/* free hardware resources used by driver */
/******************************************/
static void
release_io_hfcsx(struct IsdnCardState *cs)
{
cs->hw.hfcsx.int_m2 = 0; /* interrupt output off ! */
Write_hfc(cs, HFCSX_INT_M2, cs->hw.hfcsx.int_m2);
Write_hfc(cs, HFCSX_CIRM, HFCSX_RESET); /* Reset On */
msleep(30); /* Timeout 30ms */
Write_hfc(cs, HFCSX_CIRM, 0); /* Reset Off */
del_timer(&cs->hw.hfcsx.timer);
release_region(cs->hw.hfcsx.base, 2); /* release IO-Block */
kfree(cs->hw.hfcsx.extra);
cs->hw.hfcsx.extra = NULL;
}
/**********************************************************/
/* set_fifo_size determines the size of the RAM and FIFOs */
/* returning 0 -> need to reset the chip again. */
/**********************************************************/
static int set_fifo_size(struct IsdnCardState *cs)
{
if (cs->hw.hfcsx.b_fifo_size) return(1); /* already determined */
if ((cs->hw.hfcsx.chip >> 4) == 9) {
cs->hw.hfcsx.b_fifo_size = B_FIFO_SIZE_32K;
return(1);
}
cs->hw.hfcsx.b_fifo_size = B_FIFO_SIZE_8K;
cs->hw.hfcsx.cirm |= 0x10; /* only 8K of ram */
return(0);
}
/********************************************************************************/
/* function called to reset the HFC SX chip. A complete software reset of chip */
/* and fifos is done. */
/********************************************************************************/
static void
reset_hfcsx(struct IsdnCardState *cs)
{
cs->hw.hfcsx.int_m2 = 0; /* interrupt output off ! */
Write_hfc(cs, HFCSX_INT_M2, cs->hw.hfcsx.int_m2);
printk(KERN_INFO "HFC_SX: resetting card\n");
while (1) {
Write_hfc(cs, HFCSX_CIRM, HFCSX_RESET | cs->hw.hfcsx.cirm ); /* Reset */
mdelay(30);
Write_hfc(cs, HFCSX_CIRM, cs->hw.hfcsx.cirm); /* Reset Off */
mdelay(20);
if (Read_hfc(cs, HFCSX_STATUS) & 2)
printk(KERN_WARNING "HFC-SX init bit busy\n");
cs->hw.hfcsx.last_fifo = 0xff; /* invalidate */
if (!set_fifo_size(cs)) continue;
break;
}
cs->hw.hfcsx.trm = 0 + HFCSX_BTRANS_THRESMASK; /* no echo connect , threshold */
Write_hfc(cs, HFCSX_TRM, cs->hw.hfcsx.trm);
Write_hfc(cs, HFCSX_CLKDEL, 0x0e); /* ST-Bit delay for TE-Mode */
cs->hw.hfcsx.sctrl_e = HFCSX_AUTO_AWAKE;
Write_hfc(cs, HFCSX_SCTRL_E, cs->hw.hfcsx.sctrl_e); /* S/T Auto awake */
cs->hw.hfcsx.bswapped = 0; /* no exchange */
cs->hw.hfcsx.nt_mode = 0; /* we are in TE mode */
cs->hw.hfcsx.ctmt = HFCSX_TIM3_125 | HFCSX_AUTO_TIMER;
Write_hfc(cs, HFCSX_CTMT, cs->hw.hfcsx.ctmt);
cs->hw.hfcsx.int_m1 = HFCSX_INTS_DTRANS | HFCSX_INTS_DREC |
HFCSX_INTS_L1STATE | HFCSX_INTS_TIMER;
Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);
/* Clear already pending ints */
if (Read_hfc(cs, HFCSX_INT_S1));
Write_hfc(cs, HFCSX_STATES, HFCSX_LOAD_STATE | 2); /* HFC ST 2 */
udelay(10);
Write_hfc(cs, HFCSX_STATES, 2); /* HFC ST 2 */
cs->hw.hfcsx.mst_m = HFCSX_MASTER; /* HFC Master Mode */
Write_hfc(cs, HFCSX_MST_MODE, cs->hw.hfcsx.mst_m);
cs->hw.hfcsx.sctrl = 0x40; /* set tx_lo mode, error in datasheet ! */
Write_hfc(cs, HFCSX_SCTRL, cs->hw.hfcsx.sctrl);
cs->hw.hfcsx.sctrl_r = 0;
Write_hfc(cs, HFCSX_SCTRL_R, cs->hw.hfcsx.sctrl_r);
/* Init GCI/IOM2 in master mode */
/* Slots 0 and 1 are set for B-chan 1 and 2 */
/* D- and monitor/CI channel are not enabled */
/* STIO1 is used as output for data, B1+B2 from ST->IOM+HFC */
/* STIO2 is used as data input, B1+B2 from IOM->ST */
/* ST B-channel send disabled -> continous 1s */
/* The IOM slots are always enabled */
cs->hw.hfcsx.conn = 0x36; /* set data flow directions */
Write_hfc(cs, HFCSX_CONNECT, cs->hw.hfcsx.conn);
Write_hfc(cs, HFCSX_B1_SSL, 0x80); /* B1-Slot 0 STIO1 out enabled */
Write_hfc(cs, HFCSX_B2_SSL, 0x81); /* B2-Slot 1 STIO1 out enabled */
Write_hfc(cs, HFCSX_B1_RSL, 0x80); /* B1-Slot 0 STIO2 in enabled */
Write_hfc(cs, HFCSX_B2_RSL, 0x81); /* B2-Slot 1 STIO2 in enabled */
/* Finally enable IRQ output */
