1
linux/arch/mips/mm/uasm.c
David Daney 8d662c8d34 MIPS: Use WARN() in uasm for better diagnostics.
On the off chance that uasm ever warns about overflow, there is no way
to know what the offending instruction is.

Change the printks to WARNs, so we can get a nice stack trace.  It has
the added benefit of being much more noticeable than the short single
line warning message, so is less likely to be ignored.

Signed-off-by: David Daney <ddaney@caviumnetworks.com>
To: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/1905/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2011-01-18 19:30:24 +01:00

700 lines
18 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* A small micro-assembler. It is intentionally kept simple, does only
* support a subset of instructions, and does not try to hide pipeline
* effects like branch delay slots.
*
* Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
* Copyright (C) 2005, 2007 Maciej W. Rozycki
* Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/init.h>
#include <asm/inst.h>
#include <asm/elf.h>
#include <asm/bugs.h>
#include <asm/uasm.h>
enum fields {
RS = 0x001,
RT = 0x002,
RD = 0x004,
RE = 0x008,
SIMM = 0x010,
UIMM = 0x020,
BIMM = 0x040,
JIMM = 0x080,
FUNC = 0x100,
SET = 0x200,
SCIMM = 0x400
};
#define OP_MASK 0x3f
#define OP_SH 26
#define RS_MASK 0x1f
#define RS_SH 21
#define RT_MASK 0x1f
#define RT_SH 16
#define RD_MASK 0x1f
#define RD_SH 11
#define RE_MASK 0x1f
#define RE_SH 6
#define IMM_MASK 0xffff
#define IMM_SH 0
#define JIMM_MASK 0x3ffffff
#define JIMM_SH 0
#define FUNC_MASK 0x3f
#define FUNC_SH 0
#define SET_MASK 0x7
#define SET_SH 0
#define SCIMM_MASK 0xfffff
#define SCIMM_SH 6
enum opcode {
insn_invalid,
insn_addu, insn_addiu, insn_and, insn_andi, insn_beq,
insn_beql, insn_bgez, insn_bgezl, insn_bltz, insn_bltzl,
insn_bne, insn_cache, insn_daddu, insn_daddiu, insn_dmfc0,
insn_dmtc0, insn_dsll, insn_dsll32, insn_dsra, insn_dsrl,
insn_dsrl32, insn_drotr, insn_drotr32, insn_dsubu, insn_eret,
insn_j, insn_jal, insn_jr, insn_ld, insn_ll, insn_lld,
insn_lui, insn_lw, insn_mfc0, insn_mtc0, insn_or, insn_ori,
insn_pref, insn_rfe, insn_sc, insn_scd, insn_sd, insn_sll,
insn_sra, insn_srl, insn_rotr, insn_subu, insn_sw, insn_tlbp,
insn_tlbr, insn_tlbwi, insn_tlbwr, insn_xor, insn_xori,
insn_dins, insn_dinsm, insn_syscall, insn_bbit0, insn_bbit1,
insn_lwx, insn_ldx
};
struct insn {
enum opcode opcode;
u32 match;
enum fields fields;
};
/* This macro sets the non-variable bits of an instruction. */
#define M(a, b, c, d, e, f) \
((a) << OP_SH \
| (b) << RS_SH \
| (c) << RT_SH \
| (d) << RD_SH \
| (e) << RE_SH \
| (f) << FUNC_SH)
static struct insn insn_table[] __uasminitdata = {
{ insn_addiu, M(addiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
{ insn_addu, M(spec_op, 0, 0, 0, 0, addu_op), RS | RT | RD },
{ insn_and, M(spec_op, 0, 0, 0, 0, and_op), RS | RT | RD },
{ insn_andi, M(andi_op, 0, 0, 0, 0, 0), RS | RT | UIMM },
{ insn_beq, M(beq_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
{ insn_beql, M(beql_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
