1
linux/fs/inode.c
Nick Piggin 7ef0d7377c fs: new inode i_state corruption fix
There was a report of a data corruption
http://lkml.org/lkml/2008/11/14/121.  There is a script included to
reproduce the problem.

During testing, I encountered a number of strange things with ext3, so I
tried ext2 to attempt to reduce complexity of the problem.  I found that
fsstress would quickly hang in wait_on_inode, waiting for I_LOCK to be
cleared, even though instrumentation showed that unlock_new_inode had
already been called for that inode.  This points to memory scribble, or
synchronisation problme.

i_state of I_NEW inodes is not protected by inode_lock because other
processes are not supposed to touch them until I_LOCK (and I_NEW) is
cleared.  Adding WARN_ON(inode->i_state & I_NEW) to sites where we modify
i_state revealed that generic_sync_sb_inodes is picking up new inodes from
the inode lists and passing them to __writeback_single_inode without
waiting for I_NEW.  Subsequently modifying i_state causes corruption.  In
my case it would look like this:

CPU0                            CPU1
unlock_new_inode()              __sync_single_inode()
 reg <- inode->i_state
 reg -> reg & ~(I_LOCK|I_NEW)   reg <- inode->i_state
 reg -> inode->i_state          reg -> reg | I_SYNC
                                reg -> inode->i_state

Non-atomic RMW on CPU1 overwrites CPU0 store and sets I_LOCK|I_NEW again.

Fix for this is rather than wait for I_NEW inodes, just skip over them:
inodes concurrently being created are not subject to data integrity
operations, and should not significantly contribute to dirty memory
either.

After this change, I'm unable to reproduce any of the added warnings or
hangs after ~1hour of running.  Previously, the new warnings would start
immediately and hang would happen in under 5 minutes.

I'm also testing on ext3 now, and so far no problems there either.  I
don't know whether this fixes the problem reported above, but it fixes a
real problem for me.

Cc: "Jorge Boncompte [DTI2]" <jorge@dti2.net>
Reported-by: Adrian Hunter <ext-adrian.hunter@nokia.com>
Cc: Jan Kara <jack@suse.cz>
Cc: <stable@kernel.org>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-03-12 16:20:24 -07:00

1554 lines
40 KiB
C

/*
* linux/fs/inode.c
*
* (C) 1997 Linus Torvalds
*/
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/dcache.h>
#include <linux/init.h>
#include <linux/quotaops.h>
#include <linux/slab.h>
#include <linux/writeback.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/wait.h>
#include <linux/hash.h>
#include <linux/swap.h>
#include <linux/security.h>
#include <linux/pagemap.h>
#include <linux/cdev.h>
#include <linux/bootmem.h>
#include <linux/inotify.h>
#include <linux/mount.h>
#include <linux/async.h>
/*
* This is needed for the following functions:
* - inode_has_buffers
* - invalidate_inode_buffers
* - invalidate_bdev
*
* FIXME: remove all knowledge of the buffer layer from this file
*/
#include <linux/buffer_head.h>
/*
* New inode.c implementation.
*
* This implementation has the basic premise of trying
* to be extremely low-overhead and SMP-safe, yet be
* simple enough to be "obviously correct".
*
* Famous last words.
*/
/* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
/* #define INODE_PARANOIA 1 */
/* #define INODE_DEBUG 1 */
/*
* Inode lookup is no longer as critical as it used to be:
* most of the lookups are going to be through the dcache.
*/
#define I_HASHBITS i_hash_shift
#define I_HASHMASK i_hash_mask
static unsigned int i_hash_mask __read_mostly;
static unsigned int i_hash_shift __read_mostly;
/*
* Each inode can be on two separate lists. One is
* the hash list of the inode, used for lookups. The
* other linked list is the "type" list:
* "in_use" - valid inode, i_count > 0, i_nlink > 0
* "dirty" - as "in_use" but also dirty
* "unused" - valid inode, i_count = 0
*
* A "dirty" list is maintained for each super block,
* allowing for low-overhead inode sync() operations.
*/
LIST_HEAD(inode_in_use);
LIST_HEAD(inode_unused);
static struct hlist_head *inode_hashtable __read_mostly;
/*
* A simple spinlock to protect the list manipulations.
*
* NOTE! You also have to own the lock if you change
* the i_state of an inode while it is in use..
*/
DEFINE_SPINLOCK(inode_lock);
/*
* iprune_mutex provides exclusion between the kswapd or try_to_free_pages
* icache shrinking path, and the umount path. Without this exclusion,
* by the time prune_icache calls iput for the inode whose pages it has
* been invalidating, or by the time it calls clear_inode & destroy_inode
* from its final dispose_list, the struct super_block they refer to
* (for inode->i_sb->s_op) may already have been freed and reused.
*/
static DEFINE_MUTEX(iprune_mutex);
/*
* Statistics gathering..
*/
struct inodes_stat_t inodes_stat;
static struct kmem_cache * inode_cachep __read_mostly;
static void wake_up_inode(struct inode *inode)
{
/*
* Prevent speculative execution through spin_unlock(&inode_lock);
*/
smp_mb();
wake_up_bit(&inode->i_state, __I_LOCK);
}
/**
* inode_init_always - perform inode structure intialisation
* @sb: superblock inode belongs to
* @inode: inode to initialise
*
* These are initializations that need to be done on every inode
* allocation as the fields are not initialised by slab allocation.