cs->hw.hfcsx.int_m2 = HFCSX_IRQ_ENABLE;
Write_hfc(cs, HFCSX_INT_M2, cs->hw.hfcsx.int_m2);
if (Read_hfc(cs, HFCSX_INT_S2));
}
/***************************************************/
/* Timer function called when kernel timer expires */
/***************************************************/
static void
hfcsx_Timer(struct IsdnCardState *cs)
{
cs->hw.hfcsx.timer.expires = jiffies + 75;
/* WD RESET */
/* WriteReg(cs, HFCD_DATA, HFCD_CTMT, cs->hw.hfcsx.ctmt | 0x80);
add_timer(&cs->hw.hfcsx.timer);
*/
}
/************************************************/
/* select a b-channel entry matching and active */
/************************************************/
static
struct BCState *
Sel_BCS(struct IsdnCardState *cs, int channel)
{
if (cs->bcs[0].mode && (cs->bcs[0].channel == channel))
return (&cs->bcs[0]);
else if (cs->bcs[1].mode && (cs->bcs[1].channel == channel))
return (&cs->bcs[1]);
else
return (NULL);
}
/*******************************/
/* D-channel receive procedure */
/*******************************/
static
int
receive_dmsg(struct IsdnCardState *cs)
{
struct sk_buff *skb;
int count = 5;
if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
debugl1(cs, "rec_dmsg blocked");
return (1);
}
do {
skb = read_fifo(cs, HFCSX_SEL_D_RX, 0);
if (skb) {
skb_queue_tail(&cs->rq, skb);
schedule_event(cs, D_RCVBUFREADY);
}
} while (--count && skb);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
return (1);
}
/**********************************/
/* B-channel main receive routine */
/**********************************/
static void
main_rec_hfcsx(struct BCState *bcs)
{
struct IsdnCardState *cs = bcs->cs;
int count = 5;
struct sk_buff *skb;
Begin:
count--;
if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
debugl1(cs, "rec_data %d blocked", bcs->channel);
return;
}
skb = read_fifo(cs, ((bcs->channel) && (!cs->hw.hfcsx.bswapped)) ?
HFCSX_SEL_B2_RX : HFCSX_SEL_B1_RX,
(bcs->mode == L1_MODE_TRANS) ?
HFCSX_BTRANS_THRESHOLD : 0);
if (skb) {
skb_queue_tail(&bcs->rqueue, skb);
schedule_event(bcs, B_RCVBUFREADY);
}
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
if (count && skb)
goto Begin;
return;
}
/**************************/
/* D-channel send routine */
/**************************/
static void
hfcsx_fill_dfifo(struct IsdnCardState *cs)
{
if (!cs->tx_skb)
return;
if (cs->tx_skb->len <= 0)
return;
if (write_fifo(cs, cs->tx_skb, HFCSX_SEL_D_TX, 0)) {
dev_kfree_skb_any(cs->tx_skb);
cs->tx_skb = NULL;
}
return;
}
/**************************/
/* B-channel send routine */
/**************************/
static void
hfcsx_fill_fifo(struct BCState *bcs)
{
struct IsdnCardState *cs = bcs->cs;
if (!bcs->tx_skb)
return;
if (bcs->tx_skb->len <= 0)
return;
if (write_fifo(cs, bcs->tx_skb,
((bcs->channel) && (!cs->hw.hfcsx.bswapped)) ?
HFCSX_SEL_B2_TX : HFCSX_SEL_B1_TX,
(bcs->mode == L1_MODE_TRANS) ?
HFCSX_BTRANS_THRESHOLD : 0)) {
bcs->tx_cnt -= bcs->tx_skb->len;
if (test_bit(FLG_LLI_L1WAKEUP,&bcs->st->lli.flag) &&
(PACKET_NOACK != bcs->tx_skb->pkt_type)) {
u_long flags;
spin_lock_irqsave(&bcs->aclock, flags);
bcs->ackcnt += bcs->tx_skb->len;
spin_unlock_irqrestore(&bcs->aclock, flags);
schedule_event(bcs, B_ACKPENDING);
}
dev_kfree_skb_any(bcs->tx_skb);
bcs->tx_skb = NULL;
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
}
}
/**********************************************/
/* D-channel l1 state call for leased NT-mode */
/**********************************************/
static void
dch_nt_l2l1(struct PStack *st, int pr, void *arg)
{
struct IsdnCardState *cs = (struct IsdnCardState *) st->l1.hardware;
switch (pr) {
case (PH_DATA | REQUEST):
case (PH_PULL | REQUEST):
case (PH_PULL | INDICATION):
st->l1.l1hw(st, pr, arg);
break;
case (PH_ACTIVATE | REQUEST):
st->l1.l1l2(st, PH_ACTIVATE | CONFIRM, NULL);
break;
case (PH_TESTLOOP | REQUEST):
