1
linux/arch/arm/mach-omap2/clock24xx.c
Paul Walmsley 6b8858a972 ARM: OMAP2: Change 24xx to use shared clock code and new reg access
This patch changes 24xx to use shared clock code and new register
access.

Note that patch adds some temporary OLD_CK defines to keep patch
more readable. These temporary defines will be removed in the next
patch. Also not all clocks are changed in this patch to limit the
size.

Also, the patch fixes few incorrect clock defines in clock24xx.h.

Signed-off-by: Paul Walmsley <paul@pwsan.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
2008-04-14 10:29:38 -07:00

1262 lines
28 KiB
C

/*
* linux/arch/arm/mach-omap2/clock.c
*
* Copyright (C) 2005 Texas Instruments Inc.
* Richard Woodruff <r-woodruff2@ti.com>
* Created for OMAP2.
*
* Cleaned up and modified to use omap shared clock framework by
* Tony Lindgren <tony@atomide.com>
*
* Based on omap1 clock.c, Copyright (C) 2004 - 2005 Nokia corporation
* Written by Tuukka Tikkanen <tuukka.tikkanen@elektrobit.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#undef DEBUG
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/list.h>
#include <linux/errno.h>
#include <linux/delay.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/cpufreq.h>
#include <asm/arch/clock.h>
#include <asm/arch/sram.h>
#include <asm/div64.h>
#include <asm/bitops.h>
#include "memory.h"
#include "clock.h"
#include "clock24xx.h"
#include "prm.h"
#include "prm-regbits-24xx.h"
#include "cm.h"
#include "cm-regbits-24xx.h"
/* CM_CLKEN_PLL.EN_{54,96}M_PLL options (24XX) */
#define EN_APLL_STOPPED 0
#define EN_APLL_LOCKED 3
/* CM_CLKSEL1_PLL.APLLS_CLKIN options (24XX) */
#define APLLS_CLKIN_19_2MHZ 0
#define APLLS_CLKIN_13MHZ 2
#define APLLS_CLKIN_12MHZ 3
/* #define DOWN_VARIABLE_DPLL 1 */ /* Experimental */
static struct prcm_config *curr_prcm_set;
static struct clk *vclk;
static struct clk *sclk;
/*-------------------------------------------------------------------------
* Omap24xx specific clock functions
*-------------------------------------------------------------------------*/
static int omap2_enable_osc_ck(struct clk *clk)
{
u32 pcc;
pcc = __raw_readl(OMAP24XX_PRCM_CLKSRC_CTRL);
__raw_writel(pcc & ~OMAP_AUTOEXTCLKMODE_MASK,
OMAP24XX_PRCM_CLKSRC_CTRL);
return 0;
}
static void omap2_disable_osc_ck(struct clk *clk)
{
u32 pcc;
pcc = __raw_readl(OMAP24XX_PRCM_CLKSRC_CTRL);
__raw_writel(pcc | OMAP_AUTOEXTCLKMODE_MASK,
OMAP24XX_PRCM_CLKSRC_CTRL);
}
#ifdef OLD_CK
/* Recalculate SYST_CLK */
static void omap2_sys_clk_recalc(struct clk * clk)
{
u32 div = PRCM_CLKSRC_CTRL;
div &= (1 << 7) | (1 << 6); /* Test if ext clk divided by 1 or 2 */
div >>= clk->rate_offset;
clk->rate = (clk->parent->rate / div);
propagate_rate(clk);
}
#endif /* OLD_CK */
/* This actually returns the rate of core_ck, not dpll_ck. */
static u32 omap2_get_dpll_rate_24xx(struct clk *tclk)
{
long long dpll_clk;
u8 amult;
dpll_clk = omap2_get_dpll_rate(tclk);
amult = cm_read_mod_reg(PLL_MOD, CM_CLKSEL2);
amult &= OMAP24XX_CORE_CLK_SRC_MASK;
dpll_clk *= amult;
return dpll_clk;
}
static void omap2_followparent_recalc(struct clk *clk)
{
followparent_recalc(clk);
}
static void omap2_propagate_rate(struct clk * clk)
{
if (!(clk->flags & RATE_FIXED))
clk->rate = clk->parent->rate;
propagate_rate(clk);
}
#ifdef OLD_CK
static void omap2_set_osc_ck(int enable)
{
if (enable)
PRCM_CLKSRC_CTRL &= ~(0x3 << 3);
else
PRCM_CLKSRC_CTRL |= 0x3 << 3;
}
#endif /* OLD_CK */
/* Enable an APLL if off */
static int omap2_clk_fixed_enable(struct clk *clk)
{
u32 cval, apll_mask;
apll_mask = EN_APLL_LOCKED << clk->enable_bit;
cval = cm_read_mod_reg(PLL_MOD, CM_CLKEN);
if ((cval & apll_mask) == apll_mask)
return 0; /* apll already enabled */
cval &= ~apll_mask;
cval |= apll_mask;
cm_write_mod_reg(cval, PLL_MOD, CM_CLKEN);
if (clk == &apll96_ck)
cval = OMAP24XX_ST_96M_APLL;
else if (clk == &apll54_ck)
cval = OMAP24XX_ST_54M_APLL;
omap2_wait_clock_ready(OMAP_CM_REGADDR(PLL_MOD, CM_IDLEST), cval,
clk->name);
/*
* REVISIT: Should we return an error code if omap2_wait_clock_ready()
* fails?
