6e274d1443
Makes kexec_crashdump() take a pt_regs * as an argument. This allows to get exact register state at the point of the crash. If we come from direct panic assertion NULL will be passed and the current registers saved before crashdump. This hooks into two places: die(): check the conditions under which we will panic when calling do_exit and go there directly with the pt_regs that caused the fatal fault. die_nmi(): If we receive an NMI lockup while in the kernel use the pt_regs and go directly to crash_kexec(). We're probably nested up badly at this point so this might be the only chance to escape with proper information. Signed-off-by: Alexander Nyberg <alexn@telia.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
221 lines
5.8 KiB
C
221 lines
5.8 KiB
C
/*
|
|
* Architecture specific (i386) functions for kexec based crash dumps.
|
|
*
|
|
* Created by: Hariprasad Nellitheertha (hari@in.ibm.com)
|
|
*
|
|
* Copyright (C) IBM Corporation, 2004. All rights reserved.
|
|
*
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/kexec.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/elf.h>
|
|
#include <linux/elfcore.h>
|
|
|
|
#include <asm/processor.h>
|
|
#include <asm/hardirq.h>
|
|
#include <asm/nmi.h>
|
|
#include <asm/hw_irq.h>
|
|
#include <asm/apic.h>
|
|
#include <mach_ipi.h>
|
|
|
|
|
|
note_buf_t crash_notes[NR_CPUS];
|
|
/* This keeps a track of which one is crashing cpu. */
|
|
static int crashing_cpu;
|
|
|
|
static u32 *append_elf_note(u32 *buf,
|
|
char *name, unsigned type, void *data, size_t data_len)
|
|
{
|
|
struct elf_note note;
|
|
note.n_namesz = strlen(name) + 1;
|
|
note.n_descsz = data_len;
|
|
note.n_type = type;
|
|
memcpy(buf, ¬e, sizeof(note));
|
|
buf += (sizeof(note) +3)/4;
|
|
memcpy(buf, name, note.n_namesz);
|
|
buf += (note.n_namesz + 3)/4;
|
|
memcpy(buf, data, note.n_descsz);
|
|
buf += (note.n_descsz + 3)/4;
|
|
return buf;
|
|
}
|
|
|
|
static void final_note(u32 *buf)
|
|
{
|
|
struct elf_note note;
|
|
note.n_namesz = 0;
|
|
note.n_descsz = 0;
|
|
note.n_type = 0;
|
|
memcpy(buf, ¬e, sizeof(note));
|
|
}
|
|
|
|
|
|
static void crash_save_this_cpu(struct pt_regs *regs, int cpu)
|
|
{
|
|
struct elf_prstatus prstatus;
|
|
u32 *buf;
|
|
if ((cpu < 0) || (cpu >= NR_CPUS)) {
|
|
return;
|
|
}
|
|
/* Using ELF notes here is opportunistic.
|
|
* I need a well defined structure format
|
|
* for the data I pass, and I need tags
|
|
* on the data to indicate what information I have
|
|
* squirrelled away. ELF notes happen to provide
|
|
* all of that that no need to invent something new.
|
|
*/
|
|
buf = &crash_notes[cpu][0];
|
|
memset(&prstatus, 0, sizeof(prstatus));
|
|
prstatus.pr_pid = current->pid;
|
|
elf_core_copy_regs(&prstatus.pr_reg, regs);
|
|
buf = append_elf_note(buf, "CORE", NT_PRSTATUS,
|
|
&prstatus, sizeof(prstatus));
|
|
|
|
final_note(buf);
|
|
}
|
|
|
|
static void crash_get_current_regs(struct pt_regs *regs)
|
|
{
|
|
__asm__ __volatile__("movl %%ebx,%0" : "=m"(regs->ebx));
|
|
__asm__ __volatile__("movl %%ecx,%0" : "=m"(regs->ecx));
|
|
__asm__ __volatile__("movl %%edx,%0" : "=m"(regs->edx));
|
|
__asm__ __volatile__("movl %%esi,%0" : "=m"(regs->esi));
|
|
__asm__ __volatile__("movl %%edi,%0" : "=m"(regs->edi));
|
|
__asm__ __volatile__("movl %%ebp,%0" : "=m"(regs->ebp));
|
|
__asm__ __volatile__("movl %%eax,%0" : "=m"(regs->eax));
|
|
__asm__ __volatile__("movl %%esp,%0" : "=m"(regs->esp));
|
|
__asm__ __volatile__("movw %%ss, %%ax;" :"=a"(regs->xss));
|
|
__asm__ __volatile__("movw %%cs, %%ax;" :"=a"(regs->xcs));
|
|
__asm__ __volatile__("movw %%ds, %%ax;" :"=a"(regs->xds));
|
|
__asm__ __volatile__("movw %%es, %%ax;" :"=a"(regs->xes));
|
|
__asm__ __volatile__("pushfl; popl %0" :"=m"(regs->eflags));
|
|
|
|
regs->eip = (unsigned long)current_text_addr();
|
|
}
|
|
|
|
/* CPU does not save ss and esp on stack if execution is already
|
|
* running in kernel mode at the time of NMI occurrence. This code
|
|
* fixes it.
