1
linux/drivers/block/cciss.c
Mike Miller 6fa9775208 cciss: remove overlapping PCI IDs
This patch removes the controller overlap between cciss and hpsa. It was
decided that no overlap should exist. All new controllers will use the hpsa
SCSI based driver.

Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2010-10-28 06:33:27 -06:00

4945 lines
137 KiB
C

/*
* Disk Array driver for HP Smart Array controllers.
* (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
* 02111-1307, USA.
*
* Questions/Comments/Bugfixes to iss_storagedev@hp.com
*
*/
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/major.h>
#include <linux/fs.h>
#include <linux/bio.h>
#include <linux/blkpg.h>
#include <linux/timer.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/init.h>
#include <linux/jiffies.h>
#include <linux/hdreg.h>
#include <linux/spinlock.h>
#include <linux/compat.h>
#include <linux/mutex.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <linux/dma-mapping.h>
#include <linux/blkdev.h>
#include <linux/genhd.h>
#include <linux/completion.h>
#include <scsi/scsi.h>
#include <scsi/sg.h>
#include <scsi/scsi_ioctl.h>
#include <linux/cdrom.h>
#include <linux/scatterlist.h>
#include <linux/kthread.h>
#define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
#define DRIVER_NAME "HP CISS Driver (v 3.6.26)"
#define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 26)
/* Embedded module documentation macros - see modules.h */
MODULE_AUTHOR("Hewlett-Packard Company");
MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
MODULE_VERSION("3.6.26");
MODULE_LICENSE("GPL");
static DEFINE_MUTEX(cciss_mutex);
#include "cciss_cmd.h"
#include "cciss.h"
#include <linux/cciss_ioctl.h>
/* define the PCI info for the cards we can control */
static const struct pci_device_id cciss_pci_device_id[] = {
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
{0,}
};
MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
/* board_id = Subsystem Device ID & Vendor ID
* product = Marketing Name for the board
* access = Address of the struct of function pointers
*/
static struct board_type products[] = {
{0x40700E11, "Smart Array 5300", &SA5_access},
{0x40800E11, "Smart Array 5i", &SA5B_access},
{0x40820E11, "Smart Array 532", &SA5B_access},
{0x40830E11, "Smart Array 5312", &SA5B_access},
{0x409A0E11, "Smart Array 641", &SA5_access},
{0x409B0E11, "Smart Array 642", &SA5_access},
{0x409C0E11, "Smart Array 6400", &SA5_access},
{0x409D0E11, "Smart Array 6400 EM", &SA5_access},
{0x40910E11, "Smart Array 6i", &SA5_access},
{0x3225103C, "Smart Array P600", &SA5_access},
{0x3235103C, "Smart Array P400i", &SA5_access},
{0x3211103C, "Smart Array E200i", &SA5_access},
{0x3212103C, "Smart Array E200", &SA5_access},
{0x3213103C, "Smart Array E200i", &SA5_access},
{0x3214103C, "Smart Array E200i", &SA5_access},
{0x3215103C, "Smart Array E200i", &SA5_access},
{0x3237103C, "Smart Array E500", &SA5_access},
{0x3223103C, "Smart Array P800", &SA5_access},
{0x3234103C, "Smart Array P400", &SA5_access},
{0x323D103C, "Smart Array P700m", &SA5_access},
};
/* How long to wait (in milliseconds) for board to go into simple mode */
#define MAX_CONFIG_WAIT 30000
#define MAX_IOCTL_CONFIG_WAIT 1000
/*define how many times we will try a command because of bus resets */
#define MAX_CMD_RETRIES 3
#define MAX_CTLR 32
/* Originally cciss driver only supports 8 major numbers */
#define MAX_CTLR_ORIG 8
static ctlr_info_t *hba[MAX_CTLR];
static struct task_struct *cciss_scan_thread;
static DEFINE_MUTEX(scan_mutex);
static LIST_HEAD(scan_q);
static void do_cciss_request(struct request_queue *q);
static irqreturn_t do_cciss_intx(int irq, void *dev_id);
static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id);
static int cciss_open(struct block_device *bdev, fmode_t mode);
static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode);
static int cciss_release(struct gendisk *disk, fmode_t mode);
static int do_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg);
static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg);
static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
static int cciss_revalidate(struct gendisk *disk);
static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
static int deregister_disk(ctlr_info_t *h, int drv_index,
int clear_all, int via_ioctl);
static void cciss_read_capacity(ctlr_info_t *h, int logvol,
sector_t *total_size, unsigned int *block_size);
static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
sector_t *total_size, unsigned int *block_size);
static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
sector_t total_size,
unsigned int block_size, InquiryData_struct *inq_buff,
drive_info_struct *drv);
static void __devinit cciss_interrupt_mode(ctlr_info_t *);
static void start_io(ctlr_info_t *h);
static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
__u8 page_code, unsigned char scsi3addr[],
int cmd_type);
static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
int attempt_retry);
static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
static int add_to_scan_list(struct ctlr_info *h);
static int scan_thread(void *data);
static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
static void cciss_hba_release(struct device *dev);
static void cciss_device_release(struct device *dev);
static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
static inline u32 next_command(ctlr_info_t *h);
static int __devinit cciss_find_cfg_addrs(struct pci_dev *pdev,
void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
u64 *cfg_offset);
static int __devinit cciss_pci_find_memory_BAR(struct pci_dev *pdev,
unsigned long *memory_bar);
/* performant mode helper functions */
static void calc_bucket_map(int *bucket, int num_buckets, int nsgs,
int *bucket_map);
static void cciss_put_controller_into_performant_mode(ctlr_info_t *h);
#ifdef CONFIG_PROC_FS
static void cciss_procinit(ctlr_info_t *h);
#else
static void cciss_procinit(ctlr_info_t *h)
{
}
#endif /* CONFIG_PROC_FS */
#ifdef CONFIG_COMPAT
static int cciss_compat_ioctl(struct block_device *, fmode_t,
unsigned, unsigned long);
#endif
static const struct block_device_operations cciss_fops = {
.owner = THIS_MODULE,
.open = cciss_unlocked_open,
.release = cciss_release,
.ioctl = do_ioctl,
.getgeo = cciss_getgeo,
#ifdef CONFIG_COMPAT
.compat_ioctl = cciss_compat_ioctl,
#endif
.revalidate_disk = cciss_revalidate,
};
/* set_performant_mode: Modify the tag for cciss performant
* set bit 0 for pull model, bits 3-1 for block fetch
* register number
*/
static void set_performant_mode(ctlr_info_t *h, CommandList_struct *c)
{
if (likely(h->transMethod == CFGTBL_Trans_Performant))
c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
}
/*
* Enqueuing and dequeuing functions for cmdlists.
*/
static inline void addQ(struct hlist_head *list, CommandList_struct *c)
{
hlist_add_head(&c->list, list);
}
static inline void removeQ(CommandList_struct *c)
{
/*
* After kexec/dump some commands might still
* be in flight, which the firmware will try
* to complete. Resetting the firmware doesn't work
* with old fw revisions, so we have to mark
* them off as 'stale' to prevent the driver from
* falling over.
*/
if (WARN_ON(hlist_unhashed(&c->list))) {
c->cmd_type = CMD_MSG_STALE;
return;
}
hlist_del_init(&c->list);
}
static void enqueue_cmd_and_start_io(ctlr_info_t *h,
CommandList_struct *c)
{
unsigned long flags;
set_performant_mode(h, c);
spin_lock_irqsave(&h->lock, flags);
addQ(&h->reqQ, c);
h->Qdepth++;
if (h->Qdepth > h->maxQsinceinit)
h->maxQsinceinit = h->Qdepth;
start_io(h);
spin_unlock_irqrestore(&h->lock, flags);
}
static void cciss_free_sg_chain_blocks(SGDescriptor_struct **cmd_sg_list,
int nr_cmds)
{
int i;
if (!cmd_sg_list)
return;
for (i = 0; i < nr_cmds; i++) {
kfree(cmd_sg_list[i]);
cmd_sg_list[i] = NULL;
}
kfree(cmd_sg_list);
}
static SGDescriptor_struct **cciss_allocate_sg_chain_blocks(
ctlr_info_t *h, int chainsize, int nr_cmds)
{
int j;
SGDescriptor_struct **cmd_sg_list;
if (chainsize <= 0)
return NULL;
cmd_sg_list = kmalloc(sizeof(*cmd_sg_list) * nr_cmds, GFP_KERNEL);
if (!cmd_sg_list)
return NULL;
/* Build up chain blocks for each command */
for (j = 0; j < nr_cmds; j++) {
/* Need a block of chainsized s/g elements. */
cmd_sg_list[j] = kmalloc((chainsize *
sizeof(*cmd_sg_list[j])), GFP_KERNEL);
if (!cmd_sg_list[j]) {
dev_err(&h->pdev->dev, "Cannot get memory "
"for s/g chains.\n");
goto clean;
}
}
return cmd_sg_list;
clean:
cciss_free_sg_chain_blocks(cmd_sg_list, nr_cmds);
return NULL;
}
static void cciss_unmap_sg_chain_block(ctlr_info_t *h, CommandList_struct *c)
{
SGDescriptor_struct *chain_sg;
u64bit temp64;
if (c->Header.SGTotal <= h->max_cmd_sgentries)
return;
chain_sg = &c->SG[h->max_cmd_sgentries - 1];
temp64.val32.lower = chain_sg->Addr.lower;
temp64.val32.upper = chain_sg->Addr.upper;
pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
}
static void cciss_map_sg_chain_block(ctlr_info_t *h, CommandList_struct *c,
SGDescriptor_struct *chain_block, int len)
{
SGDescriptor_struct *chain_sg;
u64bit temp64;
chain_sg = &c->SG[h->max_cmd_sgentries - 1];
chain_sg->Ext = CCISS_SG_CHAIN;
chain_sg->Len = len;
temp64.val = pci_map_single(h->pdev, chain_block, len,
PCI_DMA_TODEVICE);
chain_sg->Addr.lower = temp64.val32.lower;
chain_sg->Addr.upper = temp64.val32.upper;
}
#include "cciss_scsi.c" /* For SCSI tape support */
static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
"UNKNOWN"
};
#define RAID_UNKNOWN (ARRAY_SIZE(raid_label)-1)
#ifdef CONFIG_PROC_FS
/*
* Report information about this controller.
*/
#define ENG_GIG 1000000000
#define ENG_GIG_FACTOR (ENG_GIG/512)
#define ENGAGE_SCSI "engage scsi"
static struct proc_dir_entry *proc_cciss;
static void cciss_seq_show_header(struct seq_file *seq)
{
ctlr_info_t *h = seq->private;
seq_printf(seq, "%s: HP %s Controller\n"
"Board ID: 0x%08lx\n"
"Firmware Version: %c%c%c%c\n"
"IRQ: %d\n"
"Logical drives: %d\n"
"Current Q depth: %d\n"
"Current # commands on controller: %d\n"
"Max Q depth since init: %d\n"
"Max # commands on controller since init: %d\n"
"Max SG entries since init: %d\n",
h->devname,
h->product_name,
(unsigned long)h->board_id,
h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
h->firm_ver[3], (unsigned int)h->intr[PERF_MODE_INT],
h->num_luns,
h->Qdepth, h->commands_outstanding,
h->maxQsinceinit, h->max_outstanding, h->maxSG);
#ifdef CONFIG_CISS_SCSI_TAPE
cciss_seq_tape_report(seq, h);
#endif /* CONFIG_CISS_SCSI_TAPE */
}
static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
{
ctlr_info_t *h = seq->private;
unsigned long flags;
/* prevent displaying bogus info during configuration
* or deconfiguration of a logical volume
*/
spin_lock_irqsave(&h->lock, flags);
if (h->busy_configuring) {
spin_unlock_irqrestore(&h->lock, flags);
return ERR_PTR(-EBUSY);
}
h->busy_configuring = 1;
spin_unlock_irqrestore(&h->lock, flags);
if (*pos == 0)
cciss_seq_show_header(seq);
return pos;
}
static int cciss_seq_show(struct seq_file *seq, void *v)
{
sector_t vol_sz, vol_sz_frac;
ctlr_info_t *h = seq->private;
unsigned ctlr = h->ctlr;
loff_t *pos = v;
drive_info_struct *drv = h->drv[*pos];
if (*pos > h->highest_lun)
return 0;
if (drv == NULL) /* it's possible for h->drv[] to have holes. */
return 0;
if (drv->heads == 0)
return 0;
vol_sz = drv->nr_blocks;
vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
vol_sz_frac *= 100;
sector_div(vol_sz_frac, ENG_GIG_FACTOR);
if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
drv->raid_level = RAID_UNKNOWN;
seq_printf(seq, "cciss/c%dd%d:"
"\t%4u.%02uGB\tRAID %s\n",
ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
raid_label[drv->raid_level]);
return 0;
}
static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
ctlr_info_t *h = seq->private;
if (*pos > h->highest_lun)
return NULL;
*pos += 1;
return pos;
}
static void cciss_seq_stop(struct seq_file *seq, void *v)
{
ctlr_info_t *h = seq->private;
/* Only reset h->busy_configuring if we succeeded in setting
* it during cciss_seq_start. */
if (v == ERR_PTR(-EBUSY))
return;
h->busy_configuring = 0;
}
static const struct seq_operations cciss_seq_ops = {
.start = cciss_seq_start,
.show = cciss_seq_show,
.next = cciss_seq_next,
.stop = cciss_seq_stop,
};
static int cciss_seq_open(struct inode *inode, struct file *file)
{
int ret = seq_open(file, &cciss_seq_ops);
struct seq_file *seq = file->private_data;
if (!ret)
seq->private = PDE(inode)->data;
return ret;
}
static ssize_t
cciss_proc_write(struct file *file, const char __user *buf,
size_t length, loff_t *ppos)
{
int err;
char *buffer;
#ifndef CONFIG_CISS_SCSI_TAPE
return -EINVAL;
#endif
if (!buf || length > PAGE_SIZE - 1)
return -EINVAL;
buffer = (char *)__get_free_page(GFP_KERNEL);
if (!buffer)
return -ENOMEM;
err = -EFAULT;
if (copy_from_user(buffer, buf, length))
goto out;
buffer[length] = '\0';
#ifdef CONFIG_CISS_SCSI_TAPE
if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
struct seq_file *seq = file->private_data;
ctlr_info_t *h = seq->private;
err = cciss_engage_scsi(h);
if (err == 0)
err = length;
} else
#endif /* CONFIG_CISS_SCSI_TAPE */
err = -EINVAL;
/* might be nice to have "disengage" too, but it's not
safely possible. (only 1 module use count, lock issues.) */
out:
free_page((unsigned long)buffer);
return err;
}
static const struct file_operations cciss_proc_fops = {
.owner = THIS_MODULE,
.open = cciss_seq_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
.write = cciss_proc_write,
};
static void __devinit cciss_procinit(ctlr_info_t *h)
{
struct proc_dir_entry *pde;
if (proc_cciss == NULL)
proc_cciss = proc_mkdir("driver/cciss", NULL);
if (!proc_cciss)
return;
pde = proc_create_data(h->devname, S_IWUSR | S_IRUSR | S_IRGRP |
S_IROTH, proc_cciss,
&cciss_proc_fops, h);
}
#endif /* CONFIG_PROC_FS */
#define MAX_PRODUCT_NAME_LEN 19
#define to_hba(n) container_of(n, struct ctlr_info, dev)
#define to_drv(n) container_of(n, drive_info_struct, dev)
static ssize_t host_store_rescan(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct ctlr_info *h = to_hba(dev);
add_to_scan_list(h);
wake_up_process(cciss_scan_thread);
wait_for_completion_interruptible(&h->scan_wait);
return count;
}
static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
static ssize_t dev_show_unique_id(struct device *dev,
struct device_attribute *attr,
char *buf)
{
drive_info_struct *drv = to_drv(dev);
struct ctlr_info *h = to_hba(drv->dev.parent);
__u8 sn[16];
unsigned long flags;
int ret = 0;
spin_lock_irqsave(&h->lock, flags);
if (h->busy_configuring)
ret = -EBUSY;
else
memcpy(sn, drv->serial_no, sizeof(sn));
spin_unlock_irqrestore(&h->lock, flags);
if (ret)
return ret;
else
return snprintf(buf, 16 * 2 + 2,
"%02X%02X%02X%02X%02X%02X%02X%02X"
"%02X%02X%02X%02X%02X%02X%02X%02X\n",
sn[0], sn[1], sn[2], sn[3],
sn[4], sn[5], sn[6], sn[7],
sn[8], sn[9], sn[10], sn[11],
sn[12], sn[13], sn[14], sn[15]);
}
static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
static ssize_t dev_show_vendor(struct device *dev,
struct device_attribute *attr,
char *buf)
{
drive_info_struct *drv = to_drv(dev);
struct ctlr_info *h = to_hba(drv->dev.parent);
char vendor[VENDOR_LEN + 1];
unsigned long flags;
int ret = 0;
spin_lock_irqsave(&h->lock, flags);
if (h->busy_configuring)
ret = -EBUSY;
else
memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
spin_unlock_irqrestore(&h->lock, flags);
if (ret)
return ret;
else
return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
}
static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
static ssize_t dev_show_model(struct device *dev,
struct device_attribute *attr,
char *buf)
{
drive_info_struct *drv = to_drv(dev);
struct ctlr_info *h = to_hba(drv->dev.parent);
char model[MODEL_LEN + 1];
unsigned long flags;
int ret = 0;
spin_lock_irqsave(&h->lock, flags);
if (h->busy_configuring)
ret = -EBUSY;
else
memcpy(model, drv->model, MODEL_LEN + 1);
spin_unlock_irqrestore(&h->lock, flags);
if (ret)
return ret;
else
return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
}
static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
static ssize_t dev_show_rev(struct device *dev,
struct device_attribute *attr,
char *buf)
{
drive_info_struct *drv = to_drv(dev);
struct ctlr_info *h = to_hba(drv->dev.parent);
char rev[REV_LEN + 1];
unsigned long flags;
int ret = 0;
spin_lock_irqsave(&h->lock, flags);
if (h->busy_configuring)
ret = -EBUSY;
else
memcpy(rev, drv->rev, REV_LEN + 1);
spin_unlock_irqrestore(&h->lock, flags);
if (ret)
return ret;
else
return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
}
static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
static ssize_t cciss_show_lunid(struct device *dev,
struct device_attribute *attr, char *buf)
{
drive_info_struct *drv = to_drv(dev);
struct ctlr_info *h = to_hba(drv->dev.parent);
unsigned long flags;
unsigned char lunid[8];
spin_lock_irqsave(&h->lock, flags);
if (h->busy_configuring) {
spin_unlock_irqrestore(&h->lock, flags);
return -EBUSY;
}
if (!drv->heads) {
spin_unlock_irqrestore(&h->lock, flags);
return -ENOTTY;
}
memcpy(lunid, drv->LunID, sizeof(lunid));
spin_unlock_irqrestore(&h->lock, flags);
return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
lunid[0], lunid[1], lunid[2], lunid[3],
lunid[4], lunid[5], lunid[6], lunid[7]);
}
static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
static ssize_t cciss_show_raid_level(struct device *dev,
struct device_attribute *attr, char *buf)
{
drive_info_struct *drv = to_drv(dev);
struct ctlr_info *h = to_hba(drv->dev.parent);
int raid;
unsigned long flags;
spin_lock_irqsave(&h->lock, flags);
if (h->busy_configuring) {
spin_unlock_irqrestore(&h->lock, flags);
return -EBUSY;
}
raid = drv->raid_level;
spin_unlock_irqrestore(&h->lock, flags);
if (raid < 0 || raid > RAID_UNKNOWN)
raid = RAID_UNKNOWN;
return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
raid_label[raid]);
}
static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
static ssize_t cciss_show_usage_count(struct device *dev,
struct device_attribute *attr, char *buf)
{
drive_info_struct *drv = to_drv(dev);
struct ctlr_info *h = to_hba(drv->dev.parent);
unsigned long flags;
int count;
spin_lock_irqsave(&h->lock, flags);
if (h->busy_configuring) {
spin_unlock_irqrestore(&h->lock, flags);
return -EBUSY;
}
count = drv->usage_count;
spin_unlock_irqrestore(&h->lock, flags);
return snprintf(buf, 20, "%d\n", count);
}
static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
static struct attribute *cciss_host_attrs[] = {
&dev_attr_rescan.attr,
NULL
};
static struct attribute_group cciss_host_attr_group = {
.attrs = cciss_host_attrs,
};
static const struct attribute_group *cciss_host_attr_groups[] = {
&cciss_host_attr_group,
NULL
};
static struct device_type cciss_host_type = {
.name = "cciss_host",
.groups = cciss_host_attr_groups,
.release = cciss_hba_release,
};
static struct attribute *cciss_dev_attrs[] = {
&dev_attr_unique_id.attr,
&dev_attr_model.attr,
&dev_attr_vendor.attr,
&dev_attr_rev.attr,
&dev_attr_lunid.attr,
&dev_attr_raid_level.attr,
&dev_attr_usage_count.attr,
NULL
};
static struct attribute_group cciss_dev_attr_group = {
.attrs = cciss_dev_attrs,
};
static const struct attribute_group *cciss_dev_attr_groups[] = {
&cciss_dev_attr_group,
NULL
};
static struct device_type cciss_dev_type = {
.name = "cciss_device",
.groups = cciss_dev_attr_groups,
.release = cciss_device_release,
};
static struct bus_type cciss_bus_type = {
.name = "cciss",
};
/*
* cciss_hba_release is called when the reference count
* of h->dev goes to zero.