*/
struct inode *inode_init_always(struct super_block *sb, struct inode *inode)
{
static const struct address_space_operations empty_aops;
static struct inode_operations empty_iops;
static const struct file_operations empty_fops;
struct address_space * const mapping = &inode->i_data;
inode->i_sb = sb;
inode->i_blkbits = sb->s_blocksize_bits;
inode->i_flags = 0;
atomic_set(&inode->i_count, 1);
inode->i_op = &empty_iops;
inode->i_fop = &empty_fops;
inode->i_nlink = 1;
inode->i_uid = 0;
inode->i_gid = 0;
atomic_set(&inode->i_writecount, 0);
inode->i_size = 0;
inode->i_blocks = 0;
inode->i_bytes = 0;
inode->i_generation = 0;
#ifdef CONFIG_QUOTA
memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
#endif
inode->i_pipe = NULL;
inode->i_bdev = NULL;
inode->i_cdev = NULL;
inode->i_rdev = 0;
inode->dirtied_when = 0;
if (security_inode_alloc(inode)) {
if (inode->i_sb->s_op->destroy_inode)
inode->i_sb->s_op->destroy_inode(inode);
else
kmem_cache_free(inode_cachep, (inode));
return NULL;
}
spin_lock_init(&inode->i_lock);
lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
mutex_init(&inode->i_mutex);
lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
init_rwsem(&inode->i_alloc_sem);
lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
mapping->a_ops = &empty_aops;
mapping->host = inode;
mapping->flags = 0;
mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
mapping->assoc_mapping = NULL;
mapping->backing_dev_info = &default_backing_dev_info;
mapping->writeback_index = 0;
/*
* If the block_device provides a backing_dev_info for client
* inodes then use that. Otherwise the inode share the bdev's
* backing_dev_info.
*/
if (sb->s_bdev) {
struct backing_dev_info *bdi;
bdi = sb->s_bdev->bd_inode_backing_dev_info;
if (!bdi)
bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
mapping->backing_dev_info = bdi;
}
inode->i_private = NULL;
inode->i_mapping = mapping;
return inode;
}
EXPORT_SYMBOL(inode_init_always);
static struct inode *alloc_inode(struct super_block *sb)
{
struct inode *inode;
if (sb->s_op->alloc_inode)
inode = sb->s_op->alloc_inode(sb);
else
inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
if (inode)
return inode_init_always(sb, inode);
return NULL;
}
void destroy_inode(struct inode *inode)
{
BUG_ON(inode_has_buffers(inode));
security_inode_free(inode);
if (inode->i_sb->s_op->destroy_inode)
inode->i_sb->s_op->destroy_inode(inode);
else
kmem_cache_free(inode_cachep, (inode));
}
EXPORT_SYMBOL(destroy_inode);
/*
* These are initializations that only need to be done
* once, because the fields are idempotent across use
* of the inode, so let the slab aware of that.
*/
void inode_init_once(struct inode *inode)
{
memset(inode, 0, sizeof(*inode));
INIT_HLIST_NODE(&inode->i_hash);
INIT_LIST_HEAD(&inode->i_dentry);
INIT_LIST_HEAD(&inode->i_devices);
INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
spin_lock_init(&inode->i_data.tree_lock);
spin_lock_init(&inode->i_data.i_mmap_lock);
INIT_LIST_HEAD(&inode->i_data.private_list);
spin_lock_init(&inode->i_data.private_lock);
INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
i_size_ordered_init(inode);
#ifdef CONFIG_INOTIFY
INIT_LIST_HEAD(&inode->inotify_watches);
mutex_init(&inode->inotify_mutex);
#endif
}
EXPORT_SYMBOL(inode_init_once);
static void init_once(void *foo)
{
struct inode * inode = (struct inode *) foo;
inode_init_once(inode);
}
/*
* inode_lock must be held
*/
void __iget(struct inode * inode)
{
if (atomic_read(&inode->i_count)) {
atomic_inc(&inode->i_count);
return;
}
atomic_inc(&inode->i_count);
if (!(inode->i_state & (I_DIRTY|I_SYNC)))
list_move(&inode->i_list, &inode_in_use);
inodes_stat.nr_unused--;
}
/**
* clear_inode - clear an inode
* @inode: inode to clear
*
* This is called by the filesystem to tell us
* that the inode is no longer useful. We just
* terminate it with extreme prejudice.
*/
void clear_inode(struct inode *inode)
{
might_sleep();
invalidate_inode_buffers(inode);
BUG_ON(inode->i_data.nrpages);
BUG_ON(!(inode->i_state & I_FREEING));
BUG_ON(inode->i_state & I_CLEAR);
inode_sync_wait(inode);
DQUOT_DROP(inode);
if (inode->i_sb->s_op->clear_inode)
inode->i_sb->s_op->clear_inode(inode);
if (S_ISBLK(inode->i_mode) && inode->i_bdev)
bd_forget(inode);
if (S_ISCHR(inode->i_mode) && inode->i_cdev)
cd_forget(inode);
inode->i_state = I_CLEAR;
}
EXPORT_SYMBOL(clear_inode);
/*
* dispose_list - dispose of the contents of a local list
* @head: the head of the list to free
*
* Dispose-list gets a local list with local inodes in it, so it doesn't
* need to worry about list corruption and SMP locks.
*/
static void dispose_list(struct list_head *head)
{
int nr_disposed = 0;
while (!list_empty(head)) {
struct inode *inode;
inode = list_first_entry(head, struct inode, i_list);
list_del(&inode->i_list);
if (inode->i_data.nrpages)
truncate_inode_pages(&inode->i_data, 0);
clear_inode(inode);
spin_lock(&inode_lock);
hlist_del_init(&inode->i_hash);
list_del_init(&inode->i_sb_list);
spin_unlock(&inode_lock);
wake_up_inode(inode);
destroy_inode(inode);
nr_disposed++;
}
spin_lock(&inode_lock);
inodes_stat.nr_inodes -= nr_disposed;
spin_unlock(&inode_lock);
}
/*
* Invalidate all inodes for a device.