{ insn_bgez, M(bcond_op, 0, bgez_op, 0, 0, 0), RS | BIMM },
{ insn_bgezl, M(bcond_op, 0, bgezl_op, 0, 0, 0), RS | BIMM },
{ insn_bltz, M(bcond_op, 0, bltz_op, 0, 0, 0), RS | BIMM },
{ insn_bltzl, M(bcond_op, 0, bltzl_op, 0, 0, 0), RS | BIMM },
{ insn_bne, M(bne_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
{ insn_cache, M(cache_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
{ insn_daddiu, M(daddiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
{ insn_daddu, M(spec_op, 0, 0, 0, 0, daddu_op), RS | RT | RD },
{ insn_dmfc0, M(cop0_op, dmfc_op, 0, 0, 0, 0), RT | RD | SET},
{ insn_dmtc0, M(cop0_op, dmtc_op, 0, 0, 0, 0), RT | RD | SET},
{ insn_dsll, M(spec_op, 0, 0, 0, 0, dsll_op), RT | RD | RE },
{ insn_dsll32, M(spec_op, 0, 0, 0, 0, dsll32_op), RT | RD | RE },
{ insn_dsra, M(spec_op, 0, 0, 0, 0, dsra_op), RT | RD | RE },
{ insn_dsrl, M(spec_op, 0, 0, 0, 0, dsrl_op), RT | RD | RE },
{ insn_dsrl32, M(spec_op, 0, 0, 0, 0, dsrl32_op), RT | RD | RE },
{ insn_drotr, M(spec_op, 1, 0, 0, 0, dsrl_op), RT | RD | RE },
{ insn_drotr32, M(spec_op, 1, 0, 0, 0, dsrl32_op), RT | RD | RE },
{ insn_dsubu, M(spec_op, 0, 0, 0, 0, dsubu_op), RS | RT | RD },
{ insn_eret, M(cop0_op, cop_op, 0, 0, 0, eret_op), 0 },
{ insn_j, M(j_op, 0, 0, 0, 0, 0), JIMM },
{ insn_jal, M(jal_op, 0, 0, 0, 0, 0), JIMM },
{ insn_jr, M(spec_op, 0, 0, 0, 0, jr_op), RS },
{ insn_ld, M(ld_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
{ insn_ll, M(ll_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
{ insn_lld, M(lld_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
{ insn_lui, M(lui_op, 0, 0, 0, 0, 0), RT | SIMM },
{ insn_lw, M(lw_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
{ insn_mfc0, M(cop0_op, mfc_op, 0, 0, 0, 0), RT | RD | SET},
{ insn_mtc0, M(cop0_op, mtc_op, 0, 0, 0, 0), RT | RD | SET},
{ insn_or, M(spec_op, 0, 0, 0, 0, or_op), RS | RT | RD },
{ insn_ori, M(ori_op, 0, 0, 0, 0, 0), RS | RT | UIMM },
{ insn_pref, M(pref_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
{ insn_rfe, M(cop0_op, cop_op, 0, 0, 0, rfe_op), 0 },
{ insn_sc, M(sc_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
{ insn_scd, M(scd_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
{ insn_sd, M(sd_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
{ insn_sll, M(spec_op, 0, 0, 0, 0, sll_op), RT | RD | RE },
{ insn_sra, M(spec_op, 0, 0, 0, 0, sra_op), RT | RD | RE },
{ insn_srl, M(spec_op, 0, 0, 0, 0, srl_op), RT | RD | RE },
{ insn_rotr, M(spec_op, 1, 0, 0, 0, srl_op), RT | RD | RE },
{ insn_subu, M(spec_op, 0, 0, 0, 0, subu_op), RS | RT | RD },
{ insn_sw, M(sw_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
{ insn_tlbp, M(cop0_op, cop_op, 0, 0, 0, tlbp_op), 0 },
{ insn_tlbr, M(cop0_op, cop_op, 0, 0, 0, tlbr_op), 0 },
{ insn_tlbwi, M(cop0_op, cop_op, 0, 0, 0, tlbwi_op), 0 },
{ insn_tlbwr, M(cop0_op, cop_op, 0, 0, 0, tlbwr_op), 0 },
{ insn_xor, M(spec_op, 0, 0, 0, 0, xor_op), RS | RT | RD },
{ insn_xori, M(xori_op, 0, 0, 0, 0, 0), RS | RT | UIMM },