*/
static void cciss_hba_release(struct device *dev)
{
/*
* nothing to do, but need this to avoid a warning
* about not having a release handler from lib/kref.c.
*/
}
/*
* Initialize sysfs entry for each controller. This sets up and registers
* the 'cciss#' directory for each individual controller under
* /sys/bus/pci/devices/<dev>/.
*/
static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
{
device_initialize(&h->dev);
h->dev.type = &cciss_host_type;
h->dev.bus = &cciss_bus_type;
dev_set_name(&h->dev, "%s", h->devname);
h->dev.parent = &h->pdev->dev;
return device_add(&h->dev);
}
/*
* Remove sysfs entries for an hba.
*/
static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
{
device_del(&h->dev);
put_device(&h->dev); /* final put. */
}
/* cciss_device_release is called when the reference count
* of h->drv[x]dev goes to zero.
*/
static void cciss_device_release(struct device *dev)
{
drive_info_struct *drv = to_drv(dev);
kfree(drv);
}
/*
* Initialize sysfs for each logical drive. This sets up and registers
* the 'c#d#' directory for each individual logical drive under
* /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
* /sys/block/cciss!c#d# to this entry.
*/
static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
int drv_index)
{
struct device *dev;
if (h->drv[drv_index]->device_initialized)
return 0;
dev = &h->drv[drv_index]->dev;
device_initialize(dev);
dev->type = &cciss_dev_type;
dev->bus = &cciss_bus_type;
dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
dev->parent = &h->dev;
h->drv[drv_index]->device_initialized = 1;
return device_add(dev);
}
/*
* Remove sysfs entries for a logical drive.
*/
static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
int ctlr_exiting)
{
struct device *dev = &h->drv[drv_index]->dev;
/* special case for c*d0, we only destroy it on controller exit */
if (drv_index == 0 && !ctlr_exiting)
return;
device_del(dev);
put_device(dev); /* the "final" put. */
h->drv[drv_index] = NULL;
}
/*
* For operations that cannot sleep, a command block is allocated at init,
* and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
* which ones are free or in use.
*/
static CommandList_struct *cmd_alloc(ctlr_info_t *h)
{
CommandList_struct *c;
int i;
u64bit temp64;
dma_addr_t cmd_dma_handle, err_dma_handle;
do {
i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
if (i == h->nr_cmds)
return NULL;
} while (test_and_set_bit(i & (BITS_PER_LONG - 1),
h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
c = h->cmd_pool + i;
memset(c, 0, sizeof(CommandList_struct));
cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(CommandList_struct);
c->err_info = h->errinfo_pool + i;
memset(c->err_info, 0, sizeof(ErrorInfo_struct));
err_dma_handle = h->errinfo_pool_dhandle
+ i * sizeof(ErrorInfo_struct);
h->nr_allocs++;
c->cmdindex = i;
INIT_HLIST_NODE(&c->list);
c->busaddr = (__u32) cmd_dma_handle;
temp64.val = (__u64) err_dma_handle;
c->ErrDesc.Addr.lower = temp64.val32.lower;
c->ErrDesc.Addr.upper = temp64.val32.upper;
c->ErrDesc.Len = sizeof(ErrorInfo_struct);
c->ctlr = h->ctlr;
return c;
}
/* allocate a command using pci_alloc_consistent, used for ioctls,
* etc., not for the main i/o path.
*/
static CommandList_struct *cmd_special_alloc(ctlr_info_t *h)
{
CommandList_struct *c;
u64bit temp64;
dma_addr_t cmd_dma_handle, err_dma_handle;
c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
sizeof(CommandList_struct), &cmd_dma_handle);
if (c == NULL)
return NULL;
memset(c, 0, sizeof(CommandList_struct));
c->cmdindex = -1;
c->err_info = (ErrorInfo_struct *)
pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
&err_dma_handle);
if (c->err_info == NULL) {
pci_free_consistent(h->pdev,
sizeof(CommandList_struct), c, cmd_dma_handle);
return NULL;
}
memset(c->err_info, 0, sizeof(ErrorInfo_struct));
INIT_HLIST_NODE(&c->list);
c->busaddr = (__u32) cmd_dma_handle;
temp64.val = (__u64) err_dma_handle;
c->ErrDesc.Addr.lower = temp64.val32.lower;
c->ErrDesc.Addr.upper = temp64.val32.upper;
c->ErrDesc.Len = sizeof(ErrorInfo_struct);
c->ctlr = h->ctlr;
return c;
}
static void cmd_free(ctlr_info_t *h, CommandList_struct *c)
{
int i;
i = c - h->cmd_pool;
clear_bit(i & (BITS_PER_LONG - 1),
h->cmd_pool_bits + (i / BITS_PER_LONG));
h->nr_frees++;
}
static void cmd_special_free(ctlr_info_t *h, CommandList_struct *c)
{
u64bit temp64;
temp64.val32.lower = c->ErrDesc.Addr.lower;
temp64.val32.upper = c->ErrDesc.Addr.upper;
pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
c->err_info, (dma_addr_t) temp64.val);
pci_free_consistent(h->pdev, sizeof(CommandList_struct),
c, (dma_addr_t) c->busaddr);
}
static inline ctlr_info_t *get_host(struct gendisk *disk)
{
return disk->queue->queuedata;
}
static inline drive_info_struct *get_drv(struct gendisk *disk)
{
return disk->private_data;
}
/*
* Open. Make sure the device is really there.
*/
static int cciss_open(struct block_device *bdev, fmode_t mode)
{
ctlr_info_t *h = get_host(bdev->bd_disk);
drive_info_struct *drv = get_drv(bdev->bd_disk);
dev_dbg(&h->pdev->dev, "cciss_open %s\n", bdev->bd_disk->disk_name);
if (drv->busy_configuring)
return -EBUSY;
/*
* Root is allowed to open raw volume zero even if it's not configured
* so array config can still work. Root is also allowed to open any
* volume that has a LUN ID, so it can issue IOCTL to reread the
* disk information. I don't think I really like this
* but I'm already using way to many device nodes to claim another one
* for "raw controller".
*/
if (drv->heads == 0) {
if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
/* if not node 0 make sure it is a partition = 0 */
if (MINOR(bdev->bd_dev) & 0x0f) {
return -ENXIO;
/* if it is, make sure we have a LUN ID */
} else if (memcmp(drv->LunID, CTLR_LUNID,
sizeof(drv->LunID))) {
return -ENXIO;
}
}
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
}
drv->usage_count++;
h->usage_count++;
return 0;
}
static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode)
{
int ret;
mutex_lock(&cciss_mutex);
ret = cciss_open(bdev, mode);
mutex_unlock(&cciss_mutex);
return ret;
}
/*
* Close. Sync first.
*/
static int cciss_release(struct gendisk *disk, fmode_t mode)
{
ctlr_info_t *h;
drive_info_struct *drv;
mutex_lock(&cciss_mutex);
h = get_host(disk);
drv = get_drv(disk);
dev_dbg(&h->pdev->dev, "cciss_release %s\n", disk->disk_name);
drv->usage_count--;
h->usage_count--;
mutex_unlock(&cciss_mutex);
return 0;
}
static int do_ioctl(struct block_device *bdev, fmode_t mode,
unsigned cmd, unsigned long arg)
{
int ret;
mutex_lock(&cciss_mutex);
ret = cciss_ioctl(bdev, mode, cmd, arg);
mutex_unlock(&cciss_mutex);
return ret;
}
#ifdef CONFIG_COMPAT
static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
unsigned cmd, unsigned long arg);
static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
unsigned cmd, unsigned long arg);
static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
unsigned cmd, unsigned long arg)
{
switch (cmd) {
case CCISS_GETPCIINFO:
case CCISS_GETINTINFO:
case CCISS_SETINTINFO:
case CCISS_GETNODENAME:
case CCISS_SETNODENAME:
case CCISS_GETHEARTBEAT:
case CCISS_GETBUSTYPES:
case CCISS_GETFIRMVER:
case CCISS_GETDRIVVER:
case CCISS_REVALIDVOLS:
case CCISS_DEREGDISK:
case CCISS_REGNEWDISK:
case CCISS_REGNEWD:
case CCISS_RESCANDISK:
case CCISS_GETLUNINFO:
return do_ioctl(bdev, mode, cmd, arg);
case CCISS_PASSTHRU32:
return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
case CCISS_BIG_PASSTHRU32:
return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
default:
return -ENOIOCTLCMD;
}
}
static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
unsigned cmd, unsigned long arg)
{
IOCTL32_Command_struct __user *arg32 =
(IOCTL32_Command_struct __user *) arg;
IOCTL_Command_struct arg64;
IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
int err;
u32 cp;
err = 0;
err |=
copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
sizeof(arg64.LUN_info));
err |=
copy_from_user(&arg64.Request, &arg32->Request,
sizeof(arg64.Request));
err |=
copy_from_user(&arg64.error_info, &arg32->error_info,
sizeof(arg64.error_info));
err |= get_user(arg64.buf_size, &arg32->buf_size);
err |= get_user(cp, &arg32->buf);
arg64.buf = compat_ptr(cp);
err |= copy_to_user(p, &arg64, sizeof(arg64));
if (err)
return -EFAULT;
err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
if (err)
return err;
err |=
copy_in_user(&arg32->error_info, &p->error_info,
sizeof(arg32->error_info));
if (err)
return -EFAULT;
return err;
}
static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
unsigned cmd, unsigned long arg)
{
BIG_IOCTL32_Command_struct __user *arg32 =
(BIG_IOCTL32_Command_struct __user *) arg;
BIG_IOCTL_Command_struct arg64;
BIG_IOCTL_Command_struct __user *p =
compat_alloc_user_space(sizeof(arg64));
int err;
u32 cp;
memset(&arg64, 0, sizeof(arg64));
err = 0;
err |=
copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
sizeof(arg64.LUN_info));
err |=
copy_from_user(&arg64.Request, &arg32->Request,
sizeof(arg64.Request));
err |=
copy_from_user(&arg64.error_info, &arg32->error_info,
sizeof(arg64.error_info));
err |= get_user(arg64.buf_size, &arg32->buf_size);
err |= get_user(arg64.malloc_size, &arg32->malloc_size);
err |= get_user(cp, &arg32->buf);
arg64.buf = compat_ptr(cp);
err |= copy_to_user(p, &arg64, sizeof(arg64));
if (err)
return -EFAULT;
err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
if (err)
return err;
err |=
copy_in_user(&arg32->error_info, &p->error_info,
sizeof(arg32->error_info));
if (err)
return -EFAULT;
return err;
}
#endif
static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
drive_info_struct *drv = get_drv(bdev->bd_disk);
if (!drv->cylinders)
return -ENXIO;
geo->heads = drv->heads;
geo->sectors = drv->sectors;
geo->cylinders = drv->cylinders;
return 0;
}
static void check_ioctl_unit_attention(ctlr_info_t *h, CommandList_struct *c)
{
if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
(void)check_for_unit_attention(h, c);
}
static int cciss_getpciinfo(ctlr_info_t *h, void __user *argp)
{
cciss_pci_info_struct pciinfo;
if (!argp)
return -EINVAL;
pciinfo.domain = pci_domain_nr(h->pdev->bus);
pciinfo.bus = h->pdev->bus->number;
pciinfo.dev_fn = h->pdev->devfn;
pciinfo.board_id = h->board_id;
if (copy_to_user(argp, &pciinfo, sizeof(cciss_pci_info_struct)))
return -EFAULT;
return 0;
}
static int cciss_getintinfo(ctlr_info_t *h, void __user *argp)
{
cciss_coalint_struct intinfo;
if (!argp)
return -EINVAL;
intinfo.delay = readl(&h->cfgtable->HostWrite.CoalIntDelay);
intinfo.count = readl(&h->cfgtable->HostWrite.CoalIntCount);
if (copy_to_user
(argp, &intinfo, sizeof(cciss_coalint_struct)))
return -EFAULT;
return 0;
}
static int cciss_setintinfo(ctlr_info_t *h, void __user *argp)
{
cciss_coalint_struct intinfo;
unsigned long flags;
int i;
if (!argp)
return -EINVAL;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (copy_from_user(&intinfo, argp, sizeof(intinfo)))
return -EFAULT;
if ((intinfo.delay == 0) && (intinfo.count == 0))
return -EINVAL;
spin_lock_irqsave(&h->lock, flags);
/* Update the field, and then ring the doorbell */
writel(intinfo.delay, &(h->cfgtable->HostWrite.CoalIntDelay));
writel(intinfo.count, &(h->cfgtable->HostWrite.CoalIntCount));
writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
break;
udelay(1000); /* delay and try again */
}
spin_unlock_irqrestore(&h->lock, flags);
if (i >= MAX_IOCTL_CONFIG_WAIT)
return -EAGAIN;
return 0;
}
static int cciss_getnodename(ctlr_info_t *h, void __user *argp)
{
NodeName_type NodeName;
int i;
if (!argp)
return -EINVAL;
for (i = 0; i < 16; i++)
NodeName[i] = readb(&h->cfgtable->ServerName[i]);
if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
return -EFAULT;
return 0;
}
static int cciss_setnodename(ctlr_info_t *h, void __user *argp)
{
NodeName_type NodeName;
unsigned long flags;
int i;
if (!argp)
return -EINVAL;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (copy_from_user(NodeName, argp, sizeof(NodeName_type)))
return -EFAULT;
spin_lock_irqsave(&h->lock, flags);
/* Update the field, and then ring the doorbell */
for (i = 0; i < 16; i++)
writeb(NodeName[i], &h->cfgtable->ServerName[i]);
writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
break;
udelay(1000); /* delay and try again */
}
spin_unlock_irqrestore(&h->lock, flags);
if (i >= MAX_IOCTL_CONFIG_WAIT)
return -EAGAIN;
return 0;
}
static int cciss_getheartbeat(ctlr_info_t *h, void __user *argp)
{
Heartbeat_type heartbeat;
if (!argp)
return -EINVAL;
heartbeat = readl(&h->cfgtable->HeartBeat);
if (copy_to_user(argp, &heartbeat, sizeof(Heartbeat_type)))
return -EFAULT;
return 0;
}
static int cciss_getbustypes(ctlr_info_t *h, void __user *argp)
{
BusTypes_type BusTypes;
if (!argp)
return -EINVAL;
BusTypes = readl(&h->cfgtable->BusTypes);
if (copy_to_user(argp, &BusTypes, sizeof(BusTypes_type)))
return -EFAULT;
return 0;
}
static int cciss_getfirmver(ctlr_info_t *h, void __user *argp)
{
FirmwareVer_type firmware;
if (!argp)
return -EINVAL;
memcpy(firmware, h->firm_ver, 4);
if (copy_to_user
(argp, firmware, sizeof(FirmwareVer_type)))
return -EFAULT;
return 0;
}
static int cciss_getdrivver(ctlr_info_t *h, void __user *argp)
{
DriverVer_type DriverVer = DRIVER_VERSION;
if (!argp)
return -EINVAL;
if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
return -EFAULT;
return 0;
}
static int cciss_getluninfo(ctlr_info_t *h,
struct gendisk *disk, void __user *argp)
{
LogvolInfo_struct luninfo;
drive_info_struct *drv = get_drv(disk);
if (!argp)
return -EINVAL;
memcpy(&luninfo.LunID, drv->LunID, sizeof(luninfo.LunID));
luninfo.num_opens = drv->usage_count;
luninfo.num_parts = 0;
if (copy_to_user(argp, &luninfo, sizeof(LogvolInfo_struct)))
return -EFAULT;
