1
linux/drivers/net/bnx2x/bnx2x_cmn.h
Dmitry Kravkov 6891dd25d3 bnx2x: Load firmware in open() instead of probe()
Loading firmware when actually bringing eth device up.
This also will allow driver to be insmoded when filesystem with
firmware files is not available yet.

Suggested by Stephen Hemminger <shemminger@vyatta.com>

Signed-off-by: Dmitry Kravkov <dmitry@broadcom.com>
Signed-off-by: Eilon Greenstein <eilong@broadcom.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2010-08-16 21:06:18 -07:00

662 lines
16 KiB
C

/* bnx2x_cmn.h: Broadcom Everest network driver.
*
* Copyright (c) 2007-2010 Broadcom Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation.
*
* Maintained by: Eilon Greenstein <eilong@broadcom.com>
* Written by: Eliezer Tamir
* Based on code from Michael Chan's bnx2 driver
* UDP CSUM errata workaround by Arik Gendelman
* Slowpath and fastpath rework by Vladislav Zolotarov
* Statistics and Link management by Yitchak Gertner
*
*/
#ifndef BNX2X_CMN_H
#define BNX2X_CMN_H
#include <linux/types.h>
#include <linux/netdevice.h>
#include "bnx2x.h"
/*********************** Interfaces ****************************
* Functions that need to be implemented by each driver version
*/
/**
* Initialize link parameters structure variables.
*
* @param bp
* @param load_mode
*
* @return u8
*/
u8 bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode);
/**
* Configure hw according to link parameters structure.
*
* @param bp
*/
void bnx2x_link_set(struct bnx2x *bp);
/**
* Query link status
*
* @param bp
*
* @return 0 - link is UP
*/
u8 bnx2x_link_test(struct bnx2x *bp);
/**
* Handles link status change
*
* @param bp
*/
void bnx2x__link_status_update(struct bnx2x *bp);
/**
* MSI-X slowpath interrupt handler
*
* @param irq
* @param dev_instance
*
* @return irqreturn_t
*/
irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance);
/**
* non MSI-X interrupt handler
*
* @param irq
* @param dev_instance
*
* @return irqreturn_t
*/
irqreturn_t bnx2x_interrupt(int irq, void *dev_instance);
#ifdef BCM_CNIC
/**
* Send command to cnic driver
*
* @param bp
* @param cmd
*/
int bnx2x_cnic_notify(struct bnx2x *bp, int cmd);
/**
* Provides cnic information for proper interrupt handling
*
* @param bp
*/
void bnx2x_setup_cnic_irq_info(struct bnx2x *bp);
#endif
/**
* Enable HW interrupts.
*
* @param bp
*/
void bnx2x_int_enable(struct bnx2x *bp);
/**
* Disable interrupts. This function ensures that there are no
* ISRs or SP DPCs (sp_task) are running after it returns.
*
* @param bp
* @param disable_hw if true, disable HW interrupts.
*/
void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw);
/**
* Loads device firmware
*
* @param bp
*
* @return int
*/
int bnx2x_init_firmware(struct bnx2x *bp);
/**
* Init HW blocks according to current initialization stage:
* COMMON, PORT or FUNCTION.
*
* @param bp
* @param load_code: COMMON, PORT or FUNCTION
*
* @return int
*/
int bnx2x_init_hw(struct bnx2x *bp, u32 load_code);
/**
* Init driver internals:
* - rings
* - status blocks
* - etc.
*
* @param bp
* @param load_code COMMON, PORT or FUNCTION
*/
void bnx2x_nic_init(struct bnx2x *bp, u32 load_code);
/**
* Allocate driver's memory.
*
* @param bp
*
* @return int
*/
int bnx2x_alloc_mem(struct bnx2x *bp);
/**
* Release driver's memory.
*
* @param bp
*/
void bnx2x_free_mem(struct bnx2x *bp);
/**
* Bring up a leading (the first) eth Client.
*
* @param bp
*
* @return int
*/
int bnx2x_setup_leading(struct bnx2x *bp);
/**
* Setup non-leading eth Client.
*
* @param bp
* @param fp
*
* @return int
*/
int bnx2x_setup_multi(struct bnx2x *bp, int index);
/**
* Set number of quueus according to mode and number of available
* msi-x vectors
*
* @param bp
*
*/
void bnx2x_set_num_queues_msix(struct bnx2x *bp);
/**
* Cleanup chip internals:
* - Cleanup MAC configuration.
* - Close clients.
* - etc.
*
* @param bp
* @param unload_mode
*/
void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode);
/**
* Acquire HW lock.
*
* @param bp
* @param resource Resource bit which was locked
*
* @return int
*/
int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource);
/**
* Release HW lock.