{ insn_dins, M(spec3_op, 0, 0, 0, 0, dins_op), RS | RT | RD | RE },
{ insn_dinsm, M(spec3_op, 0, 0, 0, 0, dinsm_op), RS | RT | RD | RE },
{ insn_syscall, M(spec_op, 0, 0, 0, 0, syscall_op), SCIMM},
{ insn_bbit0, M(lwc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
{ insn_bbit1, M(swc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
{ insn_lwx, M(spec3_op, 0, 0, 0, lwx_op, lx_op), RS | RT | RD },
{ insn_ldx, M(spec3_op, 0, 0, 0, ldx_op, lx_op), RS | RT | RD },
{ insn_invalid, 0, 0 }
};
#undef M
static inline __uasminit u32 build_rs(u32 arg)
{
WARN(arg & ~RS_MASK, KERN_WARNING "Micro-assembler field overflow\n");
return (arg & RS_MASK) << RS_SH;
}
static inline __uasminit u32 build_rt(u32 arg)
{
WARN(arg & ~RT_MASK, KERN_WARNING "Micro-assembler field overflow\n");
return (arg & RT_MASK) << RT_SH;
}
static inline __uasminit u32 build_rd(u32 arg)
{
WARN(arg & ~RD_MASK, KERN_WARNING "Micro-assembler field overflow\n");
return (arg & RD_MASK) << RD_SH;
}
static inline __uasminit u32 build_re(u32 arg)
{
WARN(arg & ~RE_MASK, KERN_WARNING "Micro-assembler field overflow\n");
return (arg & RE_MASK) << RE_SH;
}
static inline __uasminit u32 build_simm(s32 arg)
{
WARN(arg > 0x7fff || arg < -0x8000,
KERN_WARNING "Micro-assembler field overflow\n");
return arg & 0xffff;
}
static inline __uasminit u32 build_uimm(u32 arg)
{
WARN(arg & ~IMM_MASK, KERN_WARNING "Micro-assembler field overflow\n");
return arg & IMM_MASK;
}
static inline __uasminit u32 build_bimm(s32 arg)
{
WARN(arg > 0x1ffff || arg < -0x20000,
KERN_WARNING "Micro-assembler field overflow\n");
WARN(arg & 0x3, KERN_WARNING "Invalid micro-assembler branch target\n");
return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff);
}
static inline __uasminit u32 build_jimm(u32 arg)
{
WARN(arg & ~(JIMM_MASK << 2),
KERN_WARNING "Micro-assembler field overflow\n");
return (arg >> 2) & JIMM_MASK;
}
static inline __uasminit u32 build_scimm(u32 arg)
{
WARN(arg & ~SCIMM_MASK,
KERN_WARNING "Micro-assembler field overflow\n");
return (arg & SCIMM_MASK) << SCIMM_SH;
}
static inline __uasminit u32 build_func(u32 arg)
{
WARN(arg & ~FUNC_MASK, KERN_WARNING "Micro-assembler field overflow\n");
return arg & FUNC_MASK;
}
static inline __uasminit u32 build_set(u32 arg)
{
WARN(arg & ~SET_MASK, KERN_WARNING "Micro-assembler field overflow\n");
return arg & SET_MASK;
}
/*
* The order of opcode arguments is implicitly left to right,
* starting with RS and ending with FUNC or IMM.
*/
static void __uasminit build_insn(u32 **buf, enum opcode opc, ...)
{
struct insn *ip = NULL;
unsigned int i;
va_list ap;
u32 op;
for (i = 0; insn_table[i].opcode != insn_invalid; i++)
if (insn_table[i].opcode == opc) {
ip = &insn_table[i];
break;
}
if (!ip || (opc == insn_daddiu && r4k_daddiu_bug()))
panic("Unsupported Micro-assembler instruction %d", opc);
op = ip->match;
va_start(ap, opc);
if (ip->fields & RS)
op |= build_rs(va_arg(ap, u32));
if (ip->fields & RT)
op |= build_rt(va_arg(ap, u32));
if (ip->fields & RD)
op |= build_rd(va_arg(ap, u32));
if (ip->fields & RE)
op |= build_re(va_arg(ap, u32));