*/
return 0;
}
#ifdef OLD_CK
static void omap2_clk_wait_ready(struct clk *clk)
{
unsigned long reg, other_reg, st_reg;
u32 bit;
int i;
reg = (unsigned long) clk->enable_reg;
if (reg == (unsigned long) &CM_FCLKEN1_CORE ||
reg == (unsigned long) &CM_FCLKEN2_CORE)
other_reg = (reg & ~0xf0) | 0x10;
else if (reg == (unsigned long) &CM_ICLKEN1_CORE ||
reg == (unsigned long) &CM_ICLKEN2_CORE)
other_reg = (reg & ~0xf0) | 0x00;
else
return;
/* No check for DSS or cam clocks */
if ((reg & 0x0f) == 0) {
if (clk->enable_bit <= 1 || clk->enable_bit == 31)
return;
}
/* Check if both functional and interface clocks
* are running. */
bit = 1 << clk->enable_bit;
if (!(__raw_readl(other_reg) & bit))
return;
st_reg = (other_reg & ~0xf0) | 0x20;
i = 0;
while (!(__raw_readl(st_reg) & bit)) {
i++;
if (i == 100000) {
printk(KERN_ERR "Timeout enabling clock %s\n", clk->name);
break;
}
}
if (i)
pr_debug("Clock %s stable after %d loops\n", clk->name, i);
}
/* Enables clock without considering parent dependencies or use count
* REVISIT: Maybe change this to use clk->enable like on omap1?
*/
static int _omap2_clk_enable(struct clk * clk)
{
u32 regval32;
if (clk->flags & ALWAYS_ENABLED)
return 0;
if (unlikely(clk == &osc_ck)) {
omap2_set_osc_ck(1);
return 0;
}
if (unlikely(clk->enable_reg == 0)) {
printk(KERN_ERR "clock.c: Enable for %s without enable code\n",
clk->name);
return 0;
}
if (clk->enable_reg == (void __iomem *)&CM_CLKEN_PLL) {
omap2_clk_fixed_enable(clk);
return 0;
}
regval32 = __raw_readl(clk->enable_reg);
regval32 |= (1 << clk->enable_bit);
__raw_writel(regval32, clk->enable_reg);
wmb();
omap2_clk_wait_ready(clk);
return 0;
}
#endif /* OLD_CK */
/* Stop APLL */
static void omap2_clk_fixed_disable(struct clk *clk)
{
u32 cval;
cval = cm_read_mod_reg(PLL_MOD, CM_CLKEN);
cval &= ~(EN_APLL_LOCKED << clk->enable_bit);
cm_write_mod_reg(cval, PLL_MOD, CM_CLKEN);
}
#ifdef OLD_CK
/* Disables clock without considering parent dependencies or use count */
static void _omap2_clk_disable(struct clk *clk)
{
u32 regval32;
if (unlikely(clk == &osc_ck)) {
omap2_set_osc_ck(0);
return;
}
if (clk->enable_reg == 0)
return;
if (clk->enable_reg == (void __iomem *)&CM_CLKEN_PLL) {
omap2_clk_fixed_disable(clk);
return;
}
regval32 = __raw_readl(clk->enable_reg);
regval32 &= ~(1 << clk->enable_bit);
__raw_writel(regval32, clk->enable_reg);
wmb();
}
static int omap2_clk_enable(struct clk *clk)
{
int ret = 0;
if (clk->usecount++ == 0) {
if (likely((u32)clk->parent))
ret = omap2_clk_enable(clk->parent);
if (unlikely(ret != 0)) {
clk->usecount--;
return ret;
}
ret = _omap2_clk_enable(clk);
if (unlikely(ret != 0) && clk->parent) {
omap2_clk_disable(clk->parent);
clk->usecount--;
}
}
return ret;
}
static void omap2_clk_disable(struct clk *clk)
{
if (clk->usecount > 0 && !(--clk->usecount)) {
_omap2_clk_disable(clk);
if (likely((u32)clk->parent))
omap2_clk_disable(clk->parent);
}
}
#endif /* OLD_CK */
/*
* Uses the current prcm set to tell if a rate is valid.
* You can go slower, but not faster within a given rate set.