*/
static int invalidate_list(struct list_head *head, struct list_head *dispose)
{
struct list_head *next;
int busy = 0, count = 0;
next = head->next;
for (;;) {
struct list_head * tmp = next;
struct inode * inode;
/*
* We can reschedule here without worrying about the list's
* consistency because the per-sb list of inodes must not
* change during umount anymore, and because iprune_mutex keeps
* shrink_icache_memory() away.
*/
cond_resched_lock(&inode_lock);
next = next->next;
if (tmp == head)
break;
inode = list_entry(tmp, struct inode, i_sb_list);
invalidate_inode_buffers(inode);
if (!atomic_read(&inode->i_count)) {
list_move(&inode->i_list, dispose);
WARN_ON(inode->i_state & I_NEW);
inode->i_state |= I_FREEING;
count++;
continue;
}
busy = 1;
}
/* only unused inodes may be cached with i_count zero */
inodes_stat.nr_unused -= count;
return busy;
}
/**
* invalidate_inodes - discard the inodes on a device
* @sb: superblock
*
* Discard all of the inodes for a given superblock. If the discard
* fails because there are busy inodes then a non zero value is returned.
* If the discard is successful all the inodes have been discarded.
*/
int invalidate_inodes(struct super_block * sb)
{
int busy;
LIST_HEAD(throw_away);
mutex_lock(&iprune_mutex);
spin_lock(&inode_lock);
inotify_unmount_inodes(&sb->s_inodes);
busy = invalidate_list(&sb->s_inodes, &throw_away);
spin_unlock(&inode_lock);
dispose_list(&throw_away);
mutex_unlock(&iprune_mutex);
return busy;
}
EXPORT_SYMBOL(invalidate_inodes);
static int can_unuse(struct inode *inode)
{
if (inode->i_state)
return 0;
if (inode_has_buffers(inode))
return 0;
if (atomic_read(&inode->i_count))
return 0;
if (inode->i_data.nrpages)
return 0;
return 1;
}
/*
* Scan `goal' inodes on the unused list for freeable ones. They are moved to
* a temporary list and then are freed outside inode_lock by dispose_list().
*
* Any inodes which are pinned purely because of attached pagecache have their
* pagecache removed. We expect the final iput() on that inode to add it to
* the front of the inode_unused list. So look for it there and if the
* inode is still freeable, proceed. The right inode is found 99.9% of the
* time in testing on a 4-way.
*
* If the inode has metadata buffers attached to mapping->private_list then
* try to remove them.
*/
static void prune_icache(int nr_to_scan)
{
LIST_HEAD(freeable);
int nr_pruned = 0;
int nr_scanned;
unsigned long reap = 0;
mutex_lock(&iprune_mutex);
spin_lock(&inode_lock);
for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
struct inode *inode;
if (list_empty(&inode_unused))
break;
inode = list_entry(inode_unused.prev, struct inode, i_list);
if (inode->i_state || atomic_read(&inode->i_count)) {
list_move(&inode->i_list, &inode_unused);
continue;
}
if (inode_has_buffers(inode) || inode->i_data.nrpages) {
__iget(inode);
spin_unlock(&inode_lock);
if (remove_inode_buffers(inode))
reap += invalidate_mapping_pages(&inode->i_data,
0, -1);
iput(inode);
spin_lock(&inode_lock);
if (inode != list_entry(inode_unused.next,
struct inode, i_list))
continue; /* wrong inode or list_empty */
if (!can_unuse(inode))
continue;
}
list_move(&inode->i_list, &freeable);
WARN_ON(inode->i_state & I_NEW);
inode->i_state |= I_FREEING;
nr_pruned++;
}
inodes_stat.nr_unused -= nr_pruned;
if (current_is_kswapd())
__count_vm_events(KSWAPD_INODESTEAL, reap);
else
__count_vm_events(PGINODESTEAL, reap);
spin_unlock(&inode_lock);
dispose_list(&freeable);
mutex_unlock(&iprune_mutex);
}
/*
* shrink_icache_memory() will attempt to reclaim some unused inodes. Here,
* "unused" means that no dentries are referring to the inodes: the files are
* not open and the dcache references to those inodes have already been
* reclaimed.
*
* This function is passed the number of inodes to scan, and it returns the
* total number of remaining possibly-reclaimable inodes.
*/
static int shrink_icache_memory(int nr, gfp_t gfp_mask)
{
if (nr) {
/*
* Nasty deadlock avoidance. We may hold various FS locks,
* and we don't want to recurse into the FS that called us
* in clear_inode() and friends..
*/
if (!(gfp_mask & __GFP_FS))
return -1;
prune_icache(nr);
}
return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
}
static struct shrinker icache_shrinker = {
.shrink = shrink_icache_memory,
.seeks = DEFAULT_SEEKS,
};
static void __wait_on_freeing_inode(struct inode *inode);
/*
* Called with the inode lock held.
* NOTE: we are not increasing the inode-refcount, you must call __iget()
* by hand after calling find_inode now! This simplifies iunique and won't
* add any additional branch in the common code.
*/
static struct inode * find_inode(struct super_block * sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data)
{
struct hlist_node *node;
struct inode * inode = NULL;
repeat:
hlist_for_each_entry(inode, node, head, i_hash) {
if (inode->i_sb != sb)
continue;
if (!test(inode, data))
continue;
if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
__wait_on_freeing_inode(inode);
goto repeat;
}
break;
}
return node ? inode : NULL;
}
/*
* find_inode_fast is the fast path version of find_inode, see the comment at
* iget_locked for details.