*
* @param bp driver handle
* @param resource Resource bit which was locked
*
* @return int
*/
int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource);
/**
* Configure eth MAC address in the HW according to the value in
* netdev->dev_addr for 57711
*
* @param bp driver handle
* @param set
*/
void bnx2x_set_eth_mac_addr_e1h(struct bnx2x *bp, int set);
/**
* Configure eth MAC address in the HW according to the value in
* netdev->dev_addr for 57710
*
* @param bp driver handle
* @param set
*/
void bnx2x_set_eth_mac_addr_e1(struct bnx2x *bp, int set);
#ifdef BCM_CNIC
/**
* Set iSCSI MAC(s) at the next enties in the CAM after the ETH
* MAC(s). The function will wait until the ramrod completion
* returns.
*
* @param bp driver handle
* @param set set or clear the CAM entry
*
* @return 0 if cussess, -ENODEV if ramrod doesn't return.
*/
int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp, int set);
#endif
/**
* Initialize status block in FW and HW
*
* @param bp driver handle
* @param sb host_status_block
* @param dma_addr_t mapping
* @param int sb_id
*/
void bnx2x_init_sb(struct bnx2x *bp, struct host_status_block *sb,
dma_addr_t mapping, int sb_id);
/**
* Reconfigure FW/HW according to dev->flags rx mode
*
* @param dev net_device
*
*/
void bnx2x_set_rx_mode(struct net_device *dev);
/**
* Configure MAC filtering rules in a FW.
*
* @param bp driver handle
*/
void bnx2x_set_storm_rx_mode(struct bnx2x *bp);
/* Parity errors related */
void bnx2x_inc_load_cnt(struct bnx2x *bp);
u32 bnx2x_dec_load_cnt(struct bnx2x *bp);
bool bnx2x_chk_parity_attn(struct bnx2x *bp);
bool bnx2x_reset_is_done(struct bnx2x *bp);
void bnx2x_disable_close_the_gate(struct bnx2x *bp);
/**
* Perform statistics handling according to event
*
* @param bp driver handle
* @param even tbnx2x_stats_event
*/
void bnx2x_stats_handle(struct bnx2x *bp, enum bnx2x_stats_event event);
/**
* Configures FW with client paramteres (like HW VLAN removal)
* for each active client.
*
* @param bp
*/
void bnx2x_set_client_config(struct bnx2x *bp);
/**
* Handle sp events
*
* @param fp fastpath handle for the event
* @param rr_cqe eth_rx_cqe
*/
void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe);
static inline void bnx2x_update_fpsb_idx(struct bnx2x_fastpath *fp)
{
struct host_status_block *fpsb = fp->status_blk;
barrier(); /* status block is written to by the chip */
fp->fp_c_idx = fpsb->c_status_block.status_block_index;
fp->fp_u_idx = fpsb->u_status_block.status_block_index;
}
static inline void bnx2x_update_rx_prod(struct bnx2x *bp,
struct bnx2x_fastpath *fp,
u16 bd_prod, u16 rx_comp_prod,
u16 rx_sge_prod)
{
struct ustorm_eth_rx_producers rx_prods = {0};
int i;
/* Update producers */
rx_prods.bd_prod = bd_prod;
rx_prods.cqe_prod = rx_comp_prod;
rx_prods.sge_prod = rx_sge_prod;
/*
* Make sure that the BD and SGE data is updated before updating the
* producers since FW might read the BD/SGE right after the producer
* is updated.
* This is only applicable for weak-ordered memory model archs such
* as IA-64. The following barrier is also mandatory since FW will
* assumes BDs must have buffers.