*/
static u32 omap2_dpll_round_rate(unsigned long target_rate)
{
u32 high, low, core_clk_src;
core_clk_src = cm_read_mod_reg(PLL_MOD, CM_CLKSEL2);
core_clk_src &= OMAP24XX_CORE_CLK_SRC_MASK;
if (core_clk_src == CORE_CLK_SRC_DPLL) { /* DPLL clockout */
high = curr_prcm_set->dpll_speed * 2;
low = curr_prcm_set->dpll_speed;
} else { /* DPLL clockout x 2 */
high = curr_prcm_set->dpll_speed;
low = curr_prcm_set->dpll_speed / 2;
}
#ifdef DOWN_VARIABLE_DPLL
if (target_rate > high)
return high;
else
return target_rate;
#else
if (target_rate > low)
return high;
else
return low;
#endif
}
#ifdef OLD_CK
/*
* Used for clocks that are part of CLKSEL_xyz governed clocks.
* REVISIT: Maybe change to use clk->enable() functions like on omap1?
*/
static void omap2_clksel_recalc(struct clk * clk)
{
u32 fixed = 0, div = 0;
if (clk == &dpll_ck) {
clk->rate = omap2_get_dpll_rate(clk);
fixed = 1;
div = 0;
}
if (clk == &iva1_mpu_int_ifck) {
div = 2;
fixed = 1;
}
if ((clk == &dss1_fck) && ((CM_CLKSEL1_CORE & (0x1f << 8)) == 0)) {
clk->rate = sys_ck.rate;
return;
}
if (!fixed) {
div = omap2_clksel_get_divisor(clk);
if (div == 0)
return;
}
if (div != 0) {
if (unlikely(clk->rate == clk->parent->rate / div))
return;
clk->rate = clk->parent->rate / div;
}
if (unlikely(clk->flags & RATE_PROPAGATES))
propagate_rate(clk);
}
/*
* Finds best divider value in an array based on the source and target
* rates. The divider array must be sorted with smallest divider first.
*/
static inline u32 omap2_divider_from_table(u32 size, u32 *div_array,
u32 src_rate, u32 tgt_rate)
{
int i, test_rate;
if (div_array == NULL)
return ~1;
for (i=0; i < size; i++) {
test_rate = src_rate / *div_array;
if (test_rate <= tgt_rate)
return *div_array;
++div_array;
}
return ~0; /* No acceptable divider */
}
/*
* Find divisor for the given clock and target rate.
*
* Note that this will not work for clocks which are part of CONFIG_PARTICIPANT,
* they are only settable as part of virtual_prcm set.
*/
static u32 omap2_clksel_round_rate(struct clk *tclk, u32 target_rate,
u32 *new_div)
{
u32 gfx_div[] = {2, 3, 4};
u32 sysclkout_div[] = {1, 2, 4, 8, 16};
u32 dss1_div[] = {1, 2, 3, 4, 5, 6, 8, 9, 12, 16};
u32 vylnq_div[] = {1, 2, 3, 4, 6, 8, 9, 12, 16, 18};
u32 best_div = ~0, asize = 0;
u32 *div_array = NULL;
switch (tclk->flags & SRC_RATE_SEL_MASK) {
case CM_GFX_SEL1:
asize = 3;
div_array = gfx_div;
break;
case CM_PLL_SEL1:
return omap2_dpll_round_rate(target_rate);
case CM_SYSCLKOUT_SEL1:
asize = 5;
div_array = sysclkout_div;
break;
case CM_CORE_SEL1:
if(tclk == &dss1_fck){
if(tclk->parent == &core_ck){
asize = 10;
div_array = dss1_div;
} else {
*new_div = 0; /* fixed clk */
return(tclk->parent->rate);
}
} else if((tclk == &vlynq_fck) && cpu_is_omap2420()){
if(tclk->parent == &core_ck){
asize = 10;
div_array = vylnq_div;
} else {
*new_div = 0; /* fixed clk */
return(tclk->parent->rate);
}
}
break;
}
best_div = omap2_divider_from_table(asize, div_array,
tclk->parent->rate, target_rate);
if (best_div == ~0){
*new_div = 1;
return best_div; /* signal error */
}
*new_div = best_div;
return (tclk->parent->rate / best_div);
}
/* Given a clock and a rate apply a clock specific rounding function */
static long omap2_clk_round_rate(struct clk *clk, unsigned long rate)
{
u32 new_div = 0;
int valid_rate;
if (clk->flags & RATE_FIXED)
return clk->rate;
if (clk->flags & RATE_CKCTL) {
valid_rate = omap2_clksel_round_rate(clk, rate, &new_div);
return valid_rate;
}
if (clk->round_rate != 0)
return clk->round_rate(clk, rate);
return clk->rate;
}
/*
* Check the DLL lock state, and return tue if running in unlock mode.
* This is needed to compensate for the shifted DLL value in unlock mode.