if (ip->fields & SIMM)
op |= build_simm(va_arg(ap, s32));
if (ip->fields & UIMM)
op |= build_uimm(va_arg(ap, u32));
if (ip->fields & BIMM)
op |= build_bimm(va_arg(ap, s32));
if (ip->fields & JIMM)
op |= build_jimm(va_arg(ap, u32));
if (ip->fields & FUNC)
op |= build_func(va_arg(ap, u32));
if (ip->fields & SET)
op |= build_set(va_arg(ap, u32));
if (ip->fields & SCIMM)
op |= build_scimm(va_arg(ap, u32));
va_end(ap);
**buf = op;
(*buf)++;
}
#define I_u1u2u3(op) \
Ip_u1u2u3(op) \
{ \
build_insn(buf, insn##op, a, b, c); \
} \
UASM_EXPORT_SYMBOL(uasm_i##op);
#define I_u2u1u3(op) \
Ip_u2u1u3(op) \
{ \
build_insn(buf, insn##op, b, a, c); \
} \
UASM_EXPORT_SYMBOL(uasm_i##op);
#define I_u3u1u2(op) \
Ip_u3u1u2(op) \
{ \
build_insn(buf, insn##op, b, c, a); \
} \
UASM_EXPORT_SYMBOL(uasm_i##op);
#define I_u1u2s3(op) \
Ip_u1u2s3(op) \
{ \
build_insn(buf, insn##op, a, b, c); \
} \
UASM_EXPORT_SYMBOL(uasm_i##op);
#define I_u2s3u1(op) \
Ip_u2s3u1(op) \
{ \
build_insn(buf, insn##op, c, a, b); \
} \
UASM_EXPORT_SYMBOL(uasm_i##op);
#define I_u2u1s3(op) \
Ip_u2u1s3(op) \
{ \
build_insn(buf, insn##op, b, a, c); \
} \
UASM_EXPORT_SYMBOL(uasm_i##op);
#define I_u2u1msbu3(op) \
Ip_u2u1msbu3(op) \
{ \
build_insn(buf, insn##op, b, a, c+d-1, c); \
} \
UASM_EXPORT_SYMBOL(uasm_i##op);
#define I_u2u1msb32u3(op) \
Ip_u2u1msbu3(op) \
{ \
build_insn(buf, insn##op, b, a, c+d-33, c); \
} \
UASM_EXPORT_SYMBOL(uasm_i##op);
#define I_u1u2(op) \
Ip_u1u2(op) \
{ \
build_insn(buf, insn##op, a, b); \
} \
UASM_EXPORT_SYMBOL(uasm_i##op);
#define I_u1s2(op) \
Ip_u1s2(op) \
{ \
build_insn(buf, insn##op, a, b); \
} \
UASM_EXPORT_SYMBOL(uasm_i##op);
#define I_u1(op) \
Ip_u1(op) \
{ \
build_insn(buf, insn##op, a); \
} \
UASM_EXPORT_SYMBOL(uasm_i##op);
#define I_0(op) \
Ip_0(op) \
{ \
build_insn(buf, insn##op); \
} \
UASM_EXPORT_SYMBOL(uasm_i##op);
I_u2u1s3(_addiu)
I_u3u1u2(_addu)
I_u2u1u3(_andi)
I_u3u1u2(_and)
I_u1u2s3(_beq)
I_u1u2s3(_beql)
I_u1s2(_bgez)
I_u1s2(_bgezl)
I_u1s2(_bltz)
I_u1s2(_bltzl)
I_u1u2s3(_bne)
I_u2s3u1(_cache)
I_u1u2u3(_dmfc0)
I_u1u2u3(_dmtc0)
I_u2u1s3(_daddiu)
I_u3u1u2(_daddu)
I_u2u1u3(_dsll)
I_u2u1u3(_dsll32)
I_u2u1u3(_dsra)
I_u2u1u3(_dsrl)
I_u2u1u3(_dsrl32)
I_u2u1u3(_drotr)
I_u2u1u3(_drotr32)
I_u3u1u2(_dsubu)
I_0(_eret)
I_u1(_j)
I_u1(_jal)
I_u1(_jr)
I_u2s3u1(_ld)
I_u2s3u1(_ll)
I_u2s3u1(_lld)
I_u1s2(_lui)
I_u2s3u1(_lw)
I_u1u2u3(_mfc0)
I_u1u2u3(_mtc0)
I_u2u1u3(_ori)
I_u3u1u2(_or)
I_0(_rfe)
I_u2s3u1(_sc)
I_u2s3u1(_scd)
I_u2s3u1(_sd)
I_u2u1u3(_sll)
I_u2u1u3(_sra)
I_u2u1u3(_srl)
I_u2u1u3(_rotr)
I_u3u1u2(_subu)
I_u2s3u1(_sw)
I_0(_tlbp)
I_0(_tlbr)
I_0(_tlbwi)
I_0(_tlbwr)
I_u3u1u2(_xor)
I_u2u1u3(_xori)
I_u2u1msbu3(_dins);
I_u2u1msb32u3(_dinsm);
I_u1(_syscall);
I_u1u2s3(_bbit0);
I_u1u2s3(_bbit1);
I_u3u1u2(_lwx)
I_u3u1u2(_ldx)
#ifdef CONFIG_CPU_CAVIUM_OCTEON
#include <asm/octeon/octeon.h>
void __uasminit uasm_i_pref(u32 **buf, unsigned int a, signed int b,
unsigned int c)
{
if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X) && a <= 24 && a != 5)
/*
* As per erratum Core-14449, replace prefetches 0-4,
* 6-24 with 'pref 28'.