return 0;
}
static int cciss_passthru(ctlr_info_t *h, void __user *argp)
{
IOCTL_Command_struct iocommand;
CommandList_struct *c;
char *buff = NULL;
u64bit temp64;
DECLARE_COMPLETION_ONSTACK(wait);
if (!argp)
return -EINVAL;
if (!capable(CAP_SYS_RAWIO))
return -EPERM;
if (copy_from_user
(&iocommand, argp, sizeof(IOCTL_Command_struct)))
return -EFAULT;
if ((iocommand.buf_size < 1) &&
(iocommand.Request.Type.Direction != XFER_NONE)) {
return -EINVAL;
}
if (iocommand.buf_size > 0) {
buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
if (buff == NULL)
return -EFAULT;
}
if (iocommand.Request.Type.Direction == XFER_WRITE) {
/* Copy the data into the buffer we created */
if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
kfree(buff);
return -EFAULT;
}
} else {
memset(buff, 0, iocommand.buf_size);
}
c = cmd_special_alloc(h);
if (!c) {
kfree(buff);
return -ENOMEM;
}
/* Fill in the command type */
c->cmd_type = CMD_IOCTL_PEND;
/* Fill in Command Header */
c->Header.ReplyQueue = 0; /* unused in simple mode */
if (iocommand.buf_size > 0) { /* buffer to fill */
c->Header.SGList = 1;
c->Header.SGTotal = 1;
} else { /* no buffers to fill */
c->Header.SGList = 0;
c->Header.SGTotal = 0;
}
c->Header.LUN = iocommand.LUN_info;
/* use the kernel address the cmd block for tag */
c->Header.Tag.lower = c->busaddr;
/* Fill in Request block */
c->Request = iocommand.Request;
/* Fill in the scatter gather information */
if (iocommand.buf_size > 0) {
temp64.val = pci_map_single(h->pdev, buff,
iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
c->SG[0].Addr.lower = temp64.val32.lower;
c->SG[0].Addr.upper = temp64.val32.upper;
c->SG[0].Len = iocommand.buf_size;
c->SG[0].Ext = 0; /* we are not chaining */
}
c->waiting = &wait;
enqueue_cmd_and_start_io(h, c);
wait_for_completion(&wait);
/* unlock the buffers from DMA */
temp64.val32.lower = c->SG[0].Addr.lower;
temp64.val32.upper = c->SG[0].Addr.upper;
pci_unmap_single(h->pdev, (dma_addr_t) temp64.val, iocommand.buf_size,
PCI_DMA_BIDIRECTIONAL);
check_ioctl_unit_attention(h, c);
/* Copy the error information out */
iocommand.error_info = *(c->err_info);
if (copy_to_user(argp, &iocommand, sizeof(IOCTL_Command_struct))) {
kfree(buff);
cmd_special_free(h, c);
return -EFAULT;
}
if (iocommand.Request.Type.Direction == XFER_READ) {
/* Copy the data out of the buffer we created */
if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
kfree(buff);
cmd_special_free(h, c);
return -EFAULT;
}
}
kfree(buff);
cmd_special_free(h, c);
return 0;
}
static int cciss_bigpassthru(ctlr_info_t *h, void __user *argp)
{
BIG_IOCTL_Command_struct *ioc;
CommandList_struct *c;
unsigned char **buff = NULL;
int *buff_size = NULL;
u64bit temp64;
BYTE sg_used = 0;
int status = 0;
int i;
DECLARE_COMPLETION_ONSTACK(wait);
__u32 left;
__u32 sz;
BYTE __user *data_ptr;
if (!argp)
return -EINVAL;
if (!capable(CAP_SYS_RAWIO))
return -EPERM;
ioc = (BIG_IOCTL_Command_struct *)
kmalloc(sizeof(*ioc), GFP_KERNEL);
if (!ioc) {
status = -ENOMEM;
goto cleanup1;
}
if (copy_from_user(ioc, argp, sizeof(*ioc))) {
status = -EFAULT;
goto cleanup1;
}
if ((ioc->buf_size < 1) &&
(ioc->Request.Type.Direction != XFER_NONE)) {
status = -EINVAL;
goto cleanup1;
}
/* Check kmalloc limits using all SGs */
if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
status = -EINVAL;
goto cleanup1;
}
if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
status = -EINVAL;
goto cleanup1;
}
buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
if (!buff) {
status = -ENOMEM;
goto cleanup1;
}
buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
if (!buff_size) {
status = -ENOMEM;
goto cleanup1;
}
left = ioc->buf_size;
data_ptr = ioc->buf;
while (left) {
sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
buff_size[sg_used] = sz;
buff[sg_used] = kmalloc(sz, GFP_KERNEL);
if (buff[sg_used] == NULL) {
status = -ENOMEM;
goto cleanup1;
}
if (ioc->Request.Type.Direction == XFER_WRITE) {
if (copy_from_user(buff[sg_used], data_ptr, sz)) {
status = -EFAULT;
goto cleanup1;
}
} else {
memset(buff[sg_used], 0, sz);
}
left -= sz;
data_ptr += sz;
sg_used++;
}
c = cmd_special_alloc(h);
if (!c) {
status = -ENOMEM;
goto cleanup1;
}
c->cmd_type = CMD_IOCTL_PEND;
c->Header.ReplyQueue = 0;
c->Header.SGList = sg_used;
c->Header.SGTotal = sg_used;
c->Header.LUN = ioc->LUN_info;
c->Header.Tag.lower = c->busaddr;
c->Request = ioc->Request;
for (i = 0; i < sg_used; i++) {
temp64.val = pci_map_single(h->pdev, buff[i], buff_size[i],
PCI_DMA_BIDIRECTIONAL);
c->SG[i].Addr.lower = temp64.val32.lower;
c->SG[i].Addr.upper = temp64.val32.upper;
c->SG[i].Len = buff_size[i];
c->SG[i].Ext = 0; /* we are not chaining */
}
c->waiting = &wait;
enqueue_cmd_and_start_io(h, c);
wait_for_completion(&wait);
/* unlock the buffers from DMA */
for (i = 0; i < sg_used; i++) {
temp64.val32.lower = c->SG[i].Addr.lower;
temp64.val32.upper = c->SG[i].Addr.upper;
pci_unmap_single(h->pdev,
(dma_addr_t) temp64.val, buff_size[i],
PCI_DMA_BIDIRECTIONAL);
}
check_ioctl_unit_attention(h, c);
/* Copy the error information out */
ioc->error_info = *(c->err_info);
if (copy_to_user(argp, ioc, sizeof(*ioc))) {
cmd_special_free(h, c);
status = -EFAULT;
goto cleanup1;
}
if (ioc->Request.Type.Direction == XFER_READ) {
/* Copy the data out of the buffer we created */
BYTE __user *ptr = ioc->buf;
for (i = 0; i < sg_used; i++) {
if (copy_to_user(ptr, buff[i], buff_size[i])) {
cmd_special_free(h, c);
status = -EFAULT;
goto cleanup1;
}
ptr += buff_size[i];
}
}
cmd_special_free(h, c);
status = 0;
cleanup1:
if (buff) {
for (i = 0; i < sg_used; i++)
kfree(buff[i]);
kfree(buff);
}
kfree(buff_size);
kfree(ioc);
return status;
}
static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg)
{
struct gendisk *disk = bdev->bd_disk;
ctlr_info_t *h = get_host(disk);
void __user *argp = (void __user *)arg;
dev_dbg(&h->pdev->dev, "cciss_ioctl: Called with cmd=%x %lx\n",
cmd, arg);
switch (cmd) {
case CCISS_GETPCIINFO:
return cciss_getpciinfo(h, argp);
case CCISS_GETINTINFO:
return cciss_getintinfo(h, argp);
case CCISS_SETINTINFO:
return cciss_setintinfo(h, argp);
case CCISS_GETNODENAME:
return cciss_getnodename(h, argp);
case CCISS_SETNODENAME:
return cciss_setnodename(h, argp);
case CCISS_GETHEARTBEAT:
return cciss_getheartbeat(h, argp);
case CCISS_GETBUSTYPES:
return cciss_getbustypes(h, argp);
case CCISS_GETFIRMVER:
return cciss_getfirmver(h, argp);
case CCISS_GETDRIVVER:
return cciss_getdrivver(h, argp);
case CCISS_DEREGDISK:
case CCISS_REGNEWD:
case CCISS_REVALIDVOLS:
return rebuild_lun_table(h, 0, 1);
case CCISS_GETLUNINFO:
return cciss_getluninfo(h, disk, argp);
case CCISS_PASSTHRU:
return cciss_passthru(h, argp);
case CCISS_BIG_PASSTHRU:
return cciss_bigpassthru(h, argp);
/* scsi_cmd_ioctl handles these, below, though some are not */
/* very meaningful for cciss. SG_IO is the main one people want. */
case SG_GET_VERSION_NUM:
case SG_SET_TIMEOUT:
case SG_GET_TIMEOUT:
case SG_GET_RESERVED_SIZE:
case SG_SET_RESERVED_SIZE:
case SG_EMULATED_HOST:
case SG_IO:
case SCSI_IOCTL_SEND_COMMAND:
return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
/* scsi_cmd_ioctl would normally handle these, below, but */
/* they aren't a good fit for cciss, as CD-ROMs are */
/* not supported, and we don't have any bus/target/lun */
/* which we present to the kernel. */
case CDROM_SEND_PACKET:
case CDROMCLOSETRAY:
case CDROMEJECT:
case SCSI_IOCTL_GET_IDLUN:
case SCSI_IOCTL_GET_BUS_NUMBER:
default:
return -ENOTTY;
}
}
static void cciss_check_queues(ctlr_info_t *h)
{
int start_queue = h->next_to_run;
int i;
/* check to see if we have maxed out the number of commands that can
* be placed on the queue. If so then exit. We do this check here
* in case the interrupt we serviced was from an ioctl and did not
* free any new commands.
*/
if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
return;
/* We have room on the queue for more commands. Now we need to queue
* them up. We will also keep track of the next queue to run so
* that every queue gets a chance to be started first.
*/
for (i = 0; i < h->highest_lun + 1; i++) {
int curr_queue = (start_queue + i) % (h->highest_lun + 1);
/* make sure the disk has been added and the drive is real
* because this can be called from the middle of init_one.
*/
if (!h->drv[curr_queue])
continue;
if (!(h->drv[curr_queue]->queue) ||
!(h->drv[curr_queue]->heads))
continue;
blk_start_queue(h->gendisk[curr_queue]->queue);
/* check to see if we have maxed out the number of commands
* that can be placed on the queue.
*/
if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
if (curr_queue == start_queue) {
h->next_to_run =
(start_queue + 1) % (h->highest_lun + 1);
break;
} else {
h->next_to_run = curr_queue;
break;
}
}
}
}
static void cciss_softirq_done(struct request *rq)
{
CommandList_struct *c = rq->completion_data;
ctlr_info_t *h = hba[c->ctlr];
SGDescriptor_struct *curr_sg = c->SG;
u64bit temp64;
unsigned long flags;
int i, ddir;
int sg_index = 0;
if (c->Request.Type.Direction == XFER_READ)
ddir = PCI_DMA_FROMDEVICE;
else
ddir = PCI_DMA_TODEVICE;
/* command did not need to be retried */
/* unmap the DMA mapping for all the scatter gather elements */
for (i = 0; i < c->Header.SGList; i++) {
if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) {
cciss_unmap_sg_chain_block(h, c);
/* Point to the next block */
curr_sg = h->cmd_sg_list[c->cmdindex];
sg_index = 0;
}
temp64.val32.lower = curr_sg[sg_index].Addr.lower;
temp64.val32.upper = curr_sg[sg_index].Addr.upper;
pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len,
ddir);
++sg_index;
}
dev_dbg(&h->pdev->dev, "Done with %p\n", rq);
/* set the residual count for pc requests */
if (rq->cmd_type == REQ_TYPE_BLOCK_PC)
rq->resid_len = c->err_info->ResidualCnt;
blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
spin_lock_irqsave(&h->lock, flags);
cmd_free(h, c);
cciss_check_queues(h);
spin_unlock_irqrestore(&h->lock, flags);
}
static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
unsigned char scsi3addr[], uint32_t log_unit)
{
memcpy(scsi3addr, h->drv[log_unit]->LunID,
sizeof(h->drv[log_unit]->LunID));
}
/* This function gets the SCSI vendor, model, and revision of a logical drive
* via the inquiry page 0. Model, vendor, and rev are set to empty strings if
* they cannot be read.
*/
static void cciss_get_device_descr(ctlr_info_t *h, int logvol,
char *vendor, char *model, char *rev)
{
int rc;
InquiryData_struct *inq_buf;
unsigned char scsi3addr[8];
*vendor = '\0';
*model = '\0';
*rev = '\0';
inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
if (!inq_buf)
return;
log_unit_to_scsi3addr(h, scsi3addr, logvol);
rc = sendcmd_withirq(h, CISS_INQUIRY, inq_buf, sizeof(*inq_buf), 0,
scsi3addr, TYPE_CMD);
if (rc == IO_OK) {
memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
vendor[VENDOR_LEN] = '\0';
memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
model[MODEL_LEN] = '\0';
memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
rev[REV_LEN] = '\0';
}
kfree(inq_buf);
return;
}
/* This function gets the serial number of a logical drive via
* inquiry page 0x83. Serial no. is 16 bytes. If the serial
* number cannot be had, for whatever reason, 16 bytes of 0xff
* are returned instead.
*/
static void cciss_get_serial_no(ctlr_info_t *h, int logvol,
unsigned char *serial_no, int buflen)
{
#define PAGE_83_INQ_BYTES 64
int rc;
unsigned char *buf;
unsigned char scsi3addr[8];
if (buflen > 16)
buflen = 16;
memset(serial_no, 0xff, buflen);
buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
if (!buf)
return;
memset(serial_no, 0, buflen);
log_unit_to_scsi3addr(h, scsi3addr, logvol);
rc = sendcmd_withirq(h, CISS_INQUIRY, buf,
PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
if (rc == IO_OK)
memcpy(serial_no, &buf[8], buflen);
kfree(buf);
return;
}
/*
* cciss_add_disk sets up the block device queue for a logical drive
*/
static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
int drv_index)
{
disk->queue = blk_init_queue(do_cciss_request, &h->lock);
if (!disk->queue)
goto init_queue_failure;
sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
disk->major = h->major;
disk->first_minor = drv_index << NWD_SHIFT;
disk->fops = &cciss_fops;
if (cciss_create_ld_sysfs_entry(h, drv_index))
goto cleanup_queue;
disk->private_data = h->drv[drv_index];
disk->driverfs_dev = &h->drv[drv_index]->dev;
/* Set up queue information */
blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
/* This is a hardware imposed limit. */
blk_queue_max_segments(disk->queue, h->maxsgentries);
blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors);
blk_queue_softirq_done(disk->queue, cciss_softirq_done);
disk->queue->queuedata = h;
blk_queue_logical_block_size(disk->queue,
h->drv[drv_index]->block_size);
/* Make sure all queue data is written out before */
/* setting h->drv[drv_index]->queue, as setting this */
/* allows the interrupt handler to start the queue */
wmb();
h->drv[drv_index]->queue = disk->queue;
add_disk(disk);
return 0;
cleanup_queue:
blk_cleanup_queue(disk->queue);
disk->queue = NULL;
init_queue_failure:
return -1;
}
/* This function will check the usage_count of the drive to be updated/added.
* If the usage_count is zero and it is a heretofore unknown drive, or,
* the drive's capacity, geometry, or serial number has changed,
* then the drive information will be updated and the disk will be
* re-registered with the kernel. If these conditions don't hold,
* then it will be left alone for the next reboot. The exception to this
* is disk 0 which will always be left registered with the kernel since it
* is also the controller node. Any changes to disk 0 will show up on
* the next reboot.