*/
static u32 omap2_dll_force_needed(void)
{
u32 dll_state = SDRC_DLLA_CTRL; /* dlla and dllb are a set */
if ((dll_state & (1 << 2)) == (1 << 2))
return 1;
else
return 0;
}
static u32 omap2_reprogram_sdrc(u32 level, u32 force)
{
u32 slow_dll_ctrl, fast_dll_ctrl, m_type;
u32 prev = curr_perf_level, flags;
if ((curr_perf_level == level) && !force)
return prev;
m_type = omap2_memory_get_type();
slow_dll_ctrl = omap2_memory_get_slow_dll_ctrl();
fast_dll_ctrl = omap2_memory_get_fast_dll_ctrl();
if (level == PRCM_HALF_SPEED) {
local_irq_save(flags);
PRCM_VOLTSETUP = 0xffff;
omap2_sram_reprogram_sdrc(PRCM_HALF_SPEED,
slow_dll_ctrl, m_type);
curr_perf_level = PRCM_HALF_SPEED;
local_irq_restore(flags);
}
if (level == PRCM_FULL_SPEED) {
local_irq_save(flags);
PRCM_VOLTSETUP = 0xffff;
omap2_sram_reprogram_sdrc(PRCM_FULL_SPEED,
fast_dll_ctrl, m_type);
curr_perf_level = PRCM_FULL_SPEED;
local_irq_restore(flags);
}
return prev;
}
#endif /* OLD_CK */
static void omap2_dpll_recalc(struct clk *clk)
{
clk->rate = omap2_get_dpll_rate_24xx(clk);
propagate_rate(clk);
}
static int omap2_reprogram_dpll(struct clk *clk, unsigned long rate)
{
u32 cur_rate, low, mult, div, valid_rate, done_rate;
u32 bypass = 0;
struct prcm_config tmpset;
const struct dpll_data *dd;
unsigned long flags;
int ret = -EINVAL;
local_irq_save(flags);
cur_rate = omap2_get_dpll_rate_24xx(&dpll_ck);
mult = cm_read_mod_reg(PLL_MOD, CM_CLKSEL2);
mult &= OMAP24XX_CORE_CLK_SRC_MASK;
if ((rate == (cur_rate / 2)) && (mult == 2)) {
omap2_reprogram_sdrc(CORE_CLK_SRC_DPLL, 1);
} else if ((rate == (cur_rate * 2)) && (mult == 1)) {
omap2_reprogram_sdrc(CORE_CLK_SRC_DPLL_X2, 1);
} else if (rate != cur_rate) {
valid_rate = omap2_dpll_round_rate(rate);
if (valid_rate != rate)
goto dpll_exit;
if (mult == 1)
low = curr_prcm_set->dpll_speed;
else
low = curr_prcm_set->dpll_speed / 2;
dd = clk->dpll_data;
if (!dd)
goto dpll_exit;
tmpset.cm_clksel1_pll = __raw_readl(dd->mult_div1_reg);
tmpset.cm_clksel1_pll &= ~(dd->mult_mask |
dd->div1_mask);
div = ((curr_prcm_set->xtal_speed / 1000000) - 1);
tmpset.cm_clksel2_pll = cm_read_mod_reg(PLL_MOD, CM_CLKSEL2);
tmpset.cm_clksel2_pll &= ~OMAP24XX_CORE_CLK_SRC_MASK;
if (rate > low) {
tmpset.cm_clksel2_pll |= CORE_CLK_SRC_DPLL_X2;
mult = ((rate / 2) / 1000000);
done_rate = CORE_CLK_SRC_DPLL_X2;
} else {
tmpset.cm_clksel2_pll |= CORE_CLK_SRC_DPLL;
mult = (rate / 1000000);
done_rate = CORE_CLK_SRC_DPLL;
}
tmpset.cm_clksel1_pll |= (div << __ffs(dd->mult_mask));
tmpset.cm_clksel1_pll |= (mult << __ffs(dd->div1_mask));
/* Worst case */
tmpset.base_sdrc_rfr = SDRC_RFR_CTRL_BYPASS;
if (rate == curr_prcm_set->xtal_speed) /* If asking for 1-1 */
bypass = 1;
omap2_reprogram_sdrc(CORE_CLK_SRC_DPLL_X2, 1); /* For init_mem */
/* Force dll lock mode */
omap2_set_prcm(tmpset.cm_clksel1_pll, tmpset.base_sdrc_rfr,
bypass);
/* Errata: ret dll entry state */
omap2_init_memory_params(omap2_dll_force_needed());
omap2_reprogram_sdrc(done_rate, 0);
}
omap2_dpll_recalc(&dpll_ck);
ret = 0;
dpll_exit:
local_irq_restore(flags);
return(ret);
}
/**
* omap2_table_mpu_recalc - just return the MPU speed
* @clk: virt_prcm_set struct clk
*
* Set virt_prcm_set's rate to the mpu_speed field of the current PRCM set.