*/
build_insn(buf, insn_pref, c, 28, b);
else
build_insn(buf, insn_pref, c, a, b);
}
UASM_EXPORT_SYMBOL(uasm_i_pref);
#else
I_u2s3u1(_pref)
#endif
/* Handle labels. */
void __uasminit uasm_build_label(struct uasm_label **lab, u32 *addr, int lid)
{
(*lab)->addr = addr;
(*lab)->lab = lid;
(*lab)++;
}
UASM_EXPORT_SYMBOL(uasm_build_label);
int __uasminit uasm_in_compat_space_p(long addr)
{
/* Is this address in 32bit compat space? */
#ifdef CONFIG_64BIT
return (((addr) & 0xffffffff00000000L) == 0xffffffff00000000L);
#else
return 1;
#endif
}
UASM_EXPORT_SYMBOL(uasm_in_compat_space_p);
static int __uasminit uasm_rel_highest(long val)
{
#ifdef CONFIG_64BIT
return ((((val + 0x800080008000L) >> 48) & 0xffff) ^ 0x8000) - 0x8000;
#else
return 0;
#endif
}
static int __uasminit uasm_rel_higher(long val)
{
#ifdef CONFIG_64BIT
return ((((val + 0x80008000L) >> 32) & 0xffff) ^ 0x8000) - 0x8000;
#else
return 0;
#endif
}
int __uasminit uasm_rel_hi(long val)
{
return ((((val + 0x8000L) >> 16) & 0xffff) ^ 0x8000) - 0x8000;
}
UASM_EXPORT_SYMBOL(uasm_rel_hi);
int __uasminit uasm_rel_lo(long val)
{
return ((val & 0xffff) ^ 0x8000) - 0x8000;
}
UASM_EXPORT_SYMBOL(uasm_rel_lo);
void __uasminit UASM_i_LA_mostly(u32 **buf, unsigned int rs, long addr)
{
if (!uasm_in_compat_space_p(addr)) {
uasm_i_lui(buf, rs, uasm_rel_highest(addr));
if (uasm_rel_higher(addr))
uasm_i_daddiu(buf, rs, rs, uasm_rel_higher(addr));
if (uasm_rel_hi(addr)) {
uasm_i_dsll(buf, rs, rs, 16);
uasm_i_daddiu(buf, rs, rs, uasm_rel_hi(addr));
uasm_i_dsll(buf, rs, rs, 16);
} else
uasm_i_dsll32(buf, rs, rs, 0);
} else
uasm_i_lui(buf, rs, uasm_rel_hi(addr));
}
UASM_EXPORT_SYMBOL(UASM_i_LA_mostly);
void __uasminit UASM_i_LA(u32 **buf, unsigned int rs, long addr)
{
UASM_i_LA_mostly(buf, rs, addr);
if (uasm_rel_lo(addr)) {
if (!uasm_in_compat_space_p(addr))
uasm_i_daddiu(buf, rs, rs, uasm_rel_lo(addr));
else
uasm_i_addiu(buf, rs, rs, uasm_rel_lo(addr));
}
}
UASM_EXPORT_SYMBOL(UASM_i_LA);
/* Handle relocations. */
void __uasminit
uasm_r_mips_pc16(struct uasm_reloc **rel, u32 *addr, int lid)
{
(*rel)->addr = addr;
(*rel)->type = R_MIPS_PC16;
(*rel)->lab = lid;
(*rel)++;
}
UASM_EXPORT_SYMBOL(uasm_r_mips_pc16);
static inline void __uasminit
__resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab)
{
long laddr = (long)lab->addr;
long raddr = (long)rel->addr;
switch (rel->type) {
case R_MIPS_PC16:
*rel->addr |= build_bimm(laddr - (raddr + 4));
break;
default:
panic("Unsupported Micro-assembler relocation %d",
rel->type);
}
}
void __uasminit
uasm_resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab)
{
struct uasm_label *l;
for (; rel->lab != UASM_LABEL_INVALID; rel++)
for (l = lab; l->lab != UASM_LABEL_INVALID; l++)
if (rel->lab == l->lab)
__resolve_relocs(rel, l);
}
UASM_EXPORT_SYMBOL(uasm_resolve_relocs);
void __uasminit
uasm_move_relocs(struct uasm_reloc *rel, u32 *first, u32 *end, long off)