*/
static struct inode * find_inode_fast(struct super_block * sb, struct hlist_head *head, unsigned long ino)
{
struct hlist_node *node;
struct inode * inode = NULL;
repeat:
hlist_for_each_entry(inode, node, head, i_hash) {
if (inode->i_ino != ino)
continue;
if (inode->i_sb != sb)
continue;
if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
__wait_on_freeing_inode(inode);
goto repeat;
}
break;
}
return node ? inode : NULL;
}
static unsigned long hash(struct super_block *sb, unsigned long hashval)
{
unsigned long tmp;
tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
L1_CACHE_BYTES;
tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
return tmp & I_HASHMASK;
}
static inline void
__inode_add_to_lists(struct super_block *sb, struct hlist_head *head,
struct inode *inode)
{
inodes_stat.nr_inodes++;
list_add(&inode->i_list, &inode_in_use);
list_add(&inode->i_sb_list, &sb->s_inodes);
if (head)
hlist_add_head(&inode->i_hash, head);
}
/**
* inode_add_to_lists - add a new inode to relevant lists
* @sb: superblock inode belongs to
* @inode: inode to mark in use
*
* When an inode is allocated it needs to be accounted for, added to the in use
* list, the owning superblock and the inode hash. This needs to be done under
* the inode_lock, so export a function to do this rather than the inode lock
* itself. We calculate the hash list to add to here so it is all internal
* which requires the caller to have already set up the inode number in the
* inode to add.
*/
void inode_add_to_lists(struct super_block *sb, struct inode *inode)
{
struct hlist_head *head = inode_hashtable + hash(sb, inode->i_ino);
spin_lock(&inode_lock);
__inode_add_to_lists(sb, head, inode);
spin_unlock(&inode_lock);
}
EXPORT_SYMBOL_GPL(inode_add_to_lists);
/**
* new_inode - obtain an inode
* @sb: superblock
*
* Allocates a new inode for given superblock. The default gfp_mask
* for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
* If HIGHMEM pages are unsuitable or it is known that pages allocated
* for the page cache are not reclaimable or migratable,
* mapping_set_gfp_mask() must be called with suitable flags on the
* newly created inode's mapping
*
*/
struct inode *new_inode(struct super_block *sb)
{
/*
* On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
* error if st_ino won't fit in target struct field. Use 32bit counter
* here to attempt to avoid that.
*/
static unsigned int last_ino;
struct inode * inode;
spin_lock_prefetch(&inode_lock);
inode = alloc_inode(sb);
if (inode) {
spin_lock(&inode_lock);
__inode_add_to_lists(sb, NULL, inode);
inode->i_ino = ++last_ino;
inode->i_state = 0;
spin_unlock(&inode_lock);
}
return inode;
}
EXPORT_SYMBOL(new_inode);
void unlock_new_inode(struct inode *inode)
{
#ifdef CONFIG_DEBUG_LOCK_ALLOC
if (inode->i_mode & S_IFDIR) {
struct file_system_type *type = inode->i_sb->s_type;
/*
* ensure nobody is actually holding i_mutex
*/
mutex_destroy(&inode->i_mutex);
mutex_init(&inode->i_mutex);
lockdep_set_class(&inode->i_mutex, &type->i_mutex_dir_key);
}
#endif
/*
* This is special! We do not need the spinlock
* when clearing I_LOCK, because we're guaranteed
* that nobody else tries to do anything about the
* state of the inode when it is locked, as we
* just created it (so there can be no old holders
* that haven't tested I_LOCK).
*/
WARN_ON((inode->i_state & (I_LOCK|I_NEW)) != (I_LOCK|I_NEW));
inode->i_state &= ~(I_LOCK|I_NEW);
wake_up_inode(inode);
}
EXPORT_SYMBOL(unlock_new_inode);
/*
* This is called without the inode lock held.. Be careful.
*
* We no longer cache the sb_flags in i_flags - see fs.h
* -- rmk@arm.uk.linux.org
*/
static struct inode * get_new_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data)
{
struct inode * inode;
inode = alloc_inode(sb);
if (inode) {
struct inode * old;
spin_lock(&inode_lock);
/* We released the lock, so.. */
old = find_inode(sb, head, test, data);
if (!old) {
if (set(inode, data))
goto set_failed;
__inode_add_to_lists(sb, head, inode);
inode->i_state = I_LOCK|I_NEW;
spin_unlock(&inode_lock);
/* Return the locked inode with I_NEW set, the
* caller is responsible for filling in the contents
*/
return inode;
}
/*
* Uhhuh, somebody else created the same inode under
* us. Use the old inode instead of the one we just
* allocated.
*/
__iget(old);
spin_unlock(&inode_lock);
destroy_inode(inode);
inode = old;
wait_on_inode(inode);
}
return inode;
set_failed:
spin_unlock(&inode_lock);
destroy_inode(inode);
return NULL;
}
/*
* get_new_inode_fast is the fast path version of get_new_inode, see the
* comment at iget_locked for details.
*/
static struct inode * get_new_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino)
{
struct inode * inode;
inode = alloc_inode(sb);
if (inode) {
struct inode * old;
spin_lock(&inode_lock);
/* We released the lock, so.. */
old = find_inode_fast(sb, head, ino);
if (!old) {
inode->i_ino = ino;
__inode_add_to_lists(sb, head, inode);
inode->i_state = I_LOCK|I_NEW;
spin_unlock(&inode_lock);
/* Return the locked inode with I_NEW set, the
* caller is responsible for filling in the contents
*/
return inode;
}
/*
* Uhhuh, somebody else created the same inode under
* us. Use the old inode instead of the one we just
* allocated.