*/
static void cciss_update_drive_info(ctlr_info_t *h, int drv_index,
int first_time, int via_ioctl)
{
struct gendisk *disk;
InquiryData_struct *inq_buff = NULL;
unsigned int block_size;
sector_t total_size;
unsigned long flags = 0;
int ret = 0;
drive_info_struct *drvinfo;
/* Get information about the disk and modify the driver structure */
inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
if (inq_buff == NULL || drvinfo == NULL)
goto mem_msg;
/* testing to see if 16-byte CDBs are already being used */
if (h->cciss_read == CCISS_READ_16) {
cciss_read_capacity_16(h, drv_index,
&total_size, &block_size);
} else {
cciss_read_capacity(h, drv_index, &total_size, &block_size);
/* if read_capacity returns all F's this volume is >2TB */
/* in size so we switch to 16-byte CDB's for all */
/* read/write ops */
if (total_size == 0xFFFFFFFFULL) {
cciss_read_capacity_16(h, drv_index,
&total_size, &block_size);
h->cciss_read = CCISS_READ_16;
h->cciss_write = CCISS_WRITE_16;
} else {
h->cciss_read = CCISS_READ_10;
h->cciss_write = CCISS_WRITE_10;
}
}
cciss_geometry_inquiry(h, drv_index, total_size, block_size,
inq_buff, drvinfo);
drvinfo->block_size = block_size;
drvinfo->nr_blocks = total_size + 1;
cciss_get_device_descr(h, drv_index, drvinfo->vendor,
drvinfo->model, drvinfo->rev);
cciss_get_serial_no(h, drv_index, drvinfo->serial_no,
sizeof(drvinfo->serial_no));
/* Save the lunid in case we deregister the disk, below. */
memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
sizeof(drvinfo->LunID));
/* Is it the same disk we already know, and nothing's changed? */
if (h->drv[drv_index]->raid_level != -1 &&
((memcmp(drvinfo->serial_no,
h->drv[drv_index]->serial_no, 16) == 0) &&
drvinfo->block_size == h->drv[drv_index]->block_size &&
drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
drvinfo->heads == h->drv[drv_index]->heads &&
drvinfo->sectors == h->drv[drv_index]->sectors &&
drvinfo->cylinders == h->drv[drv_index]->cylinders))
/* The disk is unchanged, nothing to update */
goto freeret;
/* If we get here it's not the same disk, or something's changed,
* so we need to * deregister it, and re-register it, if it's not
* in use.
* If the disk already exists then deregister it before proceeding
* (unless it's the first disk (for the controller node).
*/
if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
dev_warn(&h->pdev->dev, "disk %d has changed.\n", drv_index);
spin_lock_irqsave(&h->lock, flags);
h->drv[drv_index]->busy_configuring = 1;
spin_unlock_irqrestore(&h->lock, flags);
/* deregister_disk sets h->drv[drv_index]->queue = NULL
* which keeps the interrupt handler from starting
* the queue.
*/
ret = deregister_disk(h, drv_index, 0, via_ioctl);
}
/* If the disk is in use return */
if (ret)
goto freeret;
/* Save the new information from cciss_geometry_inquiry
* and serial number inquiry. If the disk was deregistered
* above, then h->drv[drv_index] will be NULL.
*/
if (h->drv[drv_index] == NULL) {
drvinfo->device_initialized = 0;
h->drv[drv_index] = drvinfo;
drvinfo = NULL; /* so it won't be freed below. */
} else {
/* special case for cxd0 */
h->drv[drv_index]->block_size = drvinfo->block_size;
h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
h->drv[drv_index]->heads = drvinfo->heads;
h->drv[drv_index]->sectors = drvinfo->sectors;
h->drv[drv_index]->cylinders = drvinfo->cylinders;
h->drv[drv_index]->raid_level = drvinfo->raid_level;
memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
VENDOR_LEN + 1);
memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
}
++h->num_luns;
disk = h->gendisk[drv_index];
set_capacity(disk, h->drv[drv_index]->nr_blocks);
/* If it's not disk 0 (drv_index != 0)
* or if it was disk 0, but there was previously
* no actual corresponding configured logical drive
* (raid_leve == -1) then we want to update the
* logical drive's information.
*/
if (drv_index || first_time) {
if (cciss_add_disk(h, disk, drv_index) != 0) {
cciss_free_gendisk(h, drv_index);
cciss_free_drive_info(h, drv_index);
dev_warn(&h->pdev->dev, "could not update disk %d\n",
drv_index);
--h->num_luns;
}
}
freeret:
kfree(inq_buff);
kfree(drvinfo);
return;
mem_msg:
dev_err(&h->pdev->dev, "out of memory\n");
goto freeret;
}
/* This function will find the first index of the controllers drive array
* that has a null drv pointer and allocate the drive info struct and
* will return that index This is where new drives will be added.
* If the index to be returned is greater than the highest_lun index for
* the controller then highest_lun is set * to this new index.
* If there are no available indexes or if tha allocation fails, then -1
* is returned. * "controller_node" is used to know if this is a real
* logical drive, or just the controller node, which determines if this
* counts towards highest_lun.
*/
static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
{
int i;
drive_info_struct *drv;
/* Search for an empty slot for our drive info */
for (i = 0; i < CISS_MAX_LUN; i++) {
/* if not cxd0 case, and it's occupied, skip it. */
if (h->drv[i] && i != 0)
continue;
/*
* If it's cxd0 case, and drv is alloc'ed already, and a
* disk is configured there, skip it.
*/
if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
continue;
/*
* We've found an empty slot. Update highest_lun
* provided this isn't just the fake cxd0 controller node.
*/
if (i > h->highest_lun && !controller_node)
h->highest_lun = i;
/* If adding a real disk at cxd0, and it's already alloc'ed */
if (i == 0 && h->drv[i] != NULL)
return i;
/*
* Found an empty slot, not already alloc'ed. Allocate it.
* Mark it with raid_level == -1, so we know it's new later on.
*/
drv = kzalloc(sizeof(*drv), GFP_KERNEL);
if (!drv)
return -1;
drv->raid_level = -1; /* so we know it's new */
h->drv[i] = drv;
return i;
}
return -1;
}
static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
{
kfree(h->drv[drv_index]);
h->drv[drv_index] = NULL;
}
static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
{
put_disk(h->gendisk[drv_index]);
h->gendisk[drv_index] = NULL;
}
/* cciss_add_gendisk finds a free hba[]->drv structure
* and allocates a gendisk if needed, and sets the lunid
* in the drvinfo structure. It returns the index into
* the ->drv[] array, or -1 if none are free.
* is_controller_node indicates whether highest_lun should
* count this disk, or if it's only being added to provide
* a means to talk to the controller in case no logical
* drives have yet been configured.
*/
static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
int controller_node)
{
int drv_index;
drv_index = cciss_alloc_drive_info(h, controller_node);
if (drv_index == -1)
return -1;
/*Check if the gendisk needs to be allocated */
if (!h->gendisk[drv_index]) {
h->gendisk[drv_index] =
alloc_disk(1 << NWD_SHIFT);
if (!h->gendisk[drv_index]) {
dev_err(&h->pdev->dev,
"could not allocate a new disk %d\n",
drv_index);
goto err_free_drive_info;
}
}
memcpy(h->drv[drv_index]->LunID, lunid,
sizeof(h->drv[drv_index]->LunID));
if (cciss_create_ld_sysfs_entry(h, drv_index))
goto err_free_disk;
/* Don't need to mark this busy because nobody */
/* else knows about this disk yet to contend */
/* for access to it. */
h->drv[drv_index]->busy_configuring = 0;
wmb();
return drv_index;
err_free_disk:
cciss_free_gendisk(h, drv_index);
err_free_drive_info:
cciss_free_drive_info(h, drv_index);
return -1;
}
/* This is for the special case of a controller which
* has no logical drives. In this case, we still need
* to register a disk so the controller can be accessed
* by the Array Config Utility.
*/
static void cciss_add_controller_node(ctlr_info_t *h)
{
struct gendisk *disk;
int drv_index;
if (h->gendisk[0] != NULL) /* already did this? Then bail. */
return;
drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
if (drv_index == -1)
goto error;
h->drv[drv_index]->block_size = 512;
h->drv[drv_index]->nr_blocks = 0;
h->drv[drv_index]->heads = 0;
h->drv[drv_index]->sectors = 0;
h->drv[drv_index]->cylinders = 0;
h->drv[drv_index]->raid_level = -1;
memset(h->drv[drv_index]->serial_no, 0, 16);
disk = h->gendisk[drv_index];
if (cciss_add_disk(h, disk, drv_index) == 0)
return;
cciss_free_gendisk(h, drv_index);
cciss_free_drive_info(h, drv_index);
error:
dev_warn(&h->pdev->dev, "could not add disk 0.\n");
return;
}
/* This function will add and remove logical drives from the Logical
* drive array of the controller and maintain persistency of ordering
* so that mount points are preserved until the next reboot. This allows
* for the removal of logical drives in the middle of the drive array
* without a re-ordering of those drives.
* INPUT
* h = The controller to perform the operations on
*/
static int rebuild_lun_table(ctlr_info_t *h, int first_time,
int via_ioctl)
{
int num_luns;
ReportLunData_struct *ld_buff = NULL;
int return_code;
int listlength = 0;
int i;
int drv_found;
int drv_index = 0;
unsigned char lunid[8] = CTLR_LUNID;
unsigned long flags;
if (!capable(CAP_SYS_RAWIO))
return -EPERM;
/* Set busy_configuring flag for this operation */
spin_lock_irqsave(&h->lock, flags);
if (h->busy_configuring) {
spin_unlock_irqrestore(&h->lock, flags);
return -EBUSY;
}
h->busy_configuring = 1;
spin_unlock_irqrestore(&h->lock, flags);
ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
if (ld_buff == NULL)
goto mem_msg;
return_code = sendcmd_withirq(h, CISS_REPORT_LOG, ld_buff,
sizeof(ReportLunData_struct),
0, CTLR_LUNID, TYPE_CMD);
if (return_code == IO_OK)
listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
else { /* reading number of logical volumes failed */
dev_warn(&h->pdev->dev,
"report logical volume command failed\n");
listlength = 0;
goto freeret;
}
num_luns = listlength / 8; /* 8 bytes per entry */
if (num_luns > CISS_MAX_LUN) {
num_luns = CISS_MAX_LUN;
dev_warn(&h->pdev->dev, "more luns configured"
" on controller than can be handled by"
" this driver.\n");
}
if (num_luns == 0)
cciss_add_controller_node(h);
/* Compare controller drive array to driver's drive array
* to see if any drives are missing on the controller due
* to action of Array Config Utility (user deletes drive)
* and deregister logical drives which have disappeared.
*/
for (i = 0; i <= h->highest_lun; i++) {
int j;
drv_found = 0;
/* skip holes in the array from already deleted drives */
if (h->drv[i] == NULL)
continue;
for (j = 0; j < num_luns; j++) {
memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
if (memcmp(h->drv[i]->LunID, lunid,
sizeof(lunid)) == 0) {
drv_found = 1;
break;
}
}
if (!drv_found) {
/* Deregister it from the OS, it's gone. */
spin_lock_irqsave(&h->lock, flags);
h->drv[i]->busy_configuring = 1;
spin_unlock_irqrestore(&h->lock, flags);
return_code = deregister_disk(h, i, 1, via_ioctl);
if (h->drv[i] != NULL)
h->drv[i]->busy_configuring = 0;
}
}
/* Compare controller drive array to driver's drive array.
* Check for updates in the drive information and any new drives
* on the controller due to ACU adding logical drives, or changing
* a logical drive's size, etc. Reregister any new/changed drives
*/
for (i = 0; i < num_luns; i++) {
int j;
drv_found = 0;
memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
/* Find if the LUN is already in the drive array
* of the driver. If so then update its info
* if not in use. If it does not exist then find
* the first free index and add it.
*/
for (j = 0; j <= h->highest_lun; j++) {
if (h->drv[j] != NULL &&
memcmp(h->drv[j]->LunID, lunid,
sizeof(h->drv[j]->LunID)) == 0) {
drv_index = j;
drv_found = 1;
break;
}
}
/* check if the drive was found already in the array */
if (!drv_found) {
drv_index = cciss_add_gendisk(h, lunid, 0);
if (drv_index == -1)
goto freeret;
}
cciss_update_drive_info(h, drv_index, first_time, via_ioctl);
} /* end for */
freeret:
kfree(ld_buff);
h->busy_configuring = 0;
/* We return -1 here to tell the ACU that we have registered/updated
* all of the drives that we can and to keep it from calling us
* additional times.
*/
return -1;
mem_msg:
dev_err(&h->pdev->dev, "out of memory\n");
h->busy_configuring = 0;
goto freeret;
}
static void cciss_clear_drive_info(drive_info_struct *drive_info)
{
/* zero out the disk size info */
drive_info->nr_blocks = 0;
drive_info->block_size = 0;
drive_info->heads = 0;
drive_info->sectors = 0;
drive_info->cylinders = 0;
drive_info->raid_level = -1;
memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
memset(drive_info->model, 0, sizeof(drive_info->model));
memset(drive_info->rev, 0, sizeof(drive_info->rev));
memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
/*
* don't clear the LUNID though, we need to remember which
* one this one is.
*/
}
/* This function will deregister the disk and it's queue from the
* kernel. It must be called with the controller lock held and the
* drv structures busy_configuring flag set. It's parameters are:
*
* disk = This is the disk to be deregistered
* drv = This is the drive_info_struct associated with the disk to be
* deregistered. It contains information about the disk used
* by the driver.
* clear_all = This flag determines whether or not the disk information
* is going to be completely cleared out and the highest_lun
* reset. Sometimes we want to clear out information about
* the disk in preparation for re-adding it. In this case
* the highest_lun should be left unchanged and the LunID
* should not be cleared.
* via_ioctl
* This indicates whether we've reached this path via ioctl.
* This affects the maximum usage count allowed for c0d0 to be messed with.
* If this path is reached via ioctl(), then the max_usage_count will
* be 1, as the process calling ioctl() has got to have the device open.
* If we get here via sysfs, then the max usage count will be zero.
*/
static int deregister_disk(ctlr_info_t *h, int drv_index,
int clear_all, int via_ioctl)
{
int i;
struct gendisk *disk;
drive_info_struct *drv;
int recalculate_highest_lun;
if (!capable(CAP_SYS_RAWIO))
return -EPERM;
drv = h->drv[drv_index];
disk = h->gendisk[drv_index];
/* make sure logical volume is NOT is use */
if (clear_all || (h->gendisk[0] == disk)) {
if (drv->usage_count > via_ioctl)
return -EBUSY;
} else if (drv->usage_count > 0)
return -EBUSY;
recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
/* invalidate the devices and deregister the disk. If it is disk
* zero do not deregister it but just zero out it's values. This
* allows us to delete disk zero but keep the controller registered.
*/
if (h->gendisk[0] != disk) {
struct request_queue *q = disk->queue;
if (disk->flags & GENHD_FL_UP) {
cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
del_gendisk(disk);
}
if (q)
blk_cleanup_queue(q);
/* If clear_all is set then we are deleting the logical
* drive, not just refreshing its info. For drives
* other than disk 0 we will call put_disk. We do not
* do this for disk 0 as we need it to be able to
* configure the controller.
*/
if (clear_all){
/* This isn't pretty, but we need to find the
* disk in our array and NULL our the pointer.
* This is so that we will call alloc_disk if
* this index is used again later.
*/
for (i=0; i < CISS_MAX_LUN; i++){
if (h->gendisk[i] == disk) {
h->gendisk[i] = NULL;
break;
}
}
put_disk(disk);
}
} else {
set_capacity(disk, 0);
cciss_clear_drive_info(drv);
}
--h->num_luns;
/* if it was the last disk, find the new hightest lun */
if (clear_all && recalculate_highest_lun) {
int newhighest = -1;
for (i = 0; i <= h->highest_lun; i++) {
/* if the disk has size > 0, it is available */
if (h->drv[i] && h->drv[i]->heads)
newhighest = i;
}
h->highest_lun = newhighest;
}
return 0;
}
static int fill_cmd(ctlr_info_t *h, CommandList_struct *c, __u8 cmd, void *buff,
size_t size, __u8 page_code, unsigned char *scsi3addr,
int cmd_type)
{
u64bit buff_dma_handle;
int status = IO_OK;
c->cmd_type = CMD_IOCTL_PEND;
c->Header.ReplyQueue = 0;
if (buff != NULL) {
c->Header.SGList = 1;
c->Header.SGTotal = 1;
} else {
c->Header.SGList = 0;
c->Header.SGTotal = 0;
}
c->Header.Tag.lower = c->busaddr;
memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
c->Request.Type.Type = cmd_type;
if (cmd_type == TYPE_CMD) {
switch (cmd) {
case CISS_INQUIRY:
/* are we trying to read a vital product page */
if (page_code != 0) {
c->Request.CDB[1] = 0x01;
c->Request.CDB[2] = page_code;
}
c->Request.CDBLen = 6;
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_READ;
c->Request.Timeout = 0;
c->Request.CDB[0] = CISS_INQUIRY;
c->Request.CDB[4] = size & 0xFF;
break;
case CISS_REPORT_LOG:
case CISS_REPORT_PHYS:
/* Talking to controller so It's a physical command
mode = 00 target = 0. Nothing to write.