*/
static void omap2_table_mpu_recalc(struct clk *clk)
{
clk->rate = curr_prcm_set->mpu_speed;
}
/*
* Look for a rate equal or less than the target rate given a configuration set.
*
* What's not entirely clear is "which" field represents the key field.
* Some might argue L3-DDR, others ARM, others IVA. This code is simple and
* just uses the ARM rates.
*/
static long omap2_round_to_table_rate(struct clk *clk, unsigned long rate)
{
struct prcm_config *ptr;
long highest_rate;
if (clk != &virt_prcm_set)
return -EINVAL;
highest_rate = -EINVAL;
for (ptr = rate_table; ptr->mpu_speed; ptr++) {
if (!(ptr->flags & cpu_mask))
continue;
if (ptr->xtal_speed != sys_ck.rate)
continue;
highest_rate = ptr->mpu_speed;
/* Can check only after xtal frequency check */
if (ptr->mpu_speed <= rate)
break;
}
return highest_rate;
}
#ifdef OLD_CK
/*
* omap2_convert_field_to_div() - turn field value into integer divider
*/
static u32 omap2_clksel_to_divisor(u32 div_sel, u32 field_val)
{
u32 i;
u32 clkout_array[] = {1, 2, 4, 8, 16};
if ((div_sel & SRC_RATE_SEL_MASK) == CM_SYSCLKOUT_SEL1) {
for (i = 0; i < 5; i++) {
if (field_val == i)
return clkout_array[i];
}
return ~0;
} else
return field_val;
}
/*
* Returns the CLKSEL divider register value
* REVISIT: This should be cleaned up to work nicely with void __iomem *
*/
static u32 omap2_get_clksel(u32 *div_sel, u32 *field_mask,
struct clk *clk)
{
int ret = ~0;
u32 reg_val, div_off;
u32 div_addr = 0;
u32 mask = ~0;
div_off = clk->rate_offset;
switch ((*div_sel & SRC_RATE_SEL_MASK)) {
case CM_MPU_SEL1:
div_addr = (u32)&CM_CLKSEL_MPU;
mask = 0x1f;
break;
case CM_DSP_SEL1:
div_addr = (u32)&CM_CLKSEL_DSP;
if (cpu_is_omap2420()) {
if ((div_off == 0) || (div_off == 8))
mask = 0x1f;
else if (div_off == 5)
mask = 0x3;
} else if (cpu_is_omap2430()) {
if (div_off == 0)
mask = 0x1f;
else if (div_off == 5)
mask = 0x3;
}
break;
case CM_GFX_SEL1:
div_addr = (u32)&CM_CLKSEL_GFX;
if (div_off == 0)
mask = 0x7;
break;
case CM_MODEM_SEL1:
div_addr = (u32)&CM_CLKSEL_MDM;
if (div_off == 0)
mask = 0xf;
break;
case CM_SYSCLKOUT_SEL1:
div_addr = (u32)&PRCM_CLKOUT_CTRL;
if ((div_off == 3) || (div_off == 11))
mask= 0x3;
break;
case CM_CORE_SEL1:
div_addr = (u32)&CM_CLKSEL1_CORE;
switch (div_off) {
case 0: /* l3 */
case 8: /* dss1 */
case 15: /* vylnc-2420 */
case 20: /* ssi */
mask = 0x1f; break;
case 5: /* l4 */
mask = 0x3; break;
case 13: /* dss2 */
mask = 0x1; break;
case 25: /* usb */
mask = 0x7; break;
}
}
*field_mask = mask;
if (unlikely(mask == ~0))
div_addr = 0;
*div_sel = div_addr;
if (unlikely(div_addr == 0))
return ret;
/* Isolate field */
reg_val = __raw_readl((void __iomem *)div_addr) & (mask << div_off);
/* Normalize back to divider value */
reg_val >>= div_off;
return reg_val;
}
/*
* Return divider to be applied to parent clock.
* Return 0 on error.