if (1 & (long) arg)
debugl1(cs, "PH_TEST_LOOP B1");
if (2 & (long) arg)
debugl1(cs, "PH_TEST_LOOP B2");
if (!(3 & (long) arg))
debugl1(cs, "PH_TEST_LOOP DISABLED");
st->l1.l1hw(st, HW_TESTLOOP | REQUEST, arg);
break;
default:
if (cs->debug)
debugl1(cs, "dch_nt_l2l1 msg %04X unhandled", pr);
break;
}
}
/***********************/
/* set/reset echo mode */
/***********************/
static int
hfcsx_auxcmd(struct IsdnCardState *cs, isdn_ctrl * ic)
{
unsigned long flags;
int i = *(unsigned int *) ic->parm.num;
if ((ic->arg == 98) &&
(!(cs->hw.hfcsx.int_m1 & (HFCSX_INTS_B2TRANS + HFCSX_INTS_B2REC + HFCSX_INTS_B1TRANS + HFCSX_INTS_B1REC)))) {
spin_lock_irqsave(&cs->lock, flags);
Write_hfc(cs, HFCSX_STATES, HFCSX_LOAD_STATE | 0); /* HFC ST G0 */
udelay(10);
cs->hw.hfcsx.sctrl |= SCTRL_MODE_NT;
Write_hfc(cs, HFCSX_SCTRL, cs->hw.hfcsx.sctrl); /* set NT-mode */
udelay(10);
Write_hfc(cs, HFCSX_STATES, HFCSX_LOAD_STATE | 1); /* HFC ST G1 */
udelay(10);
Write_hfc(cs, HFCSX_STATES, 1 | HFCSX_ACTIVATE | HFCSX_DO_ACTION);
cs->dc.hfcsx.ph_state = 1;
cs->hw.hfcsx.nt_mode = 1;
cs->hw.hfcsx.nt_timer = 0;
spin_unlock_irqrestore(&cs->lock, flags);
cs->stlist->l2.l2l1 = dch_nt_l2l1;
debugl1(cs, "NT mode activated");
return (0);
}
if ((cs->chanlimit > 1) || (cs->hw.hfcsx.bswapped) ||
(cs->hw.hfcsx.nt_mode) || (ic->arg != 12))
return (-EINVAL);
if (i) {
cs->logecho = 1;
cs->hw.hfcsx.trm |= 0x20; /* enable echo chan */
cs->hw.hfcsx.int_m1 |= HFCSX_INTS_B2REC;
/* reset Channel !!!!! */
} else {
cs->logecho = 0;
cs->hw.hfcsx.trm &= ~0x20; /* disable echo chan */
cs->hw.hfcsx.int_m1 &= ~HFCSX_INTS_B2REC;
}
cs->hw.hfcsx.sctrl_r &= ~SCTRL_B2_ENA;
cs->hw.hfcsx.sctrl &= ~SCTRL_B2_ENA;
cs->hw.hfcsx.conn |= 0x10; /* B2-IOM -> B2-ST */
cs->hw.hfcsx.ctmt &= ~2;
spin_lock_irqsave(&cs->lock, flags);
Write_hfc(cs, HFCSX_CTMT, cs->hw.hfcsx.ctmt);
Write_hfc(cs, HFCSX_SCTRL_R, cs->hw.hfcsx.sctrl_r);
Write_hfc(cs, HFCSX_SCTRL, cs->hw.hfcsx.sctrl);
Write_hfc(cs, HFCSX_CONNECT, cs->hw.hfcsx.conn);
Write_hfc(cs, HFCSX_TRM, cs->hw.hfcsx.trm);
Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);
spin_unlock_irqrestore(&cs->lock, flags);
return (0);
} /* hfcsx_auxcmd */
/*****************************/
/* E-channel receive routine */
/*****************************/
static void
receive_emsg(struct IsdnCardState *cs)
{
int count = 5;
u_char *ptr;
struct sk_buff *skb;
if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
debugl1(cs, "echo_rec_data blocked");
return;
}
do {
skb = read_fifo(cs, HFCSX_SEL_B2_RX, 0);
if (skb) {
if (cs->debug & DEB_DLOG_HEX) {
ptr = cs->dlog;
if ((skb->len) < MAX_DLOG_SPACE / 3 - 10) {
*ptr++ = 'E';
*ptr++ = 'C';
*ptr++ = 'H';
*ptr++ = 'O';
*ptr++ = ':';
ptr += QuickHex(ptr, skb->data, skb->len);
ptr--;
*ptr++ = '\n';
*ptr = 0;
HiSax_putstatus(cs, NULL, cs->dlog);
} else
HiSax_putstatus(cs, "LogEcho: ", "warning Frame too big (%d)", skb->len);
}
dev_kfree_skb_any(skb);
}
} while (--count && skb);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
return;
} /* receive_emsg */
/*********************/
/* Interrupt handler */
/*********************/
static irqreturn_t
hfcsx_interrupt(int intno, void *dev_id, struct pt_regs *regs)
{
struct IsdnCardState *cs = dev_id;
u_char exval;
struct BCState *bcs;
int count = 15;
u_long flags;
u_char val, stat;
if (!(cs->hw.hfcsx.int_m2 & 0x08))
return IRQ_NONE; /* not initialised */
spin_lock_irqsave(&cs->lock, flags);
if (HFCSX_ANYINT & (stat = Read_hfc(cs, HFCSX_STATUS))) {
val = Read_hfc(cs, HFCSX_INT_S1);
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "HFC-SX: stat(%02x) s1(%02x)", stat, val);
} else {
spin_unlock_irqrestore(&cs->lock, flags);
return IRQ_NONE;
}
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "HFC-SX irq %x %s", val,
test_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags) ?