*/
c->Request.CDBLen = 12;
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_READ;
c->Request.Timeout = 0;
c->Request.CDB[0] = cmd;
c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
c->Request.CDB[7] = (size >> 16) & 0xFF;
c->Request.CDB[8] = (size >> 8) & 0xFF;
c->Request.CDB[9] = size & 0xFF;
break;
case CCISS_READ_CAPACITY:
c->Request.CDBLen = 10;
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_READ;
c->Request.Timeout = 0;
c->Request.CDB[0] = cmd;
break;
case CCISS_READ_CAPACITY_16:
c->Request.CDBLen = 16;
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_READ;
c->Request.Timeout = 0;
c->Request.CDB[0] = cmd;
c->Request.CDB[1] = 0x10;
c->Request.CDB[10] = (size >> 24) & 0xFF;
c->Request.CDB[11] = (size >> 16) & 0xFF;
c->Request.CDB[12] = (size >> 8) & 0xFF;
c->Request.CDB[13] = size & 0xFF;
c->Request.Timeout = 0;
c->Request.CDB[0] = cmd;
break;
case CCISS_CACHE_FLUSH:
c->Request.CDBLen = 12;
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_WRITE;
c->Request.Timeout = 0;
c->Request.CDB[0] = BMIC_WRITE;
c->Request.CDB[6] = BMIC_CACHE_FLUSH;
break;
case TEST_UNIT_READY:
c->Request.CDBLen = 6;
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_NONE;
c->Request.Timeout = 0;
break;
default:
dev_warn(&h->pdev->dev, "Unknown Command 0x%c\n", cmd);
return IO_ERROR;
}
} else if (cmd_type == TYPE_MSG) {
switch (cmd) {
case 0: /* ABORT message */
c->Request.CDBLen = 12;
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_WRITE;
c->Request.Timeout = 0;
c->Request.CDB[0] = cmd; /* abort */
c->Request.CDB[1] = 0; /* abort a command */
/* buff contains the tag of the command to abort */
memcpy(&c->Request.CDB[4], buff, 8);
break;
case 1: /* RESET message */
c->Request.CDBLen = 16;
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_NONE;
c->Request.Timeout = 0;
memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
c->Request.CDB[0] = cmd; /* reset */
c->Request.CDB[1] = 0x03; /* reset a target */
break;
case 3: /* No-Op message */
c->Request.CDBLen = 1;
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_WRITE;
c->Request.Timeout = 0;
c->Request.CDB[0] = cmd;
break;
default:
dev_warn(&h->pdev->dev,
"unknown message type %d\n", cmd);
return IO_ERROR;
}
} else {
dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
return IO_ERROR;
}
/* Fill in the scatter gather information */
if (size > 0) {
buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
buff, size,
PCI_DMA_BIDIRECTIONAL);
c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
c->SG[0].Len = size;
c->SG[0].Ext = 0; /* we are not chaining */
}
return status;
}
static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
{
switch (c->err_info->ScsiStatus) {
case SAM_STAT_GOOD:
return IO_OK;
case SAM_STAT_CHECK_CONDITION:
switch (0xf & c->err_info->SenseInfo[2]) {
case 0: return IO_OK; /* no sense */
case 1: return IO_OK; /* recovered error */
default:
if (check_for_unit_attention(h, c))
return IO_NEEDS_RETRY;
dev_warn(&h->pdev->dev, "cmd 0x%02x "
"check condition, sense key = 0x%02x\n",
c->Request.CDB[0], c->err_info->SenseInfo[2]);
}
break;
default:
dev_warn(&h->pdev->dev, "cmd 0x%02x"
"scsi status = 0x%02x\n",
c->Request.CDB[0], c->err_info->ScsiStatus);
break;
}
return IO_ERROR;
}
static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
{
int return_status = IO_OK;
if (c->err_info->CommandStatus == CMD_SUCCESS)
return IO_OK;
switch (c->err_info->CommandStatus) {
case CMD_TARGET_STATUS:
return_status = check_target_status(h, c);
break;
case CMD_DATA_UNDERRUN:
case CMD_DATA_OVERRUN:
/* expected for inquiry and report lun commands */
break;
case CMD_INVALID:
dev_warn(&h->pdev->dev, "cmd 0x%02x is "
"reported invalid\n", c->Request.CDB[0]);
return_status = IO_ERROR;
break;
case CMD_PROTOCOL_ERR:
dev_warn(&h->pdev->dev, "cmd 0x%02x has "
"protocol error\n", c->Request.CDB[0]);
return_status = IO_ERROR;
break;
case CMD_HARDWARE_ERR:
dev_warn(&h->pdev->dev, "cmd 0x%02x had "
" hardware error\n", c->Request.CDB[0]);
return_status = IO_ERROR;
break;
case CMD_CONNECTION_LOST:
dev_warn(&h->pdev->dev, "cmd 0x%02x had "
"connection lost\n", c->Request.CDB[0]);
return_status = IO_ERROR;
break;
case CMD_ABORTED:
dev_warn(&h->pdev->dev, "cmd 0x%02x was "
"aborted\n", c->Request.CDB[0]);
return_status = IO_ERROR;
break;
case CMD_ABORT_FAILED:
dev_warn(&h->pdev->dev, "cmd 0x%02x reports "
"abort failed\n", c->Request.CDB[0]);
return_status = IO_ERROR;
break;
case CMD_UNSOLICITED_ABORT:
dev_warn(&h->pdev->dev, "unsolicited abort 0x%02x\n",
c->Request.CDB[0]);
return_status = IO_NEEDS_RETRY;
break;
default:
dev_warn(&h->pdev->dev, "cmd 0x%02x returned "
"unknown status %x\n", c->Request.CDB[0],
c->err_info->CommandStatus);
return_status = IO_ERROR;
}
return return_status;
}
static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
int attempt_retry)
{
DECLARE_COMPLETION_ONSTACK(wait);
u64bit buff_dma_handle;
int return_status = IO_OK;
resend_cmd2:
c->waiting = &wait;
enqueue_cmd_and_start_io(h, c);
wait_for_completion(&wait);
if (c->err_info->CommandStatus == 0 || !attempt_retry)
goto command_done;
return_status = process_sendcmd_error(h, c);
if (return_status == IO_NEEDS_RETRY &&
c->retry_count < MAX_CMD_RETRIES) {
dev_warn(&h->pdev->dev, "retrying 0x%02x\n",
c->Request.CDB[0]);
c->retry_count++;
/* erase the old error information */
memset(c->err_info, 0, sizeof(ErrorInfo_struct));
return_status = IO_OK;
INIT_COMPLETION(wait);
goto resend_cmd2;
}
command_done:
/* unlock the buffers from DMA */
buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
return return_status;
}
static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
__u8 page_code, unsigned char scsi3addr[],
int cmd_type)
{
CommandList_struct *c;
int return_status;
c = cmd_special_alloc(h);
if (!c)
return -ENOMEM;
return_status = fill_cmd(h, c, cmd, buff, size, page_code,
scsi3addr, cmd_type);
if (return_status == IO_OK)
return_status = sendcmd_withirq_core(h, c, 1);
cmd_special_free(h, c);
return return_status;
}
static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
sector_t total_size,
unsigned int block_size,
InquiryData_struct *inq_buff,
drive_info_struct *drv)
{
int return_code;
unsigned long t;
unsigned char scsi3addr[8];
memset(inq_buff, 0, sizeof(InquiryData_struct));
log_unit_to_scsi3addr(h, scsi3addr, logvol);
return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD);
if (return_code == IO_OK) {
if (inq_buff->data_byte[8] == 0xFF) {
dev_warn(&h->pdev->dev,
"reading geometry failed, volume "
"does not support reading geometry\n");
drv->heads = 255;
drv->sectors = 32; /* Sectors per track */
drv->cylinders = total_size + 1;
drv->raid_level = RAID_UNKNOWN;
} else {
drv->heads = inq_buff->data_byte[6];
drv->sectors = inq_buff->data_byte[7];
drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
drv->cylinders += inq_buff->data_byte[5];
drv->raid_level = inq_buff->data_byte[8];
}
drv->block_size = block_size;
drv->nr_blocks = total_size + 1;
t = drv->heads * drv->sectors;
if (t > 1) {
sector_t real_size = total_size + 1;
unsigned long rem = sector_div(real_size, t);
if (rem)
real_size++;
drv->cylinders = real_size;
}
} else { /* Get geometry failed */
dev_warn(&h->pdev->dev, "reading geometry failed\n");
}
}
static void
cciss_read_capacity(ctlr_info_t *h, int logvol, sector_t *total_size,
unsigned int *block_size)
{
ReadCapdata_struct *buf;
int return_code;
unsigned char scsi3addr[8];
buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
if (!buf) {
dev_warn(&h->pdev->dev, "out of memory\n");
return;
}
log_unit_to_scsi3addr(h, scsi3addr, logvol);
return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY, buf,
sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD);
if (return_code == IO_OK) {
*total_size = be32_to_cpu(*(__be32 *) buf->total_size);
*block_size = be32_to_cpu(*(__be32 *) buf->block_size);
} else { /* read capacity command failed */
dev_warn(&h->pdev->dev, "read capacity failed\n");
*total_size = 0;
*block_size = BLOCK_SIZE;
}
kfree(buf);
}
static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
sector_t *total_size, unsigned int *block_size)
{
ReadCapdata_struct_16 *buf;
int return_code;
unsigned char scsi3addr[8];
buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
if (!buf) {
dev_warn(&h->pdev->dev, "out of memory\n");
return;
}
log_unit_to_scsi3addr(h, scsi3addr, logvol);
return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY_16,
buf, sizeof(ReadCapdata_struct_16),
0, scsi3addr, TYPE_CMD);
if (return_code == IO_OK) {
*total_size = be64_to_cpu(*(__be64 *) buf->total_size);
*block_size = be32_to_cpu(*(__be32 *) buf->block_size);
} else { /* read capacity command failed */
dev_warn(&h->pdev->dev, "read capacity failed\n");
*total_size = 0;
*block_size = BLOCK_SIZE;
}
dev_info(&h->pdev->dev, " blocks= %llu block_size= %d\n",
(unsigned long long)*total_size+1, *block_size);
kfree(buf);
}
static int cciss_revalidate(struct gendisk *disk)
{
ctlr_info_t *h = get_host(disk);
drive_info_struct *drv = get_drv(disk);
int logvol;
int FOUND = 0;
unsigned int block_size;
sector_t total_size;
InquiryData_struct *inq_buff = NULL;
for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
if (memcmp(h->drv[logvol]->LunID, drv->LunID,
sizeof(drv->LunID)) == 0) {
FOUND = 1;
break;
}
}
if (!FOUND)
return 1;
inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
if (inq_buff == NULL) {
dev_warn(&h->pdev->dev, "out of memory\n");
return 1;
}
if (h->cciss_read == CCISS_READ_10) {
cciss_read_capacity(h, logvol,
&total_size, &block_size);
} else {
cciss_read_capacity_16(h, logvol,
&total_size, &block_size);
}
cciss_geometry_inquiry(h, logvol, total_size, block_size,
inq_buff, drv);
blk_queue_logical_block_size(drv->queue, drv->block_size);
set_capacity(disk, drv->nr_blocks);
kfree(inq_buff);
return 0;
}
/*
* Map (physical) PCI mem into (virtual) kernel space
*/
static void __iomem *remap_pci_mem(ulong base, ulong size)
{
ulong page_base = ((ulong) base) & PAGE_MASK;
ulong page_offs = ((ulong) base) - page_base;
void __iomem *page_remapped = ioremap(page_base, page_offs + size);
return page_remapped ? (page_remapped + page_offs) : NULL;
}
/*
* Takes jobs of the Q and sends them to the hardware, then puts it on
* the Q to wait for completion.
*/
static void start_io(ctlr_info_t *h)
{
CommandList_struct *c;
while (!hlist_empty(&h->reqQ)) {
c = hlist_entry(h->reqQ.first, CommandList_struct, list);
/* can't do anything if fifo is full */
if ((h->access.fifo_full(h))) {
dev_warn(&h->pdev->dev, "fifo full\n");
break;
}
/* Get the first entry from the Request Q */
removeQ(c);
h->Qdepth--;
/* Tell the controller execute command */
h->access.submit_command(h, c);
/* Put job onto the completed Q */
addQ(&h->cmpQ, c);
}
}
/* Assumes that h->lock is held. */
/* Zeros out the error record and then resends the command back */
/* to the controller */
static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
{
/* erase the old error information */
memset(c->err_info, 0, sizeof(ErrorInfo_struct));
/* add it to software queue and then send it to the controller */
addQ(&h->reqQ, c);
h->Qdepth++;
if (h->Qdepth > h->maxQsinceinit)
h->maxQsinceinit = h->Qdepth;
start_io(h);
}
static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
unsigned int msg_byte, unsigned int host_byte,
unsigned int driver_byte)
{
/* inverse of macros in scsi.h */
return (scsi_status_byte & 0xff) |
((msg_byte & 0xff) << 8) |
((host_byte & 0xff) << 16) |
((driver_byte & 0xff) << 24);
}
static inline int evaluate_target_status(ctlr_info_t *h,
CommandList_struct *cmd, int *retry_cmd)
{
unsigned char sense_key;
unsigned char status_byte, msg_byte, host_byte, driver_byte;
int error_value;
*retry_cmd = 0;
/* If we get in here, it means we got "target status", that is, scsi status */
status_byte = cmd->err_info->ScsiStatus;
driver_byte = DRIVER_OK;
msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
if (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC)
host_byte = DID_PASSTHROUGH;
else
host_byte = DID_OK;
error_value = make_status_bytes(status_byte, msg_byte,
host_byte, driver_byte);
if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC)
dev_warn(&h->pdev->dev, "cmd %p "
"has SCSI Status 0x%x\n",
cmd, cmd->err_info->ScsiStatus);
return error_value;
}
/* check the sense key */
sense_key = 0xf & cmd->err_info->SenseInfo[2];
/* no status or recovered error */
if (((sense_key == 0x0) || (sense_key == 0x1)) &&
(cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC))
error_value = 0;
if (check_for_unit_attention(h, cmd)) {
*retry_cmd = !(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC);
return 0;
}
/* Not SG_IO or similar? */
if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC) {
if (error_value != 0)
dev_warn(&h->pdev->dev, "cmd %p has CHECK CONDITION"
" sense key = 0x%x\n", cmd, sense_key);
return error_value;
}
/* SG_IO or similar, copy sense data back */
if (cmd->rq->sense) {
if (cmd->rq->sense_len > cmd->err_info->SenseLen)
cmd->rq->sense_len = cmd->err_info->SenseLen;
memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
cmd->rq->sense_len);
} else
cmd->rq->sense_len = 0;
return error_value;
}
/* checks the status of the job and calls complete buffers to mark all
* buffers for the completed job. Note that this function does not need
* to hold the hba/queue lock.
*/
static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
int timeout)
{
int retry_cmd = 0;
struct request *rq = cmd->rq;
rq->errors = 0;
if (timeout)
rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
goto after_error_processing;
switch (cmd->err_info->CommandStatus) {
case CMD_TARGET_STATUS:
rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
break;
case CMD_DATA_UNDERRUN:
if (cmd->rq->cmd_type == REQ_TYPE_FS) {
dev_warn(&h->pdev->dev, "cmd %p has"
" completed with data underrun "
"reported\n", cmd);
cmd->rq->resid_len = cmd->err_info->ResidualCnt;
}
break;
case CMD_DATA_OVERRUN:
if (cmd->rq->cmd_type == REQ_TYPE_FS)
dev_warn(&h->pdev->dev, "cciss: cmd %p has"
" completed with data overrun "
"reported\n", cmd);
break;
case CMD_INVALID:
dev_warn(&h->pdev->dev, "cciss: cmd %p is "
"reported invalid\n", cmd);
rq->errors = make_status_bytes(SAM_STAT_GOOD,
cmd->err_info->CommandStatus, DRIVER_OK,
(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
DID_PASSTHROUGH : DID_ERROR);
break;
case CMD_PROTOCOL_ERR:
dev_warn(&h->pdev->dev, "cciss: cmd %p has "
"protocol error\n", cmd);
rq->errors = make_status_bytes(SAM_STAT_GOOD,
cmd->err_info->CommandStatus, DRIVER_OK,
(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
DID_PASSTHROUGH : DID_ERROR);
break;
case CMD_HARDWARE_ERR:
dev_warn(&h->pdev->dev, "cciss: cmd %p had "
" hardware error\n", cmd);
rq->errors = make_status_bytes(SAM_STAT_GOOD,
cmd->err_info->CommandStatus, DRIVER_OK,
(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
DID_PASSTHROUGH : DID_ERROR);
break;
case CMD_CONNECTION_LOST:
dev_warn(&h->pdev->dev, "cciss: cmd %p had "
"connection lost\n", cmd);
rq->errors = make_status_bytes(SAM_STAT_GOOD,
cmd->err_info->CommandStatus, DRIVER_OK,
(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
DID_PASSTHROUGH : DID_ERROR);
break;
case CMD_ABORTED:
dev_warn(&h->pdev->dev, "cciss: cmd %p was "
"aborted\n", cmd);
rq->errors = make_status_bytes(SAM_STAT_GOOD,
cmd->err_info->CommandStatus, DRIVER_OK,
(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
DID_PASSTHROUGH : DID_ABORT);
break;
case CMD_ABORT_FAILED:
dev_warn(&h->pdev->dev, "cciss: cmd %p reports "
"abort failed\n", cmd);
rq->errors = make_status_bytes(SAM_STAT_GOOD,
cmd->err_info->CommandStatus, DRIVER_OK,
(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
DID_PASSTHROUGH : DID_ERROR);
break;
case CMD_UNSOLICITED_ABORT:
dev_warn(&h->pdev->dev, "cciss%d: unsolicited "
"abort %p\n", h->ctlr, cmd);
if (cmd->retry_count < MAX_CMD_RETRIES) {
retry_cmd = 1;
dev_warn(&h->pdev->dev, "retrying %p\n", cmd);
cmd->retry_count++;
} else
dev_warn(&h->pdev->dev,
"%p retried too many times\n", cmd);
rq->errors = make_status_bytes(SAM_STAT_GOOD,
cmd->err_info->CommandStatus, DRIVER_OK,
(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
DID_PASSTHROUGH : DID_ABORT);
break;
case CMD_TIMEOUT:
dev_warn(&h->pdev->dev, "cmd %p timedout\n", cmd);
rq->errors = make_status_bytes(SAM_STAT_GOOD,
cmd->err_info->CommandStatus, DRIVER_OK,
(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
DID_PASSTHROUGH : DID_ERROR);
break;
default:
dev_warn(&h->pdev->dev, "cmd %p returned "
"unknown status %x\n", cmd,
cmd->err_info->CommandStatus);
rq->errors = make_status_bytes(SAM_STAT_GOOD,
cmd->err_info->CommandStatus, DRIVER_OK,
(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
DID_PASSTHROUGH : DID_ERROR);
}
after_error_processing:
/* We need to return this command */
if (retry_cmd) {
resend_cciss_cmd(h, cmd);
return;
}
cmd->rq->completion_data = cmd;
blk_complete_request(cmd->rq);
}
static inline u32 cciss_tag_contains_index(u32 tag)
{
#define DIRECT_LOOKUP_BIT 0x10
return tag & DIRECT_LOOKUP_BIT;
}
static inline u32 cciss_tag_to_index(u32 tag)
{
#define DIRECT_LOOKUP_SHIFT 5
return tag >> DIRECT_LOOKUP_SHIFT;
}
static inline u32 cciss_tag_discard_error_bits(u32 tag)
{
#define CCISS_ERROR_BITS 0x03
return tag & ~CCISS_ERROR_BITS;
}
static inline void cciss_mark_tag_indexed(u32 *tag)
{
*tag |= DIRECT_LOOKUP_BIT;
}
static inline void cciss_set_tag_index(u32 *tag, u32 index)
{
*tag |= (index << DIRECT_LOOKUP_SHIFT);
}
/*
* Get a request and submit it to the controller.