*/
__iget(old);
spin_unlock(&inode_lock);
destroy_inode(inode);
inode = old;
wait_on_inode(inode);
}
return inode;
}
/**
* iunique - get a unique inode number
* @sb: superblock
* @max_reserved: highest reserved inode number
*
* Obtain an inode number that is unique on the system for a given
* superblock. This is used by file systems that have no natural
* permanent inode numbering system. An inode number is returned that
* is higher than the reserved limit but unique.
*
* BUGS:
* With a large number of inodes live on the file system this function
* currently becomes quite slow.
*/
ino_t iunique(struct super_block *sb, ino_t max_reserved)
{
/*
* On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
* error if st_ino won't fit in target struct field. Use 32bit counter
* here to attempt to avoid that.
*/
static unsigned int counter;
struct inode *inode;
struct hlist_head *head;
ino_t res;
spin_lock(&inode_lock);
do {
if (counter <= max_reserved)
counter = max_reserved + 1;
res = counter++;
head = inode_hashtable + hash(sb, res);
inode = find_inode_fast(sb, head, res);
} while (inode != NULL);
spin_unlock(&inode_lock);
return res;
}
EXPORT_SYMBOL(iunique);
struct inode *igrab(struct inode *inode)
{
spin_lock(&inode_lock);
if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)))
__iget(inode);
else
/*
* Handle the case where s_op->clear_inode is not been
* called yet, and somebody is calling igrab
* while the inode is getting freed.
*/
inode = NULL;
spin_unlock(&inode_lock);
return inode;
}
EXPORT_SYMBOL(igrab);
/**
* ifind - internal function, you want ilookup5() or iget5().
* @sb: super block of file system to search
* @head: the head of the list to search
* @test: callback used for comparisons between inodes
* @data: opaque data pointer to pass to @test
* @wait: if true wait for the inode to be unlocked, if false do not
*
* ifind() searches for the inode specified by @data in the inode
* cache. This is a generalized version of ifind_fast() for file systems where
* the inode number is not sufficient for unique identification of an inode.
*
* If the inode is in the cache, the inode is returned with an incremented
* reference count.
*
* Otherwise NULL is returned.
*
* Note, @test is called with the inode_lock held, so can't sleep.
*/
static struct inode *ifind(struct super_block *sb,
struct hlist_head *head, int (*test)(struct inode *, void *),
void *data, const int wait)
{
struct inode *inode;
spin_lock(&inode_lock);
inode = find_inode(sb, head, test, data);
if (inode) {
__iget(inode);
spin_unlock(&inode_lock);
if (likely(wait))
wait_on_inode(inode);
return inode;
}
spin_unlock(&inode_lock);
return NULL;
}
/**
* ifind_fast - internal function, you want ilookup() or iget().
* @sb: super block of file system to search
* @head: head of the list to search
* @ino: inode number to search for
*
* ifind_fast() searches for the inode @ino in the inode cache. This is for
* file systems where the inode number is sufficient for unique identification
* of an inode.
*
* If the inode is in the cache, the inode is returned with an incremented
* reference count.
*
* Otherwise NULL is returned.
*/
static struct inode *ifind_fast(struct super_block *sb,
struct hlist_head *head, unsigned long ino)
{
struct inode *inode;
spin_lock(&inode_lock);
inode = find_inode_fast(sb, head, ino);
if (inode) {
__iget(inode);
spin_unlock(&inode_lock);
wait_on_inode(inode);
return inode;
}
spin_unlock(&inode_lock);
return NULL;
}
/**
* ilookup5_nowait - search for an inode in the inode cache
* @sb: super block of file system to search
* @hashval: hash value (usually inode number) to search for
* @test: callback used for comparisons between inodes
* @data: opaque data pointer to pass to @test
*
* ilookup5() uses ifind() to search for the inode specified by @hashval and
* @data in the inode cache. This is a generalized version of ilookup() for
* file systems where the inode number is not sufficient for unique
* identification of an inode.
*
* If the inode is in the cache, the inode is returned with an incremented
* reference count. Note, the inode lock is not waited upon so you have to be
* very careful what you do with the returned inode. You probably should be
* using ilookup5() instead.
*
* Otherwise NULL is returned.
*
* Note, @test is called with the inode_lock held, so can't sleep.
*/
struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
int (*test)(struct inode *, void *), void *data)
{
struct hlist_head *head = inode_hashtable + hash(sb, hashval);
return ifind(sb, head, test, data, 0);
}
EXPORT_SYMBOL(ilookup5_nowait);
/**
* ilookup5 - search for an inode in the inode cache
* @sb: super block of file system to search
* @hashval: hash value (usually inode number) to search for
* @test: callback used for comparisons between inodes
* @data: opaque data pointer to pass to @test
*
* ilookup5() uses ifind() to search for the inode specified by @hashval and
* @data in the inode cache. This is a generalized version of ilookup() for
* file systems where the inode number is not sufficient for unique
* identification of an inode.
*
* If the inode is in the cache, the inode lock is waited upon and the inode is
* returned with an incremented reference count.
*
* Otherwise NULL is returned.
*
* Note, @test is called with the inode_lock held, so can't sleep.