"locked" : "unlocked");
val &= cs->hw.hfcsx.int_m1;
if (val & 0x40) { /* state machine irq */
exval = Read_hfc(cs, HFCSX_STATES) & 0xf;
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "ph_state chg %d->%d", cs->dc.hfcsx.ph_state,
exval);
cs->dc.hfcsx.ph_state = exval;
schedule_event(cs, D_L1STATECHANGE);
val &= ~0x40;
}
if (val & 0x80) { /* timer irq */
if (cs->hw.hfcsx.nt_mode) {
if ((--cs->hw.hfcsx.nt_timer) < 0)
schedule_event(cs, D_L1STATECHANGE);
}
val &= ~0x80;
Write_hfc(cs, HFCSX_CTMT, cs->hw.hfcsx.ctmt | HFCSX_CLTIMER);
}
while (val) {
if (test_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
cs->hw.hfcsx.int_s1 |= val;
spin_unlock_irqrestore(&cs->lock, flags);
return IRQ_HANDLED;
}
if (cs->hw.hfcsx.int_s1 & 0x18) {
exval = val;
val = cs->hw.hfcsx.int_s1;
cs->hw.hfcsx.int_s1 = exval;
}
if (val & 0x08) {
if (!(bcs = Sel_BCS(cs, cs->hw.hfcsx.bswapped ? 1 : 0))) {
if (cs->debug)
debugl1(cs, "hfcsx spurious 0x08 IRQ");
} else
main_rec_hfcsx(bcs);
}
if (val & 0x10) {
if (cs->logecho)
receive_emsg(cs);
else if (!(bcs = Sel_BCS(cs, 1))) {
if (cs->debug)
debugl1(cs, "hfcsx spurious 0x10 IRQ");
} else
main_rec_hfcsx(bcs);
}
if (val & 0x01) {
if (!(bcs = Sel_BCS(cs, cs->hw.hfcsx.bswapped ? 1 : 0))) {
if (cs->debug)
debugl1(cs, "hfcsx spurious 0x01 IRQ");
} else {
if (bcs->tx_skb) {
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfcsx_fill_fifo(bcs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else
debugl1(cs, "fill_data %d blocked", bcs->channel);
} else {
if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfcsx_fill_fifo(bcs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else
debugl1(cs, "fill_data %d blocked", bcs->channel);
} else {
schedule_event(bcs, B_XMTBUFREADY);
}
}
}
}
if (val & 0x02) {
if (!(bcs = Sel_BCS(cs, 1))) {
if (cs->debug)
debugl1(cs, "hfcsx spurious 0x02 IRQ");
} else {
if (bcs->tx_skb) {
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfcsx_fill_fifo(bcs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else
debugl1(cs, "fill_data %d blocked", bcs->channel);
} else {
if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfcsx_fill_fifo(bcs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else
debugl1(cs, "fill_data %d blocked", bcs->channel);
} else {
schedule_event(bcs, B_XMTBUFREADY);
}
}
}
}
if (val & 0x20) { /* receive dframe */
receive_dmsg(cs);
}
if (val & 0x04) { /* dframe transmitted */
if (test_and_clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags))
del_timer(&cs->dbusytimer);
if (test_and_clear_bit(FLG_L1_DBUSY, &cs->HW_Flags))
schedule_event(cs, D_CLEARBUSY);
if (cs->tx_skb) {
if (cs->tx_skb->len) {
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfcsx_fill_dfifo(cs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else {
debugl1(cs, "hfcsx_fill_dfifo irq blocked");
}
goto afterXPR;
} else {
dev_kfree_skb_irq(cs->tx_skb);
cs->tx_cnt = 0;
cs->tx_skb = NULL;
}
}
if ((cs->tx_skb = skb_dequeue(&cs->sq))) {
cs->tx_cnt = 0;
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfcsx_fill_dfifo(cs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else {
debugl1(cs, "hfcsx_fill_dfifo irq blocked");
}
} else
schedule_event(cs, D_XMTBUFREADY);
}
afterXPR:
if (cs->hw.hfcsx.int_s1 && count--) {
val = cs->hw.hfcsx.int_s1;
cs->hw.hfcsx.int_s1 = 0;
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "HFC-SX irq %x loop %d", val, 15 - count);
} else
val = 0;
}
spin_unlock_irqrestore(&cs->lock, flags);
return IRQ_HANDLED;
}
/********************************************************************/
/* timer callback for D-chan busy resolution. Currently no function */
/********************************************************************/
static void
hfcsx_dbusy_timer(struct IsdnCardState *cs)
{
}
/*************************************/
/* Layer 1 D-channel hardware access */
/*************************************/
static void
HFCSX_l1hw(struct PStack *st, int pr, void *arg)
{
struct IsdnCardState *cs = (struct IsdnCardState *) st->l1.hardware;
struct sk_buff *skb = arg;
u_long flags;
switch (pr) {
case (PH_DATA | REQUEST):
if (cs->debug & DEB_DLOG_HEX)
LogFrame(cs, skb->data, skb->len);
if (cs->debug & DEB_DLOG_VERBOSE)
dlogframe(cs, skb, 0);
spin_lock_irqsave(&cs->lock, flags);
if (cs->tx_skb) {
skb_queue_tail(&cs->sq, skb);