*/
static void do_cciss_request(struct request_queue *q)
{
ctlr_info_t *h = q->queuedata;
CommandList_struct *c;
sector_t start_blk;
int seg;
struct request *creq;
u64bit temp64;
struct scatterlist *tmp_sg;
SGDescriptor_struct *curr_sg;
drive_info_struct *drv;
int i, dir;
int sg_index = 0;
int chained = 0;
/* We call start_io here in case there is a command waiting on the
* queue that has not been sent.
*/
if (blk_queue_plugged(q))
goto startio;
queue:
creq = blk_peek_request(q);
if (!creq)
goto startio;
BUG_ON(creq->nr_phys_segments > h->maxsgentries);
c = cmd_alloc(h);
if (!c)
goto full;
blk_start_request(creq);
tmp_sg = h->scatter_list[c->cmdindex];
spin_unlock_irq(q->queue_lock);
c->cmd_type = CMD_RWREQ;
c->rq = creq;
/* fill in the request */
drv = creq->rq_disk->private_data;
c->Header.ReplyQueue = 0; /* unused in simple mode */
/* got command from pool, so use the command block index instead */
/* for direct lookups. */
/* The first 2 bits are reserved for controller error reporting. */
cciss_set_tag_index(&c->Header.Tag.lower, c->cmdindex);
cciss_mark_tag_indexed(&c->Header.Tag.lower);
memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
c->Request.CDBLen = 10; /* 12 byte commands not in FW yet; */
c->Request.Type.Type = TYPE_CMD; /* It is a command. */
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction =
(rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
c->Request.Timeout = 0; /* Don't time out */
c->Request.CDB[0] =
(rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
start_blk = blk_rq_pos(creq);
dev_dbg(&h->pdev->dev, "sector =%d nr_sectors=%d\n",
(int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
sg_init_table(tmp_sg, h->maxsgentries);
seg = blk_rq_map_sg(q, creq, tmp_sg);
/* get the DMA records for the setup */
if (c->Request.Type.Direction == XFER_READ)
dir = PCI_DMA_FROMDEVICE;
else
dir = PCI_DMA_TODEVICE;
curr_sg = c->SG;
sg_index = 0;
chained = 0;
for (i = 0; i < seg; i++) {
if (((sg_index+1) == (h->max_cmd_sgentries)) &&
!chained && ((seg - i) > 1)) {
/* Point to next chain block. */
curr_sg = h->cmd_sg_list[c->cmdindex];
sg_index = 0;
chained = 1;
}
curr_sg[sg_index].Len = tmp_sg[i].length;
temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
tmp_sg[i].offset,
tmp_sg[i].length, dir);
curr_sg[sg_index].Addr.lower = temp64.val32.lower;
curr_sg[sg_index].Addr.upper = temp64.val32.upper;
curr_sg[sg_index].Ext = 0; /* we are not chaining */
++sg_index;
}
if (chained)
cciss_map_sg_chain_block(h, c, h->cmd_sg_list[c->cmdindex],
(seg - (h->max_cmd_sgentries - 1)) *
sizeof(SGDescriptor_struct));
/* track how many SG entries we are using */
if (seg > h->maxSG)
h->maxSG = seg;
dev_dbg(&h->pdev->dev, "Submitting %u sectors in %d segments "
"chained[%d]\n",
blk_rq_sectors(creq), seg, chained);
c->Header.SGTotal = seg + chained;
if (seg <= h->max_cmd_sgentries)
c->Header.SGList = c->Header.SGTotal;
else
c->Header.SGList = h->max_cmd_sgentries;
set_performant_mode(h, c);
if (likely(creq->cmd_type == REQ_TYPE_FS)) {
if(h->cciss_read == CCISS_READ_10) {
c->Request.CDB[1] = 0;
c->Request.CDB[2] = (start_blk >> 24) & 0xff; /* MSB */
c->Request.CDB[3] = (start_blk >> 16) & 0xff;
c->Request.CDB[4] = (start_blk >> 8) & 0xff;
c->Request.CDB[5] = start_blk & 0xff;
c->Request.CDB[6] = 0; /* (sect >> 24) & 0xff; MSB */
c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
} else {
u32 upper32 = upper_32_bits(start_blk);
c->Request.CDBLen = 16;
c->Request.CDB[1]= 0;
c->Request.CDB[2]= (upper32 >> 24) & 0xff; /* MSB */
c->Request.CDB[3]= (upper32 >> 16) & 0xff;
c->Request.CDB[4]= (upper32 >> 8) & 0xff;
c->Request.CDB[5]= upper32 & 0xff;
c->Request.CDB[6]= (start_blk >> 24) & 0xff;
c->Request.CDB[7]= (start_blk >> 16) & 0xff;
c->Request.CDB[8]= (start_blk >> 8) & 0xff;
c->Request.CDB[9]= start_blk & 0xff;
c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
c->Request.CDB[12]= (blk_rq_sectors(creq) >> 8) & 0xff;
c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
c->Request.CDB[14] = c->Request.CDB[15] = 0;
}
} else if (creq->cmd_type == REQ_TYPE_BLOCK_PC) {
c->Request.CDBLen = creq->cmd_len;
memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
} else {
dev_warn(&h->pdev->dev, "bad request type %d\n",
creq->cmd_type);
BUG();
}
spin_lock_irq(q->queue_lock);
addQ(&h->reqQ, c);
h->Qdepth++;
if (h->Qdepth > h->maxQsinceinit)
h->maxQsinceinit = h->Qdepth;
goto queue;
full:
blk_stop_queue(q);
startio:
/* We will already have the driver lock here so not need
* to lock it.
*/
start_io(h);
}
static inline unsigned long get_next_completion(ctlr_info_t *h)
{
return h->access.command_completed(h);
}
static inline int interrupt_pending(ctlr_info_t *h)
{
return h->access.intr_pending(h);
}
static inline long interrupt_not_for_us(ctlr_info_t *h)
{
return ((h->access.intr_pending(h) == 0) ||
(h->interrupts_enabled == 0));
}
static inline int bad_tag(ctlr_info_t *h, u32 tag_index,
u32 raw_tag)
{
if (unlikely(tag_index >= h->nr_cmds)) {
dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
return 1;
}
return 0;
}
static inline void finish_cmd(ctlr_info_t *h, CommandList_struct *c,
u32 raw_tag)
{
removeQ(c);
if (likely(c->cmd_type == CMD_RWREQ))
complete_command(h, c, 0);
else if (c->cmd_type == CMD_IOCTL_PEND)
complete(c->waiting);
#ifdef CONFIG_CISS_SCSI_TAPE
else if (c->cmd_type == CMD_SCSI)
complete_scsi_command(c, 0, raw_tag);
#endif
}
static inline u32 next_command(ctlr_info_t *h)
{
u32 a;
if (unlikely(h->transMethod != CFGTBL_Trans_Performant))
return h->access.command_completed(h);
if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
a = *(h->reply_pool_head); /* Next cmd in ring buffer */
(h->reply_pool_head)++;
h->commands_outstanding--;
} else {
a = FIFO_EMPTY;
}
/* Check for wraparound */
if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
h->reply_pool_head = h->reply_pool;
h->reply_pool_wraparound ^= 1;
}
return a;
}
/* process completion of an indexed ("direct lookup") command */
static inline u32 process_indexed_cmd(ctlr_info_t *h, u32 raw_tag)
{
u32 tag_index;
CommandList_struct *c;
tag_index = cciss_tag_to_index(raw_tag);
if (bad_tag(h, tag_index, raw_tag))
return next_command(h);
c = h->cmd_pool + tag_index;
finish_cmd(h, c, raw_tag);
return next_command(h);
}
/* process completion of a non-indexed command */
static inline u32 process_nonindexed_cmd(ctlr_info_t *h, u32 raw_tag)
{
u32 tag;
CommandList_struct *c = NULL;
struct hlist_node *tmp;
__u32 busaddr_masked, tag_masked;
tag = cciss_tag_discard_error_bits(raw_tag);
hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
busaddr_masked = cciss_tag_discard_error_bits(c->busaddr);
tag_masked = cciss_tag_discard_error_bits(tag);
if (busaddr_masked == tag_masked) {
finish_cmd(h, c, raw_tag);
return next_command(h);
}
}
bad_tag(h, h->nr_cmds + 1, raw_tag);
return next_command(h);
}
static irqreturn_t do_cciss_intx(int irq, void *dev_id)
{
ctlr_info_t *h = dev_id;
unsigned long flags;
u32 raw_tag;
if (interrupt_not_for_us(h))
return IRQ_NONE;
spin_lock_irqsave(&h->lock, flags);
while (interrupt_pending(h)) {
raw_tag = get_next_completion(h);
while (raw_tag != FIFO_EMPTY) {
if (cciss_tag_contains_index(raw_tag))
raw_tag = process_indexed_cmd(h, raw_tag);
else
raw_tag = process_nonindexed_cmd(h, raw_tag);
}
}
spin_unlock_irqrestore(&h->lock, flags);
return IRQ_HANDLED;
}
/* Add a second interrupt handler for MSI/MSI-X mode. In this mode we never
* check the interrupt pending register because it is not set.
*/
static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id)
{
ctlr_info_t *h = dev_id;
unsigned long flags;
u32 raw_tag;
spin_lock_irqsave(&h->lock, flags);
raw_tag = get_next_completion(h);
while (raw_tag != FIFO_EMPTY) {
if (cciss_tag_contains_index(raw_tag))
raw_tag = process_indexed_cmd(h, raw_tag);
else
raw_tag = process_nonindexed_cmd(h, raw_tag);
}
spin_unlock_irqrestore(&h->lock, flags);
return IRQ_HANDLED;
}
/**
* add_to_scan_list() - add controller to rescan queue
* @h: Pointer to the controller.
*
* Adds the controller to the rescan queue if not already on the queue.
*
* returns 1 if added to the queue, 0 if skipped (could be on the
* queue already, or the controller could be initializing or shutting
* down).
**/
static int add_to_scan_list(struct ctlr_info *h)
{
struct ctlr_info *test_h;
int found = 0;
int ret = 0;
if (h->busy_initializing)
return 0;
if (!mutex_trylock(&h->busy_shutting_down))
return 0;
mutex_lock(&scan_mutex);
list_for_each_entry(test_h, &scan_q, scan_list) {
if (test_h == h) {
found = 1;
break;
}
}
if (!found && !h->busy_scanning) {
INIT_COMPLETION(h->scan_wait);
list_add_tail(&h->scan_list, &scan_q);
ret = 1;
}
mutex_unlock(&scan_mutex);
mutex_unlock(&h->busy_shutting_down);
return ret;
}
/**
* remove_from_scan_list() - remove controller from rescan queue
* @h: Pointer to the controller.
*
* Removes the controller from the rescan queue if present. Blocks if
* the controller is currently conducting a rescan. The controller
* can be in one of three states:
* 1. Doesn't need a scan
* 2. On the scan list, but not scanning yet (we remove it)
* 3. Busy scanning (and not on the list). In this case we want to wait for
* the scan to complete to make sure the scanning thread for this
* controller is completely idle.
**/
static void remove_from_scan_list(struct ctlr_info *h)
{
struct ctlr_info *test_h, *tmp_h;
mutex_lock(&scan_mutex);
list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
if (test_h == h) { /* state 2. */
list_del(&h->scan_list);
complete_all(&h->scan_wait);
mutex_unlock(&scan_mutex);
return;
}
}
if (h->busy_scanning) { /* state 3. */
mutex_unlock(&scan_mutex);
wait_for_completion(&h->scan_wait);
} else { /* state 1, nothing to do. */
mutex_unlock(&scan_mutex);
}
}
/**
* scan_thread() - kernel thread used to rescan controllers
* @data: Ignored.
*
* A kernel thread used scan for drive topology changes on
* controllers. The thread processes only one controller at a time
* using a queue. Controllers are added to the queue using
* add_to_scan_list() and removed from the queue either after done
* processing or using remove_from_scan_list().
*
* returns 0.
**/
static int scan_thread(void *data)
{
struct ctlr_info *h;
while (1) {
set_current_state(TASK_INTERRUPTIBLE);
schedule();
if (kthread_should_stop())
break;
while (1) {
mutex_lock(&scan_mutex);
if (list_empty(&scan_q)) {
mutex_unlock(&scan_mutex);
break;
}
h = list_entry(scan_q.next,
struct ctlr_info,
scan_list);
list_del(&h->scan_list);
h->busy_scanning = 1;
mutex_unlock(&scan_mutex);
rebuild_lun_table(h, 0, 0);
complete_all(&h->scan_wait);
mutex_lock(&scan_mutex);
h->busy_scanning = 0;
mutex_unlock(&scan_mutex);
}
}
return 0;
}
static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
{
if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
return 0;
switch (c->err_info->SenseInfo[12]) {
case STATE_CHANGED:
dev_warn(&h->pdev->dev, "a state change "
"detected, command retried\n");
return 1;
break;
case LUN_FAILED:
dev_warn(&h->pdev->dev, "LUN failure "
"detected, action required\n");
return 1;
break;
case REPORT_LUNS_CHANGED:
dev_warn(&h->pdev->dev, "report LUN data changed\n");
/*
* Here, we could call add_to_scan_list and wake up the scan thread,
* except that it's quite likely that we will get more than one
* REPORT_LUNS_CHANGED condition in quick succession, which means
* that those which occur after the first one will likely happen
* *during* the scan_thread's rescan. And the rescan code is not
* robust enough to restart in the middle, undoing what it has already
* done, and it's not clear that it's even possible to do this, since
* part of what it does is notify the block layer, which starts
* doing it's own i/o to read partition tables and so on, and the
* driver doesn't have visibility to know what might need undoing.
* In any event, if possible, it is horribly complicated to get right
* so we just don't do it for now.
*
* Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
*/
return 1;
break;
case POWER_OR_RESET:
dev_warn(&h->pdev->dev,
"a power on or device reset detected\n");
return 1;
break;
case UNIT_ATTENTION_CLEARED:
dev_warn(&h->pdev->dev,
"unit attention cleared by another initiator\n");
return 1;
break;
default:
dev_warn(&h->pdev->dev, "unknown unit attention detected\n");
return 1;
}
}
/*
* We cannot read the structure directly, for portability we must use
* the io functions.
* This is for debug only.
*/
static void print_cfg_table(ctlr_info_t *h)
{
int i;
char temp_name[17];
CfgTable_struct *tb = h->cfgtable;
dev_dbg(&h->pdev->dev, "Controller Configuration information\n");
dev_dbg(&h->pdev->dev, "------------------------------------\n");
for (i = 0; i < 4; i++)
temp_name[i] = readb(&(tb->Signature[i]));
temp_name[4] = '\0';
dev_dbg(&h->pdev->dev, " Signature = %s\n", temp_name);
dev_dbg(&h->pdev->dev, " Spec Number = %d\n",
readl(&(tb->SpecValence)));
dev_dbg(&h->pdev->dev, " Transport methods supported = 0x%x\n",
readl(&(tb->TransportSupport)));
dev_dbg(&h->pdev->dev, " Transport methods active = 0x%x\n",
readl(&(tb->TransportActive)));
dev_dbg(&h->pdev->dev, " Requested transport Method = 0x%x\n",
readl(&(tb->HostWrite.TransportRequest)));
dev_dbg(&h->pdev->dev, " Coalesce Interrupt Delay = 0x%x\n",
readl(&(tb->HostWrite.CoalIntDelay)));
dev_dbg(&h->pdev->dev, " Coalesce Interrupt Count = 0x%x\n",
readl(&(tb->HostWrite.CoalIntCount)));
dev_dbg(&h->pdev->dev, " Max outstanding commands = 0x%d\n",
readl(&(tb->CmdsOutMax)));
dev_dbg(&h->pdev->dev, " Bus Types = 0x%x\n",
readl(&(tb->BusTypes)));
for (i = 0; i < 16; i++)
temp_name[i] = readb(&(tb->ServerName[i]));
temp_name[16] = '\0';
dev_dbg(&h->pdev->dev, " Server Name = %s\n", temp_name);
dev_dbg(&h->pdev->dev, " Heartbeat Counter = 0x%x\n\n\n",
readl(&(tb->HeartBeat)));
}
static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
{
int i, offset, mem_type, bar_type;
if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
return 0;
offset = 0;
for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
offset += 4;
else {
mem_type = pci_resource_flags(pdev, i) &
PCI_BASE_ADDRESS_MEM_TYPE_MASK;
switch (mem_type) {
case PCI_BASE_ADDRESS_MEM_TYPE_32:
case PCI_BASE_ADDRESS_MEM_TYPE_1M:
offset += 4; /* 32 bit */
break;
case PCI_BASE_ADDRESS_MEM_TYPE_64:
offset += 8;
break;
default: /* reserved in PCI 2.2 */
dev_warn(&pdev->dev,
"Base address is invalid\n");
return -1;
break;
}
}
if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
return i + 1;
}
return -1;
}
/* Fill in bucket_map[], given nsgs (the max number of
* scatter gather elements supported) and bucket[],
* which is an array of 8 integers. The bucket[] array
* contains 8 different DMA transfer sizes (in 16
* byte increments) which the controller uses to fetch
* commands. This function fills in bucket_map[], which
* maps a given number of scatter gather elements to one of
* the 8 DMA transfer sizes. The point of it is to allow the
* controller to only do as much DMA as needed to fetch the
* command, with the DMA transfer size encoded in the lower
* bits of the command address.