|
|
*/
|
|
static void crash_setup_regs(struct pt_regs *newregs, struct pt_regs *oldregs)
|
|
{
|
|
memcpy(newregs, oldregs, sizeof(*newregs));
|
|
newregs->esp = (unsigned long)&(oldregs->esp);
|
|
__asm__ __volatile__("xorl %eax, %eax;");
|
|
__asm__ __volatile__ ("movw %%ss, %%ax;" :"=a"(newregs->xss));
|
|
}
|
|
|
|
/* We may have saved_regs from where the error came from
|
|
* or it is NULL if via a direct panic().
|
|
*/
|
|
static void crash_save_self(struct pt_regs *saved_regs)
|
|
{
|
|
struct pt_regs regs;
|
|
int cpu;
|
|
cpu = smp_processor_id();
|
|
|
|
if (saved_regs)
|
|
crash_setup_regs(®s, saved_regs);
|
|
else
|
|
crash_get_current_regs(®s);
|
|
crash_save_this_cpu(®s, cpu);
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
static atomic_t waiting_for_crash_ipi;
|
|
|
|
static int crash_nmi_callback(struct pt_regs *regs, int cpu)
|
|
{
|
|
struct pt_regs fixed_regs;
|
|
|
|
/* Don't do anything if this handler is invoked on crashing cpu.
|
|
* Otherwise, system will completely hang. Crashing cpu can get
|
|
* an NMI if system was initially booted with nmi_watchdog parameter.
|
|
*/
|
|
if (cpu == crashing_cpu)
|
|
return 1;
|
|
local_irq_disable();
|
|
|
|
if (!user_mode(regs)) {
|
|
crash_setup_regs(&fixed_regs, regs);
|
|
regs = &fixed_regs;
|
|
}
|
|
crash_save_this_cpu(regs, cpu);
|
|
disable_local_APIC();
|
|
atomic_dec(&waiting_for_crash_ipi);
|
|
/* Assume hlt works */
|
|
__asm__("hlt");
|
|
for(;;);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* By using the NMI code instead of a vector we just sneak thru the
|
|
* word generator coming out with just what we want. AND it does
|
|
* not matter if clustered_apic_mode is set or not.
|
|
*/
|
|
static void smp_send_nmi_allbutself(void)
|
|
{
|
|
send_IPI_allbutself(APIC_DM_NMI);
|
|
}
|
|
|
|
static void nmi_shootdown_cpus(void)
|
|
{
|
|
unsigned long msecs;
|
|
atomic_set(&waiting_for_crash_ipi, num_online_cpus() - 1);
|
|
|
|
/* Would it be better to replace the trap vector here? */
|
|
set_nmi_callback(crash_nmi_callback);
|
|
/* Ensure the new callback function is set before sending
|
|
* out the NMI
|
|
*/
|
|
wmb();
|
|
|
|
smp_send_nmi_allbutself();
|
|
|
|
msecs = 1000; /* Wait at most a second for the other cpus to stop */
|
|
while ((atomic_read(&waiting_for_crash_ipi) > 0) && msecs) {
|
|
mdelay(1);
|
|
msecs--;
|
|
}
|
|
|
|
/* Leave the nmi callback set */
|
|
disable_local_APIC();
|
|
}
|
|
#else
|
|
static void nmi_shootdown_cpus(void)
|
|
{
|
|
/* There are no cpus to shootdown */
|
|
}
|
|
#endif
|
|
|
|
void machine_crash_shutdown(struct pt_regs *regs)
|
|
{
|
|
/* This function is only called after the system
|
|
* has paniced or is otherwise in a critical state.
|
|
* The minimum amount of code to allow a kexec'd kernel
|
|
* to run successfully needs to happen here.
|
|
*
|
|
* In practice this means shooting down the other cpus in
|
|
* an SMP system.
|
|
*/
|
|
/* The kernel is broken so disable interrupts */
|
|
local_irq_disable();
|
|
|
|
/* Make a note of crashing cpu. Will be used in NMI callback.*/
|
|
crashing_cpu = smp_processor_id();
|
|
nmi_shootdown_cpus();
|
|
lapic_shutdown();
|
|
#if defined(CONFIG_X86_IO_APIC)
|
|
disable_IO_APIC();
|
|
#endif
|
|
crash_save_self(regs);
|
|
}
|