{
for (; rel->lab != UASM_LABEL_INVALID; rel++)
if (rel->addr >= first && rel->addr < end)
rel->addr += off;
}
UASM_EXPORT_SYMBOL(uasm_move_relocs);
void __uasminit
uasm_move_labels(struct uasm_label *lab, u32 *first, u32 *end, long off)
{
for (; lab->lab != UASM_LABEL_INVALID; lab++)
if (lab->addr >= first && lab->addr < end)
lab->addr += off;
}
UASM_EXPORT_SYMBOL(uasm_move_labels);
void __uasminit
uasm_copy_handler(struct uasm_reloc *rel, struct uasm_label *lab, u32 *first,
u32 *end, u32 *target)
{
long off = (long)(target - first);
memcpy(target, first, (end - first) * sizeof(u32));
uasm_move_relocs(rel, first, end, off);
uasm_move_labels(lab, first, end, off);
}
UASM_EXPORT_SYMBOL(uasm_copy_handler);
int __uasminit uasm_insn_has_bdelay(struct uasm_reloc *rel, u32 *addr)
{
for (; rel->lab != UASM_LABEL_INVALID; rel++) {
if (rel->addr == addr
&& (rel->type == R_MIPS_PC16
|| rel->type == R_MIPS_26))
return 1;
}
return 0;
}
UASM_EXPORT_SYMBOL(uasm_insn_has_bdelay);
/* Convenience functions for labeled branches. */
void __uasminit
uasm_il_bltz(u32 **p, struct uasm_reloc **r, unsigned int reg, int lid)
{
uasm_r_mips_pc16(r, *p, lid);
uasm_i_bltz(p, reg, 0);
}
UASM_EXPORT_SYMBOL(uasm_il_bltz);
void __uasminit
uasm_il_b(u32 **p, struct uasm_reloc **r, int lid)
{
uasm_r_mips_pc16(r, *p, lid);
uasm_i_b(p, 0);
}
UASM_EXPORT_SYMBOL(uasm_il_b);
void __uasminit
uasm_il_beqz(u32 **p, struct uasm_reloc **r, unsigned int reg, int lid)
{
uasm_r_mips_pc16(r, *p, lid);
uasm_i_beqz(p, reg, 0);
}
UASM_EXPORT_SYMBOL(uasm_il_beqz);
void __uasminit
uasm_il_beqzl(u32 **p, struct uasm_reloc **r, unsigned int reg, int lid)
{
uasm_r_mips_pc16(r, *p, lid);
uasm_i_beqzl(p, reg, 0);
}
UASM_EXPORT_SYMBOL(uasm_il_beqzl);
void __uasminit
uasm_il_bne(u32 **p, struct uasm_reloc **r, unsigned int reg1,
unsigned int reg2, int lid)
{
uasm_r_mips_pc16(r, *p, lid);
uasm_i_bne(p, reg1, reg2, 0);
}
UASM_EXPORT_SYMBOL(uasm_il_bne);
void __uasminit
uasm_il_bnez(u32 **p, struct uasm_reloc **r, unsigned int reg, int lid)
{
uasm_r_mips_pc16(r, *p, lid);
uasm_i_bnez(p, reg, 0);
}
UASM_EXPORT_SYMBOL(uasm_il_bnez);
void __uasminit
uasm_il_bgezl(u32 **p, struct uasm_reloc **r, unsigned int reg, int lid)
{
uasm_r_mips_pc16(r, *p, lid);
uasm_i_bgezl(p, reg, 0);
}
UASM_EXPORT_SYMBOL(uasm_il_bgezl);
void __uasminit
uasm_il_bgez(u32 **p, struct uasm_reloc **r, unsigned int reg, int lid)
{
uasm_r_mips_pc16(r, *p, lid);
uasm_i_bgez(p, reg, 0);
}
UASM_EXPORT_SYMBOL(uasm_il_bgez);
void __uasminit
uasm_il_bbit0(u32 **p, struct uasm_reloc **r, unsigned int reg,
unsigned int bit, int lid)
{
uasm_r_mips_pc16(r, *p, lid);
uasm_i_bbit0(p, reg, bit, 0);
}
UASM_EXPORT_SYMBOL(uasm_il_bbit0);
void __uasminit
uasm_il_bbit1(u32 **p, struct uasm_reloc **r, unsigned int reg,
unsigned int bit, int lid)
{
uasm_r_mips_pc16(r, *p, lid);
uasm_i_bbit1(p, reg, bit, 0);
}
UASM_EXPORT_SYMBOL(uasm_il_bbit1);