*/
struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
int (*test)(struct inode *, void *), void *data)
{
struct hlist_head *head = inode_hashtable + hash(sb, hashval);
return ifind(sb, head, test, data, 1);
}
EXPORT_SYMBOL(ilookup5);
/**
* ilookup - search for an inode in the inode cache
* @sb: super block of file system to search
* @ino: inode number to search for
*
* ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
* This is for file systems where the inode number is sufficient for unique
* identification of an inode.
*
* If the inode is in the cache, the inode is returned with an incremented
* reference count.
*
* Otherwise NULL is returned.
*/
struct inode *ilookup(struct super_block *sb, unsigned long ino)
{
struct hlist_head *head = inode_hashtable + hash(sb, ino);
return ifind_fast(sb, head, ino);
}
EXPORT_SYMBOL(ilookup);
/**
* iget5_locked - obtain an inode from a mounted file system
* @sb: super block of file system
* @hashval: hash value (usually inode number) to get
* @test: callback used for comparisons between inodes
* @set: callback used to initialize a new struct inode
* @data: opaque data pointer to pass to @test and @set
*
* iget5_locked() uses ifind() to search for the inode specified by @hashval
* and @data in the inode cache and if present it is returned with an increased
* reference count. This is a generalized version of iget_locked() for file
* systems where the inode number is not sufficient for unique identification
* of an inode.
*
* If the inode is not in cache, get_new_inode() is called to allocate a new
* inode and this is returned locked, hashed, and with the I_NEW flag set. The
* file system gets to fill it in before unlocking it via unlock_new_inode().
*
* Note both @test and @set are called with the inode_lock held, so can't sleep.
*/
struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
int (*test)(struct inode *, void *),
int (*set)(struct inode *, void *), void *data)
{
struct hlist_head *head = inode_hashtable + hash(sb, hashval);
struct inode *inode;
inode = ifind(sb, head, test, data, 1);
if (inode)
return inode;
/*
* get_new_inode() will do the right thing, re-trying the search
* in case it had to block at any point.
*/
return get_new_inode(sb, head, test, set, data);
}
EXPORT_SYMBOL(iget5_locked);
/**
* iget_locked - obtain an inode from a mounted file system
* @sb: super block of file system
* @ino: inode number to get
*
* iget_locked() uses ifind_fast() to search for the inode specified by @ino in
* the inode cache and if present it is returned with an increased reference
* count. This is for file systems where the inode number is sufficient for
* unique identification of an inode.
*
* If the inode is not in cache, get_new_inode_fast() is called to allocate a
* new inode and this is returned locked, hashed, and with the I_NEW flag set.
* The file system gets to fill it in before unlocking it via
* unlock_new_inode().
*/
struct inode *iget_locked(struct super_block *sb, unsigned long ino)
{
struct hlist_head *head = inode_hashtable + hash(sb, ino);
struct inode *inode;
inode = ifind_fast(sb, head, ino);
if (inode)
return inode;
/*
* get_new_inode_fast() will do the right thing, re-trying the search
* in case it had to block at any point.
*/
return get_new_inode_fast(sb, head, ino);
}
EXPORT_SYMBOL(iget_locked);
int insert_inode_locked(struct inode *inode)
{
struct super_block *sb = inode->i_sb;
ino_t ino = inode->i_ino;
struct hlist_head *head = inode_hashtable + hash(sb, ino);
struct inode *old;
inode->i_state |= I_LOCK|I_NEW;
while (1) {
spin_lock(&inode_lock);
old = find_inode_fast(sb, head, ino);
if (likely(!old)) {
hlist_add_head(&inode->i_hash, head);
spin_unlock(&inode_lock);
return 0;
}
__iget(old);
spin_unlock(&inode_lock);
wait_on_inode(old);
if (unlikely(!hlist_unhashed(&old->i_hash))) {
iput(old);
return -EBUSY;
}
iput(old);
}
}
EXPORT_SYMBOL(insert_inode_locked);
int insert_inode_locked4(struct inode *inode, unsigned long hashval,
int (*test)(struct inode *, void *), void *data)
{
struct super_block *sb = inode->i_sb;
struct hlist_head *head = inode_hashtable + hash(sb, hashval);
struct inode *old;
inode->i_state |= I_LOCK|I_NEW;
while (1) {
spin_lock(&inode_lock);
old = find_inode(sb, head, test, data);
if (likely(!old)) {
hlist_add_head(&inode->i_hash, head);
spin_unlock(&inode_lock);
return 0;
}
__iget(old);
spin_unlock(&inode_lock);
wait_on_inode(old);
if (unlikely(!hlist_unhashed(&old->i_hash))) {
iput(old);
return -EBUSY;
}
iput(old);
}
}
EXPORT_SYMBOL(insert_inode_locked4);
/**
* __insert_inode_hash - hash an inode
* @inode: unhashed inode
* @hashval: unsigned long value used to locate this object in the
* inode_hashtable.
*
* Add an inode to the inode hash for this superblock.
*/
void __insert_inode_hash(struct inode *inode, unsigned long hashval)
{
struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
spin_lock(&inode_lock);
hlist_add_head(&inode->i_hash, head);
spin_unlock(&inode_lock);
}
EXPORT_SYMBOL(__insert_inode_hash);
/**
* remove_inode_hash - remove an inode from the hash
* @inode: inode to unhash
*
* Remove an inode from the superblock.
*/
void remove_inode_hash(struct inode *inode)
{
spin_lock(&inode_lock);
hlist_del_init(&inode->i_hash);
spin_unlock(&inode_lock);
}
EXPORT_SYMBOL(remove_inode_hash);
/*
* Tell the filesystem that this inode is no longer of any interest and should
* be completely destroyed.