*/
static u32 omap2_clksel_get_divisor(struct clk *clk)
{
int ret = 0;
u32 div, div_sel, div_off, field_mask, field_val;
/* isolate control register */
div_sel = (SRC_RATE_SEL_MASK & clk->flags);
div_off = clk->rate_offset;
field_val = omap2_get_clksel(&div_sel, &field_mask, clk);
if (div_sel == 0)
return ret;
div_sel = (SRC_RATE_SEL_MASK & clk->flags);
div = omap2_clksel_to_divisor(div_sel, field_val);
return div;
}
/* Set the clock rate for a clock source */
static int omap2_clk_set_rate(struct clk *clk, unsigned long rate)
{
int ret = -EINVAL;
void __iomem * reg;
u32 div_sel, div_off, field_mask, field_val, reg_val, validrate;
u32 new_div = 0;
if (!(clk->flags & CONFIG_PARTICIPANT) && (clk->flags & RATE_CKCTL)) {
if (clk == &dpll_ck)
return omap2_reprogram_dpll(clk, rate);
/* Isolate control register */
div_sel = (SRC_RATE_SEL_MASK & clk->flags);
div_off = clk->rate_offset;
validrate = omap2_clksel_round_rate(clk, rate, &new_div);
if (validrate != rate)
return(ret);
field_val = omap2_get_clksel(&div_sel, &field_mask, clk);
if (div_sel == 0)
return ret;
if (clk->flags & CM_SYSCLKOUT_SEL1) {
switch (new_div) {
case 16:
field_val = 4;
break;
case 8:
field_val = 3;
break;
case 4:
field_val = 2;
break;
case 2:
field_val = 1;
break;
case 1:
field_val = 0;
break;
}
} else
field_val = new_div;
reg = (void __iomem *)div_sel;
reg_val = __raw_readl(reg);
reg_val &= ~(field_mask << div_off);
reg_val |= (field_val << div_off);
__raw_writel(reg_val, reg);
wmb();
clk->rate = clk->parent->rate / field_val;
if (clk->flags & DELAYED_APP) {
__raw_writel(0x1, (void __iomem *)&PRCM_CLKCFG_CTRL);
wmb();
}
ret = 0;
} else if (clk->set_rate != 0)
ret = clk->set_rate(clk, rate);
if (unlikely(ret == 0 && (clk->flags & RATE_PROPAGATES)))
propagate_rate(clk);
return ret;
}
/* Converts encoded control register address into a full address */
static u32 omap2_get_src_field(u32 *type_to_addr, u32 reg_offset,
struct clk *src_clk, u32 *field_mask)
{
u32 val = ~0, src_reg_addr = 0, mask = 0;
/* Find target control register.*/
switch ((*type_to_addr & SRC_RATE_SEL_MASK)) {
case CM_CORE_SEL1:
src_reg_addr = (u32)&CM_CLKSEL1_CORE;
if (reg_offset == 13) { /* DSS2_fclk */
mask = 0x1;
if (src_clk == &sys_ck)
val = 0;
if (src_clk == &func_48m_ck)
val = 1;
} else if (reg_offset == 8) { /* DSS1_fclk */
mask = 0x1f;
if (src_clk == &sys_ck)
val = 0;
else if (src_clk == &core_ck) /* divided clock */
val = 0x10; /* rate needs fixing */
} else if ((reg_offset == 15) && cpu_is_omap2420()){ /*vlnyq*/
mask = 0x1F;
if(src_clk == &func_96m_ck)
val = 0;
else if (src_clk == &core_ck)
val = 0x10;
}
break;
case CM_CORE_SEL2:
src_reg_addr = (u32)&CM_CLKSEL2_CORE;
mask = 0x3;
if (src_clk == &func_32k_ck)
val = 0x0;
if (src_clk == &sys_ck)
val = 0x1;
if (src_clk == &alt_ck)
val = 0x2;
break;
case CM_WKUP_SEL1:
src_reg_addr = (u32)&CM_CLKSEL_WKUP;
mask = 0x3;
if (src_clk == &func_32k_ck)
val = 0x0;
if (src_clk == &sys_ck)
val = 0x1;
if (src_clk == &alt_ck)
val = 0x2;
break;
case CM_PLL_SEL1:
src_reg_addr = (u32)&CM_CLKSEL1_PLL;
mask = 0x1;
if (reg_offset == 0x3) {
if (src_clk == &apll96_ck)
val = 0;
if (src_clk == &alt_ck)
val = 1;
}
else if (reg_offset == 0x5) {
if (src_clk == &apll54_ck)
val = 0;
if (src_clk == &alt_ck)
val = 1;
}
break;
case CM_PLL_SEL2:
src_reg_addr = (u32)&CM_CLKSEL2_PLL;
mask = 0x3;
if (src_clk == &func_32k_ck)
val = 0x0;
if (src_clk == &dpll_ck)
val = 0x2;
break;
case CM_SYSCLKOUT_SEL1:
src_reg_addr = (u32)&PRCM_CLKOUT_CTRL;
mask = 0x3;
if (src_clk == &dpll_ck)
val = 0;
if (src_clk == &sys_ck)
val = 1;
if (src_clk == &func_96m_ck)
val = 2;