#ifdef L2FRAME_DEBUG /* psa */
if (cs->debug & L1_DEB_LAPD)
Logl2Frame(cs, skb, "PH_DATA Queued", 0);
#endif
} else {
cs->tx_skb = skb;
cs->tx_cnt = 0;
#ifdef L2FRAME_DEBUG /* psa */
if (cs->debug & L1_DEB_LAPD)
Logl2Frame(cs, skb, "PH_DATA", 0);
#endif
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfcsx_fill_dfifo(cs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else
debugl1(cs, "hfcsx_fill_dfifo blocked");
}
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (PH_PULL | INDICATION):
spin_lock_irqsave(&cs->lock, flags);
if (cs->tx_skb) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, " l2l1 tx_skb exist this shouldn't happen");
skb_queue_tail(&cs->sq, skb);
spin_unlock_irqrestore(&cs->lock, flags);
break;
}
if (cs->debug & DEB_DLOG_HEX)
LogFrame(cs, skb->data, skb->len);
if (cs->debug & DEB_DLOG_VERBOSE)
dlogframe(cs, skb, 0);
cs->tx_skb = skb;
cs->tx_cnt = 0;
#ifdef L2FRAME_DEBUG /* psa */
if (cs->debug & L1_DEB_LAPD)
Logl2Frame(cs, skb, "PH_DATA_PULLED", 0);
#endif
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfcsx_fill_dfifo(cs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else
debugl1(cs, "hfcsx_fill_dfifo blocked");
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (PH_PULL | REQUEST):
#ifdef L2FRAME_DEBUG /* psa */
if (cs->debug & L1_DEB_LAPD)
debugl1(cs, "-> PH_REQUEST_PULL");
#endif
if (!cs->tx_skb) {
test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
} else
test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
break;
case (HW_RESET | REQUEST):
spin_lock_irqsave(&cs->lock, flags);
Write_hfc(cs, HFCSX_STATES, HFCSX_LOAD_STATE | 3); /* HFC ST 3 */
udelay(6);
Write_hfc(cs, HFCSX_STATES, 3); /* HFC ST 2 */
cs->hw.hfcsx.mst_m |= HFCSX_MASTER;
Write_hfc(cs, HFCSX_MST_MODE, cs->hw.hfcsx.mst_m);
Write_hfc(cs, HFCSX_STATES, HFCSX_ACTIVATE | HFCSX_DO_ACTION);
spin_unlock_irqrestore(&cs->lock, flags);
l1_msg(cs, HW_POWERUP | CONFIRM, NULL);
break;
case (HW_ENABLE | REQUEST):
spin_lock_irqsave(&cs->lock, flags);
Write_hfc(cs, HFCSX_STATES, HFCSX_ACTIVATE | HFCSX_DO_ACTION);
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (HW_DEACTIVATE | REQUEST):
spin_lock_irqsave(&cs->lock, flags);
cs->hw.hfcsx.mst_m &= ~HFCSX_MASTER;
Write_hfc(cs, HFCSX_MST_MODE, cs->hw.hfcsx.mst_m);
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (HW_INFO3 | REQUEST):
spin_lock_irqsave(&cs->lock, flags);
cs->hw.hfcsx.mst_m |= HFCSX_MASTER;
Write_hfc(cs, HFCSX_MST_MODE, cs->hw.hfcsx.mst_m);
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (HW_TESTLOOP | REQUEST):
spin_lock_irqsave(&cs->lock, flags);
switch ((int) arg) {
case (1):
Write_hfc(cs, HFCSX_B1_SSL, 0x80); /* tx slot */
Write_hfc(cs, HFCSX_B1_RSL, 0x80); /* rx slot */
cs->hw.hfcsx.conn = (cs->hw.hfcsx.conn & ~7) | 1;
Write_hfc(cs, HFCSX_CONNECT, cs->hw.hfcsx.conn);
break;
case (2):
Write_hfc(cs, HFCSX_B2_SSL, 0x81); /* tx slot */
Write_hfc(cs, HFCSX_B2_RSL, 0x81); /* rx slot */
cs->hw.hfcsx.conn = (cs->hw.hfcsx.conn & ~0x38) | 0x08;
Write_hfc(cs, HFCSX_CONNECT, cs->hw.hfcsx.conn);
break;
default:
spin_unlock_irqrestore(&cs->lock, flags);
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "hfcsx_l1hw loop invalid %4x", (int) arg);
return;
}
cs->hw.hfcsx.trm |= 0x80; /* enable IOM-loop */
Write_hfc(cs, HFCSX_TRM, cs->hw.hfcsx.trm);
spin_unlock_irqrestore(&cs->lock, flags);
break;
default:
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "hfcsx_l1hw unknown pr %4x", pr);
break;
}
}
/***********************************************/
/* called during init setting l1 stack pointer */
/***********************************************/
static void
setstack_hfcsx(struct PStack *st, struct IsdnCardState *cs)
{
st->l1.l1hw = HFCSX_l1hw;
}
/**************************************/
/* send B-channel data if not blocked */
/**************************************/
static void
hfcsx_send_data(struct BCState *bcs)
{
struct IsdnCardState *cs = bcs->cs;
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfcsx_fill_fifo(bcs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else
debugl1(cs, "send_data %d blocked", bcs->channel);
}
/***************************************************************/
/* activate/deactivate hardware for selected channels and mode */
/***************************************************************/
static void