*
* We leave the inode in the inode hash table until *after* the filesystem's
* ->delete_inode completes. This ensures that an iget (such as nfsd might
* instigate) will always find up-to-date information either in the hash or on
* disk.
*
* I_FREEING is set so that no-one will take a new reference to the inode while
* it is being deleted.
*/
void generic_delete_inode(struct inode *inode)
{
const struct super_operations *op = inode->i_sb->s_op;
list_del_init(&inode->i_list);
list_del_init(&inode->i_sb_list);
WARN_ON(inode->i_state & I_NEW);
inode->i_state |= I_FREEING;
inodes_stat.nr_inodes--;
spin_unlock(&inode_lock);
security_inode_delete(inode);
if (op->delete_inode) {
void (*delete)(struct inode *) = op->delete_inode;
if (!is_bad_inode(inode))
DQUOT_INIT(inode);
/* Filesystems implementing their own
* s_op->delete_inode are required to call
* truncate_inode_pages and clear_inode()
* internally */
delete(inode);
} else {
truncate_inode_pages(&inode->i_data, 0);
clear_inode(inode);
}
spin_lock(&inode_lock);
hlist_del_init(&inode->i_hash);
spin_unlock(&inode_lock);
wake_up_inode(inode);
BUG_ON(inode->i_state != I_CLEAR);
destroy_inode(inode);
}
EXPORT_SYMBOL(generic_delete_inode);
static void generic_forget_inode(struct inode *inode)
{
struct super_block *sb = inode->i_sb;
if (!hlist_unhashed(&inode->i_hash)) {
if (!(inode->i_state & (I_DIRTY|I_SYNC)))
list_move(&inode->i_list, &inode_unused);
inodes_stat.nr_unused++;
if (sb->s_flags & MS_ACTIVE) {
spin_unlock(&inode_lock);
return;
}
WARN_ON(inode->i_state & I_NEW);
inode->i_state |= I_WILL_FREE;
spin_unlock(&inode_lock);
write_inode_now(inode, 1);
spin_lock(&inode_lock);
WARN_ON(inode->i_state & I_NEW);
inode->i_state &= ~I_WILL_FREE;
inodes_stat.nr_unused--;
hlist_del_init(&inode->i_hash);
}
list_del_init(&inode->i_list);
list_del_init(&inode->i_sb_list);
WARN_ON(inode->i_state & I_NEW);
inode->i_state |= I_FREEING;
inodes_stat.nr_inodes--;
spin_unlock(&inode_lock);
if (inode->i_data.nrpages)
truncate_inode_pages(&inode->i_data, 0);
clear_inode(inode);
wake_up_inode(inode);
destroy_inode(inode);
}
/*
* Normal UNIX filesystem behaviour: delete the
* inode when the usage count drops to zero, and
* i_nlink is zero.
*/
void generic_drop_inode(struct inode *inode)
{
if (!inode->i_nlink)
generic_delete_inode(inode);
else
generic_forget_inode(inode);
}
EXPORT_SYMBOL_GPL(generic_drop_inode);
/*
* Called when we're dropping the last reference
* to an inode.
*
* Call the FS "drop()" function, defaulting to
* the legacy UNIX filesystem behaviour..
*
* NOTE! NOTE! NOTE! We're called with the inode lock
* held, and the drop function is supposed to release
* the lock!
*/
static inline void iput_final(struct inode *inode)
{
const struct super_operations *op = inode->i_sb->s_op;
void (*drop)(struct inode *) = generic_drop_inode;
if (op && op->drop_inode)
drop = op->drop_inode;
drop(inode);
}
/**
* iput - put an inode
* @inode: inode to put
*
* Puts an inode, dropping its usage count. If the inode use count hits
* zero, the inode is then freed and may also be destroyed.
*
* Consequently, iput() can sleep.
*/
void iput(struct inode *inode)
{
if (inode) {
BUG_ON(inode->i_state == I_CLEAR);
if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
iput_final(inode);
}
}
EXPORT_SYMBOL(iput);
/**
* bmap - find a block number in a file
* @inode: inode of file
* @block: block to find
*
* Returns the block number on the device holding the inode that
* is the disk block number for the block of the file requested.
* That is, asked for block 4 of inode 1 the function will return the
* disk block relative to the disk start that holds that block of the
* file.
*/
sector_t bmap(struct inode * inode, sector_t block)
{
sector_t res = 0;
if (inode->i_mapping->a_ops->bmap)
res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
return res;
}
EXPORT_SYMBOL(bmap);
/**
* touch_atime - update the access time
* @mnt: mount the inode is accessed on
* @dentry: dentry accessed
*
* Update the accessed time on an inode and mark it for writeback.
* This function automatically handles read only file systems and media,
* as well as the "noatime" flag and inode specific "noatime" markers.
*/
void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
{
struct inode *inode = dentry->d_inode;
struct timespec now;
if (mnt_want_write(mnt))
return;
if (inode->i_flags & S_NOATIME)
goto out;
if (IS_NOATIME(inode))
goto out;
if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
goto out;
if (mnt->mnt_flags & MNT_NOATIME)
goto out;
if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
goto out;
if (mnt->mnt_flags & MNT_RELATIME) {
/*
* With relative atime, only update atime if the previous
* atime is earlier than either the ctime or mtime.