if (src_clk == &func_54m_ck)
val = 3;
break;
}
if (val == ~0) /* Catch errors in offset */
*type_to_addr = 0;
else
*type_to_addr = src_reg_addr;
*field_mask = mask;
return val;
}
static int omap2_clk_set_parent(struct clk *clk, struct clk *new_parent)
{
void __iomem * reg;
u32 src_sel, src_off, field_val, field_mask, reg_val, rate;
int ret = -EINVAL;
if (unlikely(clk->flags & CONFIG_PARTICIPANT))
return ret;
if (clk->flags & SRC_SEL_MASK) { /* On-chip SEL collection */
src_sel = (SRC_RATE_SEL_MASK & clk->flags);
src_off = clk->src_offset;
if (src_sel == 0)
goto set_parent_error;
field_val = omap2_get_src_field(&src_sel, src_off, new_parent,
&field_mask);
reg = (void __iomem *)src_sel;
if (clk->usecount > 0)
_omap2_clk_disable(clk);
/* Set new source value (previous dividers if any in effect) */
reg_val = __raw_readl(reg) & ~(field_mask << src_off);
reg_val |= (field_val << src_off);
__raw_writel(reg_val, reg);
wmb();
if (clk->flags & DELAYED_APP) {
__raw_writel(0x1, (void __iomem *)&PRCM_CLKCFG_CTRL);
wmb();
}
if (clk->usecount > 0)
_omap2_clk_enable(clk);
clk->parent = new_parent;
/* SRC_RATE_SEL_MASK clocks follow their parents rates.*/
if ((new_parent == &core_ck) && (clk == &dss1_fck))
clk->rate = new_parent->rate / 0x10;
else
clk->rate = new_parent->rate;
if (unlikely(clk->flags & RATE_PROPAGATES))
propagate_rate(clk);
return 0;
} else {
clk->parent = new_parent;
rate = new_parent->rate;
omap2_clk_set_rate(clk, rate);
ret = 0;
}
set_parent_error:
return ret;
}
#endif /* OLD_CK */
/* Sets basic clocks based on the specified rate */
static int omap2_select_table_rate(struct clk *clk, unsigned long rate)
{
u32 cur_rate, done_rate, bypass = 0, tmp;
struct prcm_config *prcm;
unsigned long found_speed = 0;
unsigned long flags;
if (clk != &virt_prcm_set)
return -EINVAL;
for (prcm = rate_table; prcm->mpu_speed; prcm++) {
if (!(prcm->flags & cpu_mask))
continue;
if (prcm->xtal_speed != sys_ck.rate)
continue;
if (prcm->mpu_speed <= rate) {
found_speed = prcm->mpu_speed;
break;
}
}
if (!found_speed) {
printk(KERN_INFO "Could not set MPU rate to %luMHz\n",
rate / 1000000);
return -EINVAL;
}
curr_prcm_set = prcm;
cur_rate = omap2_get_dpll_rate_24xx(&dpll_ck);
if (prcm->dpll_speed == cur_rate / 2) {
omap2_reprogram_sdrc(CORE_CLK_SRC_DPLL, 1);
} else if (prcm->dpll_speed == cur_rate * 2) {
omap2_reprogram_sdrc(CORE_CLK_SRC_DPLL_X2, 1);
} else if (prcm->dpll_speed != cur_rate) {
local_irq_save(flags);
if (prcm->dpll_speed == prcm->xtal_speed)
bypass = 1;
if ((prcm->cm_clksel2_pll & OMAP24XX_CORE_CLK_SRC_MASK) ==
CORE_CLK_SRC_DPLL_X2)
done_rate = CORE_CLK_SRC_DPLL_X2;
else
done_rate = CORE_CLK_SRC_DPLL;
/* MPU divider */
cm_write_mod_reg(prcm->cm_clksel_mpu, MPU_MOD, CM_CLKSEL);
/* dsp + iva1 div(2420), iva2.1(2430) */
cm_write_mod_reg(prcm->cm_clksel_dsp,
OMAP24XX_DSP_MOD, CM_CLKSEL);
cm_write_mod_reg(prcm->cm_clksel_gfx, GFX_MOD, CM_CLKSEL);
/* Major subsystem dividers */
tmp = cm_read_mod_reg(CORE_MOD, CM_CLKSEL1) & OMAP24XX_CLKSEL_DSS2_MASK;
cm_write_mod_reg(prcm->cm_clksel1_core | tmp, CORE_MOD, CM_CLKSEL1);
if (cpu_is_omap2430())
cm_write_mod_reg(prcm->cm_clksel_mdm,
OMAP2430_MDM_MOD, CM_CLKSEL);
/* x2 to enter init_mem */
omap2_reprogram_sdrc(CORE_CLK_SRC_DPLL_X2, 1);
omap2_set_prcm(prcm->cm_clksel1_pll, prcm->base_sdrc_rfr,
bypass);
omap2_init_memory_params(omap2_dll_force_needed());
omap2_reprogram_sdrc(done_rate, 0);
local_irq_restore(flags);
}
omap2_dpll_recalc(&dpll_ck);
return 0;
}
/*-------------------------------------------------------------------------
* Omap2 clock reset and init functions
*-------------------------------------------------------------------------*/