mode_hfcsx(struct BCState *bcs, int mode, int bc)
{
struct IsdnCardState *cs = bcs->cs;
int fifo2;
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "HFCSX bchannel mode %d bchan %d/%d",
mode, bc, bcs->channel);
bcs->mode = mode;
bcs->channel = bc;
fifo2 = bc;
if (cs->chanlimit > 1) {
cs->hw.hfcsx.bswapped = 0; /* B1 and B2 normal mode */
cs->hw.hfcsx.sctrl_e &= ~0x80;
} else {
if (bc) {
if (mode != L1_MODE_NULL) {
cs->hw.hfcsx.bswapped = 1; /* B1 and B2 exchanged */
cs->hw.hfcsx.sctrl_e |= 0x80;
} else {
cs->hw.hfcsx.bswapped = 0; /* B1 and B2 normal mode */
cs->hw.hfcsx.sctrl_e &= ~0x80;
}
fifo2 = 0;
} else {
cs->hw.hfcsx.bswapped = 0; /* B1 and B2 normal mode */
cs->hw.hfcsx.sctrl_e &= ~0x80;
}
}
switch (mode) {
case (L1_MODE_NULL):
if (bc) {
cs->hw.hfcsx.sctrl &= ~SCTRL_B2_ENA;
cs->hw.hfcsx.sctrl_r &= ~SCTRL_B2_ENA;
} else {
cs->hw.hfcsx.sctrl &= ~SCTRL_B1_ENA;
cs->hw.hfcsx.sctrl_r &= ~SCTRL_B1_ENA;
}
if (fifo2) {
cs->hw.hfcsx.int_m1 &= ~(HFCSX_INTS_B2TRANS + HFCSX_INTS_B2REC);
} else {
cs->hw.hfcsx.int_m1 &= ~(HFCSX_INTS_B1TRANS + HFCSX_INTS_B1REC);
}
break;
case (L1_MODE_TRANS):
if (bc) {
cs->hw.hfcsx.sctrl |= SCTRL_B2_ENA;
cs->hw.hfcsx.sctrl_r |= SCTRL_B2_ENA;
} else {
cs->hw.hfcsx.sctrl |= SCTRL_B1_ENA;
cs->hw.hfcsx.sctrl_r |= SCTRL_B1_ENA;
}
if (fifo2) {
cs->hw.hfcsx.int_m1 |= (HFCSX_INTS_B2TRANS + HFCSX_INTS_B2REC);
cs->hw.hfcsx.ctmt |= 2;
cs->hw.hfcsx.conn &= ~0x18;
} else {
cs->hw.hfcsx.int_m1 |= (HFCSX_INTS_B1TRANS + HFCSX_INTS_B1REC);
cs->hw.hfcsx.ctmt |= 1;
cs->hw.hfcsx.conn &= ~0x03;
}
break;
case (L1_MODE_HDLC):
if (bc) {
cs->hw.hfcsx.sctrl |= SCTRL_B2_ENA;
cs->hw.hfcsx.sctrl_r |= SCTRL_B2_ENA;
} else {
cs->hw.hfcsx.sctrl |= SCTRL_B1_ENA;
cs->hw.hfcsx.sctrl_r |= SCTRL_B1_ENA;
}
if (fifo2) {
cs->hw.hfcsx.int_m1 |= (HFCSX_INTS_B2TRANS + HFCSX_INTS_B2REC);
cs->hw.hfcsx.ctmt &= ~2;
cs->hw.hfcsx.conn &= ~0x18;
} else {
cs->hw.hfcsx.int_m1 |= (HFCSX_INTS_B1TRANS + HFCSX_INTS_B1REC);
cs->hw.hfcsx.ctmt &= ~1;
cs->hw.hfcsx.conn &= ~0x03;
}
break;
case (L1_MODE_EXTRN):
if (bc) {
cs->hw.hfcsx.conn |= 0x10;
cs->hw.hfcsx.sctrl |= SCTRL_B2_ENA;
cs->hw.hfcsx.sctrl_r |= SCTRL_B2_ENA;
cs->hw.hfcsx.int_m1 &= ~(HFCSX_INTS_B2TRANS + HFCSX_INTS_B2REC);
} else {
cs->hw.hfcsx.conn |= 0x02;
cs->hw.hfcsx.sctrl |= SCTRL_B1_ENA;
cs->hw.hfcsx.sctrl_r |= SCTRL_B1_ENA;
cs->hw.hfcsx.int_m1 &= ~(HFCSX_INTS_B1TRANS + HFCSX_INTS_B1REC);
}
break;
}
Write_hfc(cs, HFCSX_SCTRL_E, cs->hw.hfcsx.sctrl_e);
Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);
Write_hfc(cs, HFCSX_SCTRL, cs->hw.hfcsx.sctrl);
Write_hfc(cs, HFCSX_SCTRL_R, cs->hw.hfcsx.sctrl_r);
Write_hfc(cs, HFCSX_CTMT, cs->hw.hfcsx.ctmt);
Write_hfc(cs, HFCSX_CONNECT, cs->hw.hfcsx.conn);
if (mode != L1_MODE_EXTRN) {
reset_fifo(cs, fifo2 ? HFCSX_SEL_B2_RX : HFCSX_SEL_B1_RX);
reset_fifo(cs, fifo2 ? HFCSX_SEL_B2_TX : HFCSX_SEL_B1_TX);
}
}
/******************************/
/* Layer2 -> Layer 1 Transfer */
/******************************/
static void
hfcsx_l2l1(struct PStack *st, int pr, void *arg)
{
struct BCState *bcs = st->l1.bcs;
struct sk_buff *skb = arg;
u_long flags;
switch (pr) {
case (PH_DATA | REQUEST):
spin_lock_irqsave(&bcs->cs->lock, flags);
if (bcs->tx_skb) {
skb_queue_tail(&bcs->squeue, skb);
} else {
bcs->tx_skb = skb;
// test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
bcs->cs->BC_Send_Data(bcs);
}
spin_unlock_irqrestore(&bcs->cs->lock, flags);
break;
case (PH_PULL | INDICATION):
spin_lock_irqsave(&bcs->cs->lock, flags);
if (bcs->tx_skb) {
printk(KERN_WARNING "hfc_l2l1: this shouldn't happen\n");
} else {
// test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
bcs->tx_skb = skb;
bcs->cs->BC_Send_Data(bcs);
}
spin_unlock_irqrestore(&bcs->cs->lock, flags);
break;
case (PH_PULL | REQUEST):
if (!bcs->tx_skb) {
test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
} else
test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
break;
case (PH_ACTIVATE | REQUEST):
spin_lock_irqsave(&bcs->cs->lock, flags);
test_and_set_bit(BC_FLG_ACTIV, &bcs->Flag);
mode_hfcsx(bcs, st->l1.mode, st->l1.bc);
spin_unlock_irqrestore(&bcs->cs->lock, flags);
l1_msg_b(st, pr, arg);
break;
case (PH_DEACTIVATE | REQUEST):
l1_msg_b(st, pr, arg);
break;
case (PH_DEACTIVATE | CONFIRM):
spin_lock_irqsave(&bcs->cs->lock, flags);
test_and_clear_bit(BC_FLG_ACTIV, &bcs->Flag);