*/
if (timespec_compare(&inode->i_mtime, &inode->i_atime) < 0 &&
timespec_compare(&inode->i_ctime, &inode->i_atime) < 0)
goto out;
}
now = current_fs_time(inode->i_sb);
if (timespec_equal(&inode->i_atime, &now))
goto out;
inode->i_atime = now;
mark_inode_dirty_sync(inode);
out:
mnt_drop_write(mnt);
}
EXPORT_SYMBOL(touch_atime);
/**
* file_update_time - update mtime and ctime time
* @file: file accessed
*
* Update the mtime and ctime members of an inode and mark the inode
* for writeback. Note that this function is meant exclusively for
* usage in the file write path of filesystems, and filesystems may
* choose to explicitly ignore update via this function with the
* S_NOCTIME inode flag, e.g. for network filesystem where these
* timestamps are handled by the server.
*/
void file_update_time(struct file *file)
{
struct inode *inode = file->f_path.dentry->d_inode;
struct timespec now;
int sync_it = 0;
int err;
if (IS_NOCMTIME(inode))
return;
err = mnt_want_write(file->f_path.mnt);
if (err)
return;
now = current_fs_time(inode->i_sb);
if (!timespec_equal(&inode->i_mtime, &now)) {
inode->i_mtime = now;
sync_it = 1;
}
if (!timespec_equal(&inode->i_ctime, &now)) {
inode->i_ctime = now;
sync_it = 1;
}
if (IS_I_VERSION(inode)) {
inode_inc_iversion(inode);
sync_it = 1;
}
if (sync_it)
mark_inode_dirty_sync(inode);
mnt_drop_write(file->f_path.mnt);
}
EXPORT_SYMBOL(file_update_time);
int inode_needs_sync(struct inode *inode)
{
if (IS_SYNC(inode))
return 1;
if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
return 1;
return 0;
}
EXPORT_SYMBOL(inode_needs_sync);
int inode_wait(void *word)
{
schedule();
return 0;
}
EXPORT_SYMBOL(inode_wait);
/*
* If we try to find an inode in the inode hash while it is being
* deleted, we have to wait until the filesystem completes its
* deletion before reporting that it isn't found. This function waits
* until the deletion _might_ have completed. Callers are responsible
* to recheck inode state.
*
* It doesn't matter if I_LOCK is not set initially, a call to
* wake_up_inode() after removing from the hash list will DTRT.
*
* This is called with inode_lock held.
*/
static void __wait_on_freeing_inode(struct inode *inode)
{
wait_queue_head_t *wq;
DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK);
wq = bit_waitqueue(&inode->i_state, __I_LOCK);
prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
spin_unlock(&inode_lock);
schedule();
finish_wait(wq, &wait.wait);
spin_lock(&inode_lock);
}
/*
* We rarely want to lock two inodes that do not have a parent/child
* relationship (such as directory, child inode) simultaneously. The
* vast majority of file systems should be able to get along fine
* without this. Do not use these functions except as a last resort.
*/
void inode_double_lock(struct inode *inode1, struct inode *inode2)
{
if (inode1 == NULL || inode2 == NULL || inode1 == inode2) {
if (inode1)
mutex_lock(&inode1->i_mutex);
else if (inode2)
mutex_lock(&inode2->i_mutex);
return;
}
if (inode1 < inode2) {
mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
} else {
mutex_lock_nested(&inode2->i_mutex, I_MUTEX_PARENT);
mutex_lock_nested(&inode1->i_mutex, I_MUTEX_CHILD);
}
}
EXPORT_SYMBOL(inode_double_lock);
void inode_double_unlock(struct inode *inode1, struct inode *inode2)
{
if (inode1)
mutex_unlock(&inode1->i_mutex);
if (inode2 && inode2 != inode1)
mutex_unlock(&inode2->i_mutex);
}
EXPORT_SYMBOL(inode_double_unlock);
static __initdata unsigned long ihash_entries;
static int __init set_ihash_entries(char *str)
{
if (!str)
return 0;
ihash_entries = simple_strtoul(str, &str, 0);
return 1;
}
__setup("ihash_entries=", set_ihash_entries);
/*
* Initialize the waitqueues and inode hash table.
*/
void __init inode_init_early(void)
{
int loop;
/* If hashes are distributed across NUMA nodes, defer
* hash allocation until vmalloc space is available.
*/
if (hashdist)
return;
inode_hashtable =
alloc_large_system_hash("Inode-cache",
sizeof(struct hlist_head),
ihash_entries,
14,
HASH_EARLY,
&i_hash_shift,
&i_hash_mask,
0);
for (loop = 0; loop < (1 << i_hash_shift); loop++)
INIT_HLIST_HEAD(&inode_hashtable[loop]);
}
void __init inode_init(void)
{
int loop;
/* inode slab cache */
inode_cachep = kmem_cache_create("inode_cache",
sizeof(struct inode),
0,
(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
SLAB_MEM_SPREAD),
init_once);
register_shrinker(&icache_shrinker);
/* Hash may have been set up in inode_init_early */
if (!hashdist)
return;
inode_hashtable =
alloc_large_system_hash("Inode-cache",
sizeof(struct hlist_head),
ihash_entries,
14,
0,
&i_hash_shift,
&i_hash_mask,
0);
for (loop = 0; loop < (1 << i_hash_shift); loop++)
INIT_HLIST_HEAD(&inode_hashtable[loop]);
}
void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
{
inode->i_mode = mode;
if (S_ISCHR(mode)) {
inode->i_fop = &def_chr_fops;
inode->i_rdev = rdev;
} else if (S_ISBLK(mode)) {
inode->i_fop = &def_blk_fops;
inode->i_rdev = rdev;
} else if (S_ISFIFO(mode))
inode->i_fop = &def_fifo_fops;
else if (S_ISSOCK(mode))
inode->i_fop = &bad_sock_fops;
else
printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n",
mode);
}
EXPORT_SYMBOL(init_special_inode);