*/
static void calc_bucket_map(int bucket[], int num_buckets,
int nsgs, int *bucket_map)
{
int i, j, b, size;
/* even a command with 0 SGs requires 4 blocks */
#define MINIMUM_TRANSFER_BLOCKS 4
#define NUM_BUCKETS 8
/* Note, bucket_map must have nsgs+1 entries. */
for (i = 0; i <= nsgs; i++) {
/* Compute size of a command with i SG entries */
size = i + MINIMUM_TRANSFER_BLOCKS;
b = num_buckets; /* Assume the biggest bucket */
/* Find the bucket that is just big enough */
for (j = 0; j < 8; j++) {
if (bucket[j] >= size) {
b = j;
break;
}
}
/* for a command with i SG entries, use bucket b. */
bucket_map[i] = b;
}
}
static void __devinit cciss_wait_for_mode_change_ack(ctlr_info_t *h)
{
int i;
/* under certain very rare conditions, this can take awhile.
* (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
* as we enter this code.) */
for (i = 0; i < MAX_CONFIG_WAIT; i++) {
if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
break;
msleep(10);
}
}
static __devinit void cciss_enter_performant_mode(ctlr_info_t *h)
{
/* This is a bit complicated. There are 8 registers on
* the controller which we write to to tell it 8 different
* sizes of commands which there may be. It's a way of
* reducing the DMA done to fetch each command. Encoded into
* each command's tag are 3 bits which communicate to the controller
* which of the eight sizes that command fits within. The size of
* each command depends on how many scatter gather entries there are.
* Each SG entry requires 16 bytes. The eight registers are programmed
* with the number of 16-byte blocks a command of that size requires.
* The smallest command possible requires 5 such 16 byte blocks.
* the largest command possible requires MAXSGENTRIES + 4 16-byte
* blocks. Note, this only extends to the SG entries contained
* within the command block, and does not extend to chained blocks
* of SG elements. bft[] contains the eight values we write to
* the registers. They are not evenly distributed, but have more
* sizes for small commands, and fewer sizes for larger commands.
*/
__u32 trans_offset;
int bft[8] = { 5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
/*
* 5 = 1 s/g entry or 4k
* 6 = 2 s/g entry or 8k
* 8 = 4 s/g entry or 16k
* 10 = 6 s/g entry or 24k
*/
unsigned long register_value;
BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
h->reply_pool_wraparound = 1; /* spec: init to 1 */
/* Controller spec: zero out this buffer. */
memset(h->reply_pool, 0, h->max_commands * sizeof(__u64));
h->reply_pool_head = h->reply_pool;
trans_offset = readl(&(h->cfgtable->TransMethodOffset));
calc_bucket_map(bft, ARRAY_SIZE(bft), h->maxsgentries,
h->blockFetchTable);
writel(bft[0], &h->transtable->BlockFetch0);
writel(bft[1], &h->transtable->BlockFetch1);
writel(bft[2], &h->transtable->BlockFetch2);
writel(bft[3], &h->transtable->BlockFetch3);
writel(bft[4], &h->transtable->BlockFetch4);
writel(bft[5], &h->transtable->BlockFetch5);
writel(bft[6], &h->transtable->BlockFetch6);
writel(bft[7], &h->transtable->BlockFetch7);
/* size of controller ring buffer */
writel(h->max_commands, &h->transtable->RepQSize);
writel(1, &h->transtable->RepQCount);
writel(0, &h->transtable->RepQCtrAddrLow32);
writel(0, &h->transtable->RepQCtrAddrHigh32);
writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
writel(0, &h->transtable->RepQAddr0High32);
writel(CFGTBL_Trans_Performant,
&(h->cfgtable->HostWrite.TransportRequest));
writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
cciss_wait_for_mode_change_ack(h);
register_value = readl(&(h->cfgtable->TransportActive));
if (!(register_value & CFGTBL_Trans_Performant))
dev_warn(&h->pdev->dev, "cciss: unable to get board into"
" performant mode\n");
}
static void __devinit cciss_put_controller_into_performant_mode(ctlr_info_t *h)
{
__u32 trans_support;
dev_dbg(&h->pdev->dev, "Trying to put board into Performant mode\n");
/* Attempt to put controller into performant mode if supported */
/* Does board support performant mode? */
trans_support = readl(&(h->cfgtable->TransportSupport));
if (!(trans_support & PERFORMANT_MODE))
return;
dev_dbg(&h->pdev->dev, "Placing controller into performant mode\n");
/* Performant mode demands commands on a 32 byte boundary
* pci_alloc_consistent aligns on page boundarys already.
* Just need to check if divisible by 32
*/
if ((sizeof(CommandList_struct) % 32) != 0) {
dev_warn(&h->pdev->dev, "%s %d %s\n",
"cciss info: command size[",
(int)sizeof(CommandList_struct),
"] not divisible by 32, no performant mode..\n");
return;
}
/* Performant mode ring buffer and supporting data structures */
h->reply_pool = (__u64 *)pci_alloc_consistent(
h->pdev, h->max_commands * sizeof(__u64),
&(h->reply_pool_dhandle));
/* Need a block fetch table for performant mode */
h->blockFetchTable = kmalloc(((h->maxsgentries+1) *
sizeof(__u32)), GFP_KERNEL);
if ((h->reply_pool == NULL) || (h->blockFetchTable == NULL))
goto clean_up;
cciss_enter_performant_mode(h);
/* Change the access methods to the performant access methods */
h->access = SA5_performant_access;
h->transMethod = CFGTBL_Trans_Performant;
return;
clean_up:
kfree(h->blockFetchTable);
if (h->reply_pool)
pci_free_consistent(h->pdev,
h->max_commands * sizeof(__u64),
h->reply_pool,
h->reply_pool_dhandle);
return;
} /* cciss_put_controller_into_performant_mode */
/* If MSI/MSI-X is supported by the kernel we will try to enable it on
* controllers that are capable. If not, we use IO-APIC mode.
*/
static void __devinit cciss_interrupt_mode(ctlr_info_t *h)
{
#ifdef CONFIG_PCI_MSI
int err;
struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
{0, 2}, {0, 3}
};
/* Some boards advertise MSI but don't really support it */
if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
(h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
goto default_int_mode;
if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
err = pci_enable_msix(h->pdev, cciss_msix_entries, 4);
if (!err) {
h->intr[0] = cciss_msix_entries[0].vector;
h->intr[1] = cciss_msix_entries[1].vector;
h->intr[2] = cciss_msix_entries[2].vector;
h->intr[3] = cciss_msix_entries[3].vector;
h->msix_vector = 1;
return;
}
if (err > 0) {
dev_warn(&h->pdev->dev,
"only %d MSI-X vectors available\n", err);
goto default_int_mode;
} else {
dev_warn(&h->pdev->dev,
"MSI-X init failed %d\n", err);
goto default_int_mode;
}
}
if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
if (!pci_enable_msi(h->pdev))
h->msi_vector = 1;
else
dev_warn(&h->pdev->dev, "MSI init failed\n");
}
default_int_mode:
#endif /* CONFIG_PCI_MSI */
/* if we get here we're going to use the default interrupt mode */
h->intr[PERF_MODE_INT] = h->pdev->irq;
return;
}
static int __devinit cciss_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
{
int i;
u32 subsystem_vendor_id, subsystem_device_id;
subsystem_vendor_id = pdev->subsystem_vendor;
subsystem_device_id = pdev->subsystem_device;
*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
subsystem_vendor_id;
for (i = 0; i < ARRAY_SIZE(products); i++) {
if (*board_id == products[i].board_id)
return i;
}
dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x, ignoring.\n",
*board_id);
return -ENODEV;
}
static inline bool cciss_board_disabled(ctlr_info_t *h)
{
u16 command;
(void) pci_read_config_word(h->pdev, PCI_COMMAND, &command);
return ((command & PCI_COMMAND_MEMORY) == 0);
}
static int __devinit cciss_pci_find_memory_BAR(struct pci_dev *pdev,
unsigned long *memory_bar)
{
int i;
for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
/* addressing mode bits already removed */
*memory_bar = pci_resource_start(pdev, i);
dev_dbg(&pdev->dev, "memory BAR = %lx\n",
*memory_bar);
return 0;
}
dev_warn(&pdev->dev, "no memory BAR found\n");
return -ENODEV;
}
static int __devinit cciss_wait_for_board_ready(ctlr_info_t *h)
{
int i;
u32 scratchpad;
for (i = 0; i < CCISS_BOARD_READY_ITERATIONS; i++) {
scratchpad = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
if (scratchpad == CCISS_FIRMWARE_READY)
return 0;
msleep(CCISS_BOARD_READY_POLL_INTERVAL_MSECS);
}
dev_warn(&h->pdev->dev, "board not ready, timed out.\n");
return -ENODEV;
}
static int __devinit cciss_find_cfg_addrs(struct pci_dev *pdev,
void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
u64 *cfg_offset)
{
*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
*cfg_base_addr &= (u32) 0x0000ffff;
*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
if (*cfg_base_addr_index == -1) {
dev_warn(&pdev->dev, "cannot find cfg_base_addr_index, "
"*cfg_base_addr = 0x%08x\n", *cfg_base_addr);
return -ENODEV;
}
return 0;
}
static int __devinit cciss_find_cfgtables(ctlr_info_t *h)
{
u64 cfg_offset;
u32 cfg_base_addr;
u64 cfg_base_addr_index;
u32 trans_offset;
int rc;
rc = cciss_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
&cfg_base_addr_index, &cfg_offset);
if (rc)
return rc;
h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
cfg_base_addr_index) + cfg_offset, sizeof(h->cfgtable));
if (!h->cfgtable)
return -ENOMEM;
/* Find performant mode table. */
trans_offset = readl(&h->cfgtable->TransMethodOffset);
h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
cfg_base_addr_index)+cfg_offset+trans_offset,
sizeof(*h->transtable));
if (!h->transtable)
return -ENOMEM;
return 0;
}
static void __devinit cciss_get_max_perf_mode_cmds(struct ctlr_info *h)
{
h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
if (h->max_commands < 16) {
dev_warn(&h->pdev->dev, "Controller reports "
"max supported commands of %d, an obvious lie. "
"Using 16. Ensure that firmware is up to date.\n",
h->max_commands);
h->max_commands = 16;
}
}
/* Interrogate the hardware for some limits:
* max commands, max SG elements without chaining, and with chaining,
* SG chain block size, etc.
*/
static void __devinit cciss_find_board_params(ctlr_info_t *h)
{
cciss_get_max_perf_mode_cmds(h);
h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
h->maxsgentries = readl(&(h->cfgtable->MaxSGElements));
/*
* Limit in-command s/g elements to 32 save dma'able memory.
* Howvever spec says if 0, use 31
*/
h->max_cmd_sgentries = 31;
if (h->maxsgentries > 512) {
h->max_cmd_sgentries = 32;
h->chainsize = h->maxsgentries - h->max_cmd_sgentries + 1;
h->maxsgentries--; /* save one for chain pointer */
} else {
h->maxsgentries = 31; /* default to traditional values */
h->chainsize = 0;
}
}
static inline bool CISS_signature_present(ctlr_info_t *h)
{
if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
(readb(&h->cfgtable->Signature[1]) != 'I') ||
(readb(&h->cfgtable->Signature[2]) != 'S') ||
(readb(&h->cfgtable->Signature[3]) != 'S')) {
dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
return false;
}
return true;
}
/* Need to enable prefetch in the SCSI core for 6400 in x86 */
static inline void cciss_enable_scsi_prefetch(ctlr_info_t *h)
{
#ifdef CONFIG_X86
u32 prefetch;
prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
prefetch |= 0x100;
writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
#endif
}
/* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
* in a prefetch beyond physical memory.
*/
static inline void cciss_p600_dma_prefetch_quirk(ctlr_info_t *h)
{
u32 dma_prefetch;
__u32 dma_refetch;
if (h->board_id != 0x3225103C)
return;
dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
dma_prefetch |= 0x8000;
writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
pci_read_config_dword(h->pdev, PCI_COMMAND_PARITY, &dma_refetch);
dma_refetch |= 0x1;
pci_write_config_dword(h->pdev, PCI_COMMAND_PARITY, dma_refetch);
}
static int __devinit cciss_pci_init(ctlr_info_t *h)
{
int prod_index, err;
prod_index = cciss_lookup_board_id(h->pdev, &h->board_id);
if (prod_index < 0)
return -ENODEV;
h->product_name = products[prod_index].product_name;
h->access = *(products[prod_index].access);
if (cciss_board_disabled(h)) {
dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
return -ENODEV;
}
err = pci_enable_device(h->pdev);
if (err) {
dev_warn(&h->pdev->dev, "Unable to Enable PCI device\n");
return err;
}
err = pci_request_regions(h->pdev, "cciss");
if (err) {
dev_warn(&h->pdev->dev,
"Cannot obtain PCI resources, aborting\n");
return err;
}
dev_dbg(&h->pdev->dev, "irq = %x\n", h->pdev->irq);
dev_dbg(&h->pdev->dev, "board_id = %x\n", h->board_id);
/* If the kernel supports MSI/MSI-X we will try to enable that functionality,
* else we use the IO-APIC interrupt assigned to us by system ROM.
*/
cciss_interrupt_mode(h);
err = cciss_pci_find_memory_BAR(h->pdev, &h->paddr);
if (err)
goto err_out_free_res;
h->vaddr = remap_pci_mem(h->paddr, 0x250);
if (!h->vaddr) {
err = -ENOMEM;
goto err_out_free_res;
}
err = cciss_wait_for_board_ready(h);
if (err)
goto err_out_free_res;
err = cciss_find_cfgtables(h);
if (err)
goto err_out_free_res;
print_cfg_table(h);
cciss_find_board_params(h);
if (!CISS_signature_present(h)) {
err = -ENODEV;
goto err_out_free_res;
}
cciss_enable_scsi_prefetch(h);
cciss_p600_dma_prefetch_quirk(h);
cciss_put_controller_into_performant_mode(h);
return 0;
err_out_free_res:
/*
* Deliberately omit pci_disable_device(): it does something nasty to
* Smart Array controllers that pci_enable_device does not undo
*/
if (h->transtable)
iounmap(h->transtable);
if (h->cfgtable)
iounmap(h->cfgtable);
if (h->vaddr)
iounmap(h->vaddr);
pci_release_regions(h->pdev);
return err;
}
/* Function to find the first free pointer into our hba[] array
* Returns -1 if no free entries are left.
*/
static int alloc_cciss_hba(struct pci_dev *pdev)
{
int i;
for (i = 0; i < MAX_CTLR; i++) {
if (!hba[i]) {
ctlr_info_t *h;
h = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
if (!h)
goto Enomem;
hba[i] = h;
return i;
}
}
dev_warn(&pdev->dev, "This driver supports a maximum"
" of %d controllers.\n", MAX_CTLR);
return -1;
Enomem:
dev_warn(&pdev->dev, "out of memory.\n");
return -1;
}
static void free_hba(ctlr_info_t *h)
{
int i;
hba[h->ctlr] = NULL;
for (i = 0; i < h->highest_lun + 1; i++)
if (h->gendisk[i] != NULL)
put_disk(h->gendisk[i]);
kfree(h);
}
/* Send a message CDB to the firmware. */
static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
{
typedef struct {
CommandListHeader_struct CommandHeader;
RequestBlock_struct Request;
ErrDescriptor_struct ErrorDescriptor;
} Command;
static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
Command *cmd;
dma_addr_t paddr64;
uint32_t paddr32, tag;
void __iomem *vaddr;
int i, err;
vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
if (vaddr == NULL)
return -ENOMEM;
/* The Inbound Post Queue only accepts 32-bit physical addresses for the
CCISS commands, so they must be allocated from the lower 4GiB of
memory. */
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
if (err) {
iounmap(vaddr);
return -ENOMEM;
}
cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
if (cmd == NULL) {
iounmap(vaddr);
return -ENOMEM;
}
/* This must fit, because of the 32-bit consistent DMA mask. Also,
although there's no guarantee, we assume that the address is at
least 4-byte aligned (most likely, it's page-aligned). */
paddr32 = paddr64;
cmd->CommandHeader.ReplyQueue = 0;
cmd->CommandHeader.SGList = 0;
cmd->CommandHeader.SGTotal = 0;
cmd->CommandHeader.Tag.lower = paddr32;
cmd->CommandHeader.Tag.upper = 0;
memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
cmd->Request.CDBLen = 16;
cmd->Request.Type.Type = TYPE_MSG;
cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
cmd->Request.Type.Direction = XFER_NONE;
cmd->Request.Timeout = 0; /* Don't time out */
cmd->Request.CDB[0] = opcode;
cmd->Request.CDB[1] = type;
memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
cmd->ErrorDescriptor.Addr.upper = 0;
cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
for (i = 0; i < 10; i++) {
tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
if ((tag & ~3) == paddr32)
break;
schedule_timeout_uninterruptible(HZ);
}
iounmap(vaddr);
/* we leak the DMA buffer here ... no choice since the controller could
still complete the command. */
if (i == 10) {
dev_err(&pdev->dev,
"controller message %02x:%02x timed out\n",
opcode, type);
return -ETIMEDOUT;
}
pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
if (tag & 2) {
dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
opcode, type);
return -EIO;
}
dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
opcode, type);
return 0;
}
#define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
#define cciss_noop(p) cciss_message(p, 3, 0)
static __devinit int cciss_reset_msi(struct pci_dev *pdev)
{
/* the #defines are stolen from drivers/pci/msi.h. */
#define msi_control_reg(base) (base + PCI_MSI_FLAGS)
#define PCI_MSIX_FLAGS_ENABLE (1 << 15)
int pos;
u16 control = 0;
pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
if (pos) {
pci_read_config_word(pdev, msi_control_reg(pos), &control);
if (control & PCI_MSI_FLAGS_ENABLE) {
dev_info(&pdev->dev, "resetting MSI\n");
pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSI_FLAGS_ENABLE);
}
}
pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
if (pos) {
pci_read_config_word(pdev, msi_control_reg(pos), &control);
if (control & PCI_MSIX_FLAGS_ENABLE) {
dev_info(&pdev->dev, "resetting MSI-X\n");
pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSIX_FLAGS_ENABLE);
}
}
return 0;
}
static int cciss_controller_hard_reset(struct pci_dev *pdev,
void * __iomem vaddr, bool use_doorbell)
{
u16 pmcsr;
int pos;
if (use_doorbell) {
/* For everything after the P600, the PCI power state method
* of resetting the controller doesn't work, so we have this
* other way using the doorbell register.