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
mode_hfcsx(bcs, 0, st->l1.bc);
spin_unlock_irqrestore(&bcs->cs->lock, flags);
st->l1.l1l2(st, PH_DEACTIVATE | CONFIRM, NULL);
break;
}
}
/******************************************/
/* deactivate B-channel access and queues */
/******************************************/
static void
close_hfcsx(struct BCState *bcs)
{
mode_hfcsx(bcs, 0, bcs->channel);
if (test_and_clear_bit(BC_FLG_INIT, &bcs->Flag)) {
skb_queue_purge(&bcs->rqueue);
skb_queue_purge(&bcs->squeue);
if (bcs->tx_skb) {
dev_kfree_skb_any(bcs->tx_skb);
bcs->tx_skb = NULL;
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
}
}
}
/*************************************/
/* init B-channel queues and control */
/*************************************/
static int
open_hfcsxstate(struct IsdnCardState *cs, struct BCState *bcs)
{
if (!test_and_set_bit(BC_FLG_INIT, &bcs->Flag)) {
skb_queue_head_init(&bcs->rqueue);
skb_queue_head_init(&bcs->squeue);
}
bcs->tx_skb = NULL;
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
bcs->event = 0;
bcs->tx_cnt = 0;
return (0);
}
/*********************************/
/* inits the stack for B-channel */
/*********************************/
static int
setstack_2b(struct PStack *st, struct BCState *bcs)
{
bcs->channel = st->l1.bc;
if (open_hfcsxstate(st->l1.hardware, bcs))
return (-1);
st->l1.bcs = bcs;
st->l2.l2l1 = hfcsx_l2l1;
setstack_manager(st);
bcs->st = st;
setstack_l1_B(st);
return (0);
}
/***************************/
/* handle L1 state changes */
/***************************/
static void
hfcsx_bh(struct IsdnCardState *cs)
{
u_long flags;
if (!cs)
return;
if (test_and_clear_bit(D_L1STATECHANGE, &cs->event)) {
if (!cs->hw.hfcsx.nt_mode)
switch (cs->dc.hfcsx.ph_state) {
case (0):
l1_msg(cs, HW_RESET | INDICATION, NULL);
break;
case (3):
l1_msg(cs, HW_DEACTIVATE | INDICATION, NULL);
break;
case (8):
l1_msg(cs, HW_RSYNC | INDICATION, NULL);
break;
case (6):
l1_msg(cs, HW_INFO2 | INDICATION, NULL);
break;
case (7):
l1_msg(cs, HW_INFO4_P8 | INDICATION, NULL);
break;
default:
break;
} else {
switch (cs->dc.hfcsx.ph_state) {
case (2):
spin_lock_irqsave(&cs->lock, flags);
if (cs->hw.hfcsx.nt_timer < 0) {
cs->hw.hfcsx.nt_timer = 0;
cs->hw.hfcsx.int_m1 &= ~HFCSX_INTS_TIMER;
Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);
/* Clear already pending ints */
if (Read_hfc(cs, HFCSX_INT_S1));
Write_hfc(cs, HFCSX_STATES, 4 | HFCSX_LOAD_STATE);
udelay(10);
Write_hfc(cs, HFCSX_STATES, 4);
cs->dc.hfcsx.ph_state = 4;
} else {
cs->hw.hfcsx.int_m1 |= HFCSX_INTS_TIMER;
Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);
cs->hw.hfcsx.ctmt &= ~HFCSX_AUTO_TIMER;
cs->hw.hfcsx.ctmt |= HFCSX_TIM3_125;
Write_hfc(cs, HFCSX_CTMT, cs->hw.hfcsx.ctmt | HFCSX_CLTIMER);
Write_hfc(cs, HFCSX_CTMT, cs->hw.hfcsx.ctmt | HFCSX_CLTIMER);
cs->hw.hfcsx.nt_timer = NT_T1_COUNT;
Write_hfc(cs, HFCSX_STATES, 2 | HFCSX_NT_G2_G3); /* allow G2 -> G3 transition */
}
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (1):
case (3):
case (4):
spin_lock_irqsave(&cs->lock, flags);
cs->hw.hfcsx.nt_timer = 0;
cs->hw.hfcsx.int_m1 &= ~HFCSX_INTS_TIMER;
Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);
spin_unlock_irqrestore(&cs->lock, flags);
break;
default:
break;
}
}
}
if (test_and_clear_bit(D_RCVBUFREADY, &cs->event))
DChannel_proc_rcv(cs);
if (test_and_clear_bit(D_XMTBUFREADY, &cs->event))
DChannel_proc_xmt(cs);
}
/********************************/
/* called for card init message */
/********************************/
static void __devinit
inithfcsx(struct IsdnCardState *cs)
{
cs->setstack_d = setstack_hfcsx;
cs->BC_Send_Data = &hfcsx_send_data;
cs->bcs[0].BC_SetStack = setstack_2b;
cs->bcs[1].BC_SetStack = setstack_2b;
cs->bcs[0].BC_Close = close_hfcsx;
cs->bcs[1].BC_Close = close_hfcsx;
mode_hfcsx(cs->bcs, 0, 0);
mode_hfcsx(cs->bcs + 1, 0, 1);
}
/*******************************************/
/* handle card messages from control layer */
/*******************************************/
static int
hfcsx_card_msg(struct IsdnCardState *cs, int mt, void *arg)
{
u_long flags;
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "HFCSX: card_msg %x", mt);
switch (mt) {
case CARD_RESET:
spin_lock_irqsave(&cs->lock, flags);
reset_hfcsx(cs);
spin_unlock_irqrestore(&cs->lock, flags);
return (0);