#ifdef CONFIG_OMAP_RESET_CLOCKS
static void __init omap2_clk_disable_unused(struct clk *clk)
{
u32 regval32;
regval32 = __raw_readl(clk->enable_reg);
if ((regval32 & (1 << clk->enable_bit)) == 0)
return;
printk(KERN_INFO "Disabling unused clock \"%s\"\n", clk->name);
_omap2_clk_disable(clk);
}
#else
#define omap2_clk_disable_unused NULL
#endif
static struct clk_functions omap2_clk_functions = {
.clk_enable = omap2_clk_enable,
.clk_disable = omap2_clk_disable,
.clk_round_rate = omap2_clk_round_rate,
.clk_set_rate = omap2_clk_set_rate,
.clk_set_parent = omap2_clk_set_parent,
.clk_disable_unused = omap2_clk_disable_unused,
};
static u32 omap2_get_apll_clkin(void)
{
u32 aplls, sclk = 0;
aplls = cm_read_mod_reg(PLL_MOD, CM_CLKSEL1);
aplls &= OMAP24XX_APLLS_CLKIN_MASK;
aplls >>= OMAP24XX_APLLS_CLKIN_SHIFT;
if (aplls == APLLS_CLKIN_19_2MHZ)
sclk = 19200000;
else if (aplls == APLLS_CLKIN_13MHZ)
sclk = 13000000;
else if (aplls == APLLS_CLKIN_12MHZ)
sclk = 12000000;
return sclk;
}
static u32 omap2_get_sysclkdiv(void)
{
u32 div;
div = __raw_readl(OMAP24XX_PRCM_CLKSRC_CTRL);
div &= OMAP_SYSCLKDIV_MASK;
div >>= OMAP_SYSCLKDIV_SHIFT;
return div;
}
static void omap2_osc_clk_recalc(struct clk *clk)
{
clk->rate = omap2_get_apll_clkin() * omap2_get_sysclkdiv();
propagate_rate(clk);
}
static void omap2_sys_clk_recalc(struct clk *clk)
{
clk->rate = clk->parent->rate / omap2_get_sysclkdiv();
propagate_rate(clk);
}
/*
* Set clocks for bypass mode for reboot to work.
*/
void omap2_clk_prepare_for_reboot(void)
{
u32 rate;
if (vclk == NULL || sclk == NULL)
return;
rate = clk_get_rate(sclk);
clk_set_rate(vclk, rate);
}
/*
* Switch the MPU rate if specified on cmdline.
* We cannot do this early until cmdline is parsed.
*/
static int __init omap2_clk_arch_init(void)
{
if (!mpurate)
return -EINVAL;
if (omap2_select_table_rate(&virt_prcm_set, mpurate))
printk(KERN_ERR "Could not find matching MPU rate\n");
recalculate_root_clocks();
printk(KERN_INFO "Switched to new clocking rate (Crystal/DPLL/MPU): "
"%ld.%01ld/%ld/%ld MHz\n",
(sys_ck.rate / 1000000), (sys_ck.rate / 100000) % 10,
(dpll_ck.rate / 1000000), (mpu_ck.rate / 1000000)) ;
return 0;
}
arch_initcall(omap2_clk_arch_init);
int __init omap2_clk_init(void)
{
struct prcm_config *prcm;
struct clk **clkp;
u32 clkrate;
if (cpu_is_omap242x())
cpu_mask = RATE_IN_242X;
else if (cpu_is_omap2430())
cpu_mask = RATE_IN_243X;
clk_init(&omap2_clk_functions);
omap2_osc_clk_recalc(&osc_ck);
omap2_sys_clk_recalc(&sys_ck);
for (clkp = onchip_24xx_clks;
clkp < onchip_24xx_clks + ARRAY_SIZE(onchip_24xx_clks);
clkp++) {
if ((*clkp)->flags & CLOCK_IN_OMAP242X && cpu_is_omap2420()) {
clk_register(*clkp);
continue;
}
if ((*clkp)->flags & CLOCK_IN_OMAP243X && cpu_is_omap2430()) {
clk_register(*clkp);
continue;
}
}
/* Check the MPU rate set by bootloader */
clkrate = omap2_get_dpll_rate_24xx(&dpll_ck);
for (prcm = rate_table; prcm->mpu_speed; prcm++) {
if (!(prcm->flags & cpu_mask))
continue;
if (prcm->xtal_speed != sys_ck.rate)
continue;
if (prcm->dpll_speed <= clkrate)
break;
}
curr_prcm_set = prcm;
recalculate_root_clocks();
printk(KERN_INFO "Clocking rate (Crystal/DPLL/MPU): "
"%ld.%01ld/%ld/%ld MHz\n",
(sys_ck.rate / 1000000), (sys_ck.rate / 100000) % 10,
(dpll_ck.rate / 1000000), (mpu_ck.rate / 1000000)) ;
/*
* Only enable those clocks we will need, let the drivers
* enable other clocks as necessary
*/
clk_enable_init_clocks();
/* Avoid sleeping sleeping during omap2_clk_prepare_for_reboot() */
vclk = clk_get(NULL, "virt_prcm_set");
sclk = clk_get(NULL, "sys_ck");
return 0;
}