*/
dev_info(&pdev->dev, "using doorbell to reset controller\n");
writel(DOORBELL_CTLR_RESET, vaddr + SA5_DOORBELL);
msleep(1000);
} else { /* Try to do it the PCI power state way */
/* Quoting from the Open CISS Specification: "The Power
* Management Control/Status Register (CSR) controls the power
* state of the device. The normal operating state is D0,
* CSR=00h. The software off state is D3, CSR=03h. To reset
* the controller, place the interface device in D3 then to D0,
* this causes a secondary PCI reset which will reset the
* controller." */
pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
if (pos == 0) {
dev_err(&pdev->dev,
"cciss_controller_hard_reset: "
"PCI PM not supported\n");
return -ENODEV;
}
dev_info(&pdev->dev, "using PCI PM to reset controller\n");
/* enter the D3hot power management state */
pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
pmcsr |= PCI_D3hot;
pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
msleep(500);
/* enter the D0 power management state */
pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
pmcsr |= PCI_D0;
pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
msleep(500);
}
return 0;
}
/* This does a hard reset of the controller using PCI power management
* states or using the doorbell register. */
static __devinit int cciss_kdump_hard_reset_controller(struct pci_dev *pdev)
{
u16 saved_config_space[32];
u64 cfg_offset;
u32 cfg_base_addr;
u64 cfg_base_addr_index;
void __iomem *vaddr;
unsigned long paddr;
u32 misc_fw_support, active_transport;
int rc, i;
CfgTable_struct __iomem *cfgtable;
bool use_doorbell;
u32 board_id;
/* For controllers as old a the p600, this is very nearly
* the same thing as
*
* pci_save_state(pci_dev);
* pci_set_power_state(pci_dev, PCI_D3hot);
* pci_set_power_state(pci_dev, PCI_D0);
* pci_restore_state(pci_dev);
*
* but we can't use these nice canned kernel routines on
* kexec, because they also check the MSI/MSI-X state in PCI
* configuration space and do the wrong thing when it is
* set/cleared. Also, the pci_save/restore_state functions
* violate the ordering requirements for restoring the
* configuration space from the CCISS document (see the
* comment below). So we roll our own ....
*
* For controllers newer than the P600, the pci power state
* method of resetting doesn't work so we have another way
* using the doorbell register.
*/
/* Exclude 640x boards. These are two pci devices in one slot
* which share a battery backed cache module. One controls the
* cache, the other accesses the cache through the one that controls
* it. If we reset the one controlling the cache, the other will
* likely not be happy. Just forbid resetting this conjoined mess.
*/
cciss_lookup_board_id(pdev, &board_id);
if (board_id == 0x409C0E11 || board_id == 0x409D0E11) {
dev_warn(&pdev->dev, "Cannot reset Smart Array 640x "
"due to shared cache module.");
return -ENODEV;
}
for (i = 0; i < 32; i++)
pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
/* find the first memory BAR, so we can find the cfg table */
rc = cciss_pci_find_memory_BAR(pdev, &paddr);
if (rc)
return rc;
vaddr = remap_pci_mem(paddr, 0x250);
if (!vaddr)
return -ENOMEM;
/* find cfgtable in order to check if reset via doorbell is supported */
rc = cciss_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
&cfg_base_addr_index, &cfg_offset);
if (rc)
goto unmap_vaddr;
cfgtable = remap_pci_mem(pci_resource_start(pdev,
cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
if (!cfgtable) {
rc = -ENOMEM;
goto unmap_vaddr;
}
/* If reset via doorbell register is supported, use that. */
misc_fw_support = readl(&cfgtable->misc_fw_support);
use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
/* The doorbell reset seems to cause lockups on some Smart
* Arrays (e.g. P410, P410i, maybe others). Until this is
* fixed or at least isolated, avoid the doorbell reset.
*/
use_doorbell = 0;
rc = cciss_controller_hard_reset(pdev, vaddr, use_doorbell);
if (rc)
goto unmap_cfgtable;
/* Restore the PCI configuration space. The Open CISS
* Specification says, "Restore the PCI Configuration
* Registers, offsets 00h through 60h. It is important to
* restore the command register, 16-bits at offset 04h,
* last. Do not restore the configuration status register,
* 16-bits at offset 06h." Note that the offset is 2*i.
*/
for (i = 0; i < 32; i++) {
if (i == 2 || i == 3)
continue;
pci_write_config_word(pdev, 2*i, saved_config_space[i]);
}
wmb();
pci_write_config_word(pdev, 4, saved_config_space[2]);
/* Some devices (notably the HP Smart Array 5i Controller)
need a little pause here */
msleep(CCISS_POST_RESET_PAUSE_MSECS);
/* Controller should be in simple mode at this point. If it's not,
* It means we're on one of those controllers which doesn't support
* the doorbell reset method and on which the PCI power management reset
* method doesn't work (P800, for example.)
* In those cases, don't try to proceed, as it generally doesn't work.
*/
active_transport = readl(&cfgtable->TransportActive);
if (active_transport & PERFORMANT_MODE) {
dev_warn(&pdev->dev, "Unable to successfully reset controller,"
" Ignoring controller.\n");
rc = -ENODEV;
}
unmap_cfgtable:
iounmap(cfgtable);
unmap_vaddr:
iounmap(vaddr);
return rc;
}
static __devinit int cciss_init_reset_devices(struct pci_dev *pdev)
{
int rc, i;
if (!reset_devices)
return 0;
/* Reset the controller with a PCI power-cycle or via doorbell */
rc = cciss_kdump_hard_reset_controller(pdev);
/* -ENOTSUPP here means we cannot reset the controller
* but it's already (and still) up and running in
* "performant mode". Or, it might be 640x, which can't reset
* due to concerns about shared bbwc between 6402/6404 pair.
*/
if (rc == -ENOTSUPP)
return 0; /* just try to do the kdump anyhow. */
if (rc)
return -ENODEV;
if (cciss_reset_msi(pdev))
return -ENODEV;
/* Now try to get the controller to respond to a no-op */
for (i = 0; i < CCISS_POST_RESET_NOOP_RETRIES; i++) {
if (cciss_noop(pdev) == 0)
break;
else
dev_warn(&pdev->dev, "no-op failed%s\n",
(i < CCISS_POST_RESET_NOOP_RETRIES - 1 ?
"; re-trying" : ""));
msleep(CCISS_POST_RESET_NOOP_INTERVAL_MSECS);
}
return 0;
}
/*
* This is it. Find all the controllers and register them. I really hate
* stealing all these major device numbers.
* returns the number of block devices registered.
*/
static int __devinit cciss_init_one(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
int i;
int j = 0;
int k = 0;
int rc;
int dac, return_code;
InquiryData_struct *inq_buff;
ctlr_info_t *h;
rc = cciss_init_reset_devices(pdev);
if (rc)
return rc;
i = alloc_cciss_hba(pdev);
if (i < 0)
return -1;
h = hba[i];
h->pdev = pdev;
h->busy_initializing = 1;
INIT_HLIST_HEAD(&h->cmpQ);
INIT_HLIST_HEAD(&h->reqQ);
mutex_init(&h->busy_shutting_down);
if (cciss_pci_init(h) != 0)
goto clean_no_release_regions;
sprintf(h->devname, "cciss%d", i);
h->ctlr = i;
init_completion(&h->scan_wait);
if (cciss_create_hba_sysfs_entry(h))
goto clean0;
/* configure PCI DMA stuff */
if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
dac = 1;
else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
dac = 0;
else {
dev_err(&h->pdev->dev, "no suitable DMA available\n");
goto clean1;
}
/*
* register with the major number, or get a dynamic major number
* by passing 0 as argument. This is done for greater than
* 8 controller support.
*/
if (i < MAX_CTLR_ORIG)
h->major = COMPAQ_CISS_MAJOR + i;
rc = register_blkdev(h->major, h->devname);
if (rc == -EBUSY || rc == -EINVAL) {
dev_err(&h->pdev->dev,
"Unable to get major number %d for %s "
"on hba %d\n", h->major, h->devname, i);
goto clean1;
} else {
if (i >= MAX_CTLR_ORIG)
h->major = rc;
}
/* make sure the board interrupts are off */
h->access.set_intr_mask(h, CCISS_INTR_OFF);
if (h->msi_vector || h->msix_vector) {
if (request_irq(h->intr[PERF_MODE_INT],
do_cciss_msix_intr,
IRQF_DISABLED, h->devname, h)) {
dev_err(&h->pdev->dev, "Unable to get irq %d for %s\n",
h->intr[PERF_MODE_INT], h->devname);
goto clean2;
}
} else {
if (request_irq(h->intr[PERF_MODE_INT], do_cciss_intx,
IRQF_DISABLED, h->devname, h)) {
dev_err(&h->pdev->dev, "Unable to get irq %d for %s\n",
h->intr[PERF_MODE_INT], h->devname);
goto clean2;
}
}
dev_info(&h->pdev->dev, "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
h->devname, pdev->device, pci_name(pdev),
h->intr[PERF_MODE_INT], dac ? "" : " not");
h->cmd_pool_bits =
kmalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG)
* sizeof(unsigned long), GFP_KERNEL);
h->cmd_pool = (CommandList_struct *)
pci_alloc_consistent(h->pdev,
h->nr_cmds * sizeof(CommandList_struct),
&(h->cmd_pool_dhandle));
h->errinfo_pool = (ErrorInfo_struct *)
pci_alloc_consistent(h->pdev,
h->nr_cmds * sizeof(ErrorInfo_struct),
&(h->errinfo_pool_dhandle));
if ((h->cmd_pool_bits == NULL)
|| (h->cmd_pool == NULL)
|| (h->errinfo_pool == NULL)) {
dev_err(&h->pdev->dev, "out of memory");
goto clean4;
}
/* Need space for temp scatter list */
h->scatter_list = kmalloc(h->max_commands *
sizeof(struct scatterlist *),
GFP_KERNEL);
if (!h->scatter_list)
goto clean4;
for (k = 0; k < h->nr_cmds; k++) {
h->scatter_list[k] = kmalloc(sizeof(struct scatterlist) *
h->maxsgentries,
GFP_KERNEL);
if (h->scatter_list[k] == NULL) {
dev_err(&h->pdev->dev,
"could not allocate s/g lists\n");
goto clean4;
}
}
h->cmd_sg_list = cciss_allocate_sg_chain_blocks(h,
h->chainsize, h->nr_cmds);
if (!h->cmd_sg_list && h->chainsize > 0)
goto clean4;
spin_lock_init(&h->lock);
/* Initialize the pdev driver private data.
have it point to h. */
pci_set_drvdata(pdev, h);
/* command and error info recs zeroed out before
they are used */
memset(h->cmd_pool_bits, 0,
DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG)
* sizeof(unsigned long));
h->num_luns = 0;
h->highest_lun = -1;
for (j = 0; j < CISS_MAX_LUN; j++) {
h->drv[j] = NULL;
h->gendisk[j] = NULL;
}
cciss_scsi_setup(h);
/* Turn the interrupts on so we can service requests */
h->access.set_intr_mask(h, CCISS_INTR_ON);
/* Get the firmware version */
inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
if (inq_buff == NULL) {
dev_err(&h->pdev->dev, "out of memory\n");
goto clean4;
}
return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
if (return_code == IO_OK) {
h->firm_ver[0] = inq_buff->data_byte[32];
h->firm_ver[1] = inq_buff->data_byte[33];
h->firm_ver[2] = inq_buff->data_byte[34];
h->firm_ver[3] = inq_buff->data_byte[35];
} else { /* send command failed */
dev_warn(&h->pdev->dev, "unable to determine firmware"
" version of controller\n");
}
kfree(inq_buff);
cciss_procinit(h);
h->cciss_max_sectors = 8192;
rebuild_lun_table(h, 1, 0);
h->busy_initializing = 0;
return 1;
clean4:
kfree(h->cmd_pool_bits);
/* Free up sg elements */
for (k-- ; k >= 0; k--)
kfree(h->scatter_list[k]);
kfree(h->scatter_list);
cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
if (h->cmd_pool)
pci_free_consistent(h->pdev,
h->nr_cmds * sizeof(CommandList_struct),
h->cmd_pool, h->cmd_pool_dhandle);
if (h->errinfo_pool)
pci_free_consistent(h->pdev,
h->nr_cmds * sizeof(ErrorInfo_struct),
h->errinfo_pool,
h->errinfo_pool_dhandle);
free_irq(h->intr[PERF_MODE_INT], h);
clean2:
unregister_blkdev(h->major, h->devname);
clean1:
cciss_destroy_hba_sysfs_entry(h);
clean0:
pci_release_regions(pdev);
clean_no_release_regions:
h->busy_initializing = 0;
/*
* Deliberately omit pci_disable_device(): it does something nasty to
* Smart Array controllers that pci_enable_device does not undo
*/
pci_set_drvdata(pdev, NULL);
free_hba(h);
return -1;
}
static void cciss_shutdown(struct pci_dev *pdev)
{
ctlr_info_t *h;
char *flush_buf;
int return_code;
h = pci_get_drvdata(pdev);
flush_buf = kzalloc(4, GFP_KERNEL);
if (!flush_buf) {
dev_warn(&h->pdev->dev, "cache not flushed, out of memory.\n");
return;
}
/* write all data in the battery backed cache to disk */
memset(flush_buf, 0, 4);
return_code = sendcmd_withirq(h, CCISS_CACHE_FLUSH, flush_buf,
4, 0, CTLR_LUNID, TYPE_CMD);
kfree(flush_buf);
if (return_code != IO_OK)
dev_warn(&h->pdev->dev, "Error flushing cache\n");
h->access.set_intr_mask(h, CCISS_INTR_OFF);
free_irq(h->intr[PERF_MODE_INT], h);
}
static void __devexit cciss_remove_one(struct pci_dev *pdev)
{
ctlr_info_t *h;
int i, j;
if (pci_get_drvdata(pdev) == NULL) {
dev_err(&pdev->dev, "Unable to remove device\n");
return;
}
h = pci_get_drvdata(pdev);
i = h->ctlr;
if (hba[i] == NULL) {
dev_err(&pdev->dev, "device appears to already be removed\n");
return;
}
mutex_lock(&h->busy_shutting_down);
remove_from_scan_list(h);
remove_proc_entry(h->devname, proc_cciss);
unregister_blkdev(h->major, h->devname);
/* remove it from the disk list */
for (j = 0; j < CISS_MAX_LUN; j++) {
struct gendisk *disk = h->gendisk[j];
if (disk) {
struct request_queue *q = disk->queue;
if (disk->flags & GENHD_FL_UP) {
cciss_destroy_ld_sysfs_entry(h, j, 1);
del_gendisk(disk);
}
if (q)
blk_cleanup_queue(q);
}
}
#ifdef CONFIG_CISS_SCSI_TAPE
cciss_unregister_scsi(h); /* unhook from SCSI subsystem */
#endif
cciss_shutdown(pdev);
#ifdef CONFIG_PCI_MSI
if (h->msix_vector)
pci_disable_msix(h->pdev);
else if (h->msi_vector)
pci_disable_msi(h->pdev);
#endif /* CONFIG_PCI_MSI */
iounmap(h->transtable);
iounmap(h->cfgtable);
iounmap(h->vaddr);
pci_free_consistent(h->pdev, h->nr_cmds * sizeof(CommandList_struct),
h->cmd_pool, h->cmd_pool_dhandle);
pci_free_consistent(h->pdev, h->nr_cmds * sizeof(ErrorInfo_struct),
h->errinfo_pool, h->errinfo_pool_dhandle);
kfree(h->cmd_pool_bits);
/* Free up sg elements */
for (j = 0; j < h->nr_cmds; j++)
kfree(h->scatter_list[j]);
kfree(h->scatter_list);
cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
/*
* Deliberately omit pci_disable_device(): it does something nasty to
* Smart Array controllers that pci_enable_device does not undo
*/
pci_release_regions(pdev);
pci_set_drvdata(pdev, NULL);
cciss_destroy_hba_sysfs_entry(h);
mutex_unlock(&h->busy_shutting_down);
free_hba(h);
}
static struct pci_driver cciss_pci_driver = {
.name = "cciss",
.probe = cciss_init_one,
.remove = __devexit_p(cciss_remove_one),
.id_table = cciss_pci_device_id, /* id_table */
.shutdown = cciss_shutdown,
};
/*
* This is it. Register the PCI driver information for the cards we control
* the OS will call our registered routines when it finds one of our cards.
*/
static int __init cciss_init(void)
{
int err;
/*
* The hardware requires that commands are aligned on a 64-bit
* boundary. Given that we use pci_alloc_consistent() to allocate an
* array of them, the size must be a multiple of 8 bytes.
*/
BUILD_BUG_ON(sizeof(CommandList_struct) % COMMANDLIST_ALIGNMENT);
printk(KERN_INFO DRIVER_NAME "\n");
err = bus_register(&cciss_bus_type);
if (err)
return err;
/* Start the scan thread */
cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
if (IS_ERR(cciss_scan_thread)) {
err = PTR_ERR(cciss_scan_thread);
goto err_bus_unregister;
}
/* Register for our PCI devices */
err = pci_register_driver(&cciss_pci_driver);
if (err)
goto err_thread_stop;
return err;
err_thread_stop:
kthread_stop(cciss_scan_thread);
err_bus_unregister:
bus_unregister(&cciss_bus_type);
return err;
}
static void __exit cciss_cleanup(void)
{
int i;
pci_unregister_driver(&cciss_pci_driver);
/* double check that all controller entrys have been removed */
for (i = 0; i < MAX_CTLR; i++) {
if (hba[i] != NULL) {
dev_warn(&hba[i]->pdev->dev,
"had to remove controller\n");
cciss_remove_one(hba[i]->pdev);
}
}
kthread_stop(cciss_scan_thread);
remove_proc_entry("driver/cciss", NULL);
bus_unregister(&cciss_bus_type);
}
module_init(cciss_init);
module_exit(cciss_cleanup);