case CARD_RELEASE:
release_io_hfcsx(cs);
return (0);
case CARD_INIT:
spin_lock_irqsave(&cs->lock, flags);
inithfcsx(cs);
spin_unlock_irqrestore(&cs->lock, flags);
msleep(80); /* Timeout 80ms */
/* now switch timer interrupt off */
spin_lock_irqsave(&cs->lock, flags);
cs->hw.hfcsx.int_m1 &= ~HFCSX_INTS_TIMER;
Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);
/* reinit mode reg */
Write_hfc(cs, HFCSX_MST_MODE, cs->hw.hfcsx.mst_m);
spin_unlock_irqrestore(&cs->lock, flags);
return (0);
case CARD_TEST:
return (0);
}
return (0);
}
#ifdef __ISAPNP__
static struct isapnp_device_id hfc_ids[] __devinitdata = {
{ ISAPNP_VENDOR('T', 'A', 'G'), ISAPNP_FUNCTION(0x2620),
ISAPNP_VENDOR('T', 'A', 'G'), ISAPNP_FUNCTION(0x2620),
(unsigned long) "Teles 16.3c2" },
{ 0, }
};
static struct isapnp_device_id *ipid __devinitdata = &hfc_ids[0];
static struct pnp_card *pnp_c __devinitdata = NULL;
#endif
int __devinit
setup_hfcsx(struct IsdnCard *card)
{
struct IsdnCardState *cs = card->cs;
char tmp[64];
strcpy(tmp, hfcsx_revision);
printk(KERN_INFO "HiSax: HFC-SX driver Rev. %s\n", HiSax_getrev(tmp));
#ifdef __ISAPNP__
if (!card->para[1] && isapnp_present()) {
struct pnp_dev *pnp_d;
while(ipid->card_vendor) {
if ((pnp_c = pnp_find_card(ipid->card_vendor,
ipid->card_device, pnp_c))) {
pnp_d = NULL;
if ((pnp_d = pnp_find_dev(pnp_c,
ipid->vendor, ipid->function, pnp_d))) {
int err;
printk(KERN_INFO "HiSax: %s detected\n",
(char *)ipid->driver_data);
pnp_disable_dev(pnp_d);
err = pnp_activate_dev(pnp_d);
if (err<0) {
printk(KERN_WARNING "%s: pnp_activate_dev ret(%d)\n",
__FUNCTION__, err);
return(0);
}
card->para[1] = pnp_port_start(pnp_d, 0);
card->para[0] = pnp_irq(pnp_d, 0);
if (!card->para[0] || !card->para[1]) {
printk(KERN_ERR "HFC PnP:some resources are missing %ld/%lx\n",
card->para[0], card->para[1]);
pnp_disable_dev(pnp_d);
return(0);
}
break;
} else {
printk(KERN_ERR "HFC PnP: PnP error card found, no device\n");
}
}
ipid++;
pnp_c = NULL;
}
if (!ipid->card_vendor) {
printk(KERN_INFO "HFC PnP: no ISAPnP card found\n");
return(0);
}
}
#endif
cs->hw.hfcsx.base = card->para[1] & 0xfffe;
cs->irq = card->para[0];
cs->hw.hfcsx.int_s1 = 0;
cs->dc.hfcsx.ph_state = 0;
cs->hw.hfcsx.fifo = 255;
if ((cs->typ == ISDN_CTYPE_HFC_SX) ||
(cs->typ == ISDN_CTYPE_HFC_SP_PCMCIA)) {
if ((!cs->hw.hfcsx.base) || !request_region(cs->hw.hfcsx.base, 2, "HFCSX isdn")) {
printk(KERN_WARNING
"HiSax: HFC-SX io-base %#lx already in use\n",
cs->hw.hfcsx.base);
return(0);
}
byteout(cs->hw.hfcsx.base, cs->hw.hfcsx.base & 0xFF);
byteout(cs->hw.hfcsx.base + 1,
((cs->hw.hfcsx.base >> 8) & 3) | 0x54);
udelay(10);
cs->hw.hfcsx.chip = Read_hfc(cs,HFCSX_CHIP_ID);
switch (cs->hw.hfcsx.chip >> 4) {
case 1:
tmp[0] ='+';
break;
case 9:
tmp[0] ='P';
break;
default:
printk(KERN_WARNING
"HFC-SX: invalid chip id 0x%x\n",
cs->hw.hfcsx.chip >> 4);
release_region(cs->hw.hfcsx.base, 2);
return(0);
}
if (!ccd_sp_irqtab[cs->irq & 0xF]) {
printk(KERN_WARNING
"HFC_SX: invalid irq %d specified\n",cs->irq & 0xF);
release_region(cs->hw.hfcsx.base, 2);
return(0);
}
if (!(cs->hw.hfcsx.extra = (void *)
kmalloc(sizeof(struct hfcsx_extra), GFP_ATOMIC))) {
release_region(cs->hw.hfcsx.base, 2);
printk(KERN_WARNING "HFC-SX: unable to allocate memory\n");
return(0);
}
printk(KERN_INFO "HFC-S%c chip detected at base 0x%x IRQ %d HZ %d\n",
tmp[0], (u_int) cs->hw.hfcsx.base, cs->irq, HZ);
cs->hw.hfcsx.int_m2 = 0; /* disable alle interrupts */
cs->hw.hfcsx.int_m1 = 0;
Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);
Write_hfc(cs, HFCSX_INT_M2, cs->hw.hfcsx.int_m2);
} else
return (0); /* no valid card type */
cs->dbusytimer.function = (void *) hfcsx_dbusy_timer;
cs->dbusytimer.data = (long) cs;
init_timer(&cs->dbusytimer);
INIT_WORK(&cs->tqueue, (void *)(void *) hfcsx_bh, cs);
cs->readisac = NULL;
cs->writeisac = NULL;
cs->readisacfifo = NULL;
cs->writeisacfifo = NULL;
cs->BC_Read_Reg = NULL;
cs->BC_Write_Reg = NULL;
cs->irq_func = &hfcsx_interrupt;
cs->hw.hfcsx.timer.function = (void *) hfcsx_Timer;
cs->hw.hfcsx.timer.data = (long) cs;
cs->hw.hfcsx.b_fifo_size = 0; /* fifo size still unknown */
cs->hw.hfcsx.cirm = ccd_sp_irqtab[cs->irq & 0xF]; /* RAM not evaluated */
init_timer(&cs->hw.hfcsx.timer);
reset_hfcsx(cs);
cs->cardmsg = &hfcsx_card_msg;
cs->auxcmd = &hfcsx_auxcmd;
return (1);
}