*/
wmb();
for (i = 0; i < sizeof(struct ustorm_eth_rx_producers)/4; i++)
REG_WR(bp, BAR_USTRORM_INTMEM +
USTORM_RX_PRODS_OFFSET(BP_PORT(bp), fp->cl_id) + i*4,
((u32 *)&rx_prods)[i]);
mmiowb(); /* keep prod updates ordered */
DP(NETIF_MSG_RX_STATUS,
"queue[%d]: wrote bd_prod %u cqe_prod %u sge_prod %u\n",
fp->index, bd_prod, rx_comp_prod, rx_sge_prod);
}
static inline void bnx2x_ack_sb(struct bnx2x *bp, u8 sb_id,
u8 storm, u16 index, u8 op, u8 update)
{
u32 hc_addr = (HC_REG_COMMAND_REG + BP_PORT(bp)*32 +
COMMAND_REG_INT_ACK);
struct igu_ack_register igu_ack;
igu_ack.status_block_index = index;
igu_ack.sb_id_and_flags =
((sb_id << IGU_ACK_REGISTER_STATUS_BLOCK_ID_SHIFT) |
(storm << IGU_ACK_REGISTER_STORM_ID_SHIFT) |
(update << IGU_ACK_REGISTER_UPDATE_INDEX_SHIFT) |
(op << IGU_ACK_REGISTER_INTERRUPT_MODE_SHIFT));
DP(BNX2X_MSG_OFF, "write 0x%08x to HC addr 0x%x\n",
(*(u32 *)&igu_ack), hc_addr);
REG_WR(bp, hc_addr, (*(u32 *)&igu_ack));
/* Make sure that ACK is written */
mmiowb();
barrier();
}
static inline u16 bnx2x_ack_int(struct bnx2x *bp)
{
u32 hc_addr = (HC_REG_COMMAND_REG + BP_PORT(bp)*32 +
COMMAND_REG_SIMD_MASK);
u32 result = REG_RD(bp, hc_addr);
DP(BNX2X_MSG_OFF, "read 0x%08x from HC addr 0x%x\n",
result, hc_addr);
return result;
}
/*
* fast path service functions
*/
static inline int bnx2x_has_tx_work_unload(struct bnx2x_fastpath *fp)
{
/* Tell compiler that consumer and producer can change */
barrier();
return (fp->tx_pkt_prod != fp->tx_pkt_cons);
}
static inline u16 bnx2x_tx_avail(struct bnx2x_fastpath *fp)
{
s16 used;
u16 prod;
u16 cons;
prod = fp->tx_bd_prod;
cons = fp->tx_bd_cons;
/* NUM_TX_RINGS = number of "next-page" entries
It will be used as a threshold */
used = SUB_S16(prod, cons) + (s16)NUM_TX_RINGS;
#ifdef BNX2X_STOP_ON_ERROR
WARN_ON(used < 0);
WARN_ON(used > fp->bp->tx_ring_size);
WARN_ON((fp->bp->tx_ring_size - used) > MAX_TX_AVAIL);
#endif
return (s16)(fp->bp->tx_ring_size) - used;
}
static inline int bnx2x_has_tx_work(struct bnx2x_fastpath *fp)
{
u16 hw_cons;
/* Tell compiler that status block fields can change */
barrier();
hw_cons = le16_to_cpu(*fp->tx_cons_sb);
return hw_cons != fp->tx_pkt_cons;
}
static inline void bnx2x_free_rx_sge(struct bnx2x *bp,
struct bnx2x_fastpath *fp, u16 index)
{
struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
struct page *page = sw_buf->page;
struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
/* Skip "next page" elements */
if (!page)
return;
dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(sw_buf, mapping),
SGE_PAGE_SIZE*PAGES_PER_SGE, PCI_DMA_FROMDEVICE);
__free_pages(page, PAGES_PER_SGE_SHIFT);
sw_buf->page = NULL;
sge->addr_hi = 0;
sge->addr_lo = 0;
}
static inline void bnx2x_free_rx_sge_range(struct bnx2x *bp,
struct bnx2x_fastpath *fp, int last)
{
int i;
for (i = 0; i < last; i++)
bnx2x_free_rx_sge(bp, fp, i);
}
static inline int bnx2x_alloc_rx_sge(struct bnx2x *bp,
struct bnx2x_fastpath *fp, u16 index)
{
struct page *page = alloc_pages(GFP_ATOMIC, PAGES_PER_SGE_SHIFT);
struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
dma_addr_t mapping;
if (unlikely(page == NULL))
return -ENOMEM;
mapping = dma_map_page(&bp->pdev->dev, page, 0,
SGE_PAGE_SIZE*PAGES_PER_SGE, DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
__free_pages(page, PAGES_PER_SGE_SHIFT);
return -ENOMEM;
}
sw_buf->page = page;
dma_unmap_addr_set(sw_buf, mapping, mapping);
sge->addr_hi = cpu_to_le32(U64_HI(mapping));
sge->addr_lo = cpu_to_le32(U64_LO(mapping));
return 0;
}
static inline int bnx2x_alloc_rx_skb(struct bnx2x *bp,
struct bnx2x_fastpath *fp, u16 index)
{
struct sk_buff *skb;
struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index];
struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index];
dma_addr_t mapping;
skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size);
if (unlikely(skb == NULL))
return -ENOMEM;
mapping = dma_map_single(&bp->pdev->dev, skb->data, bp->rx_buf_size,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
dev_kfree_skb(skb);
return -ENOMEM;
}
rx_buf->skb = skb;
dma_unmap_addr_set(rx_buf, mapping, mapping);
rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
return 0;
}
/* note that we are not allocating a new skb,
* we are just moving one from cons to prod
* we are not creating a new mapping,
* so there is no need to check for dma_mapping_error().
*/
static inline void bnx2x_reuse_rx_skb(struct bnx2x_fastpath *fp,
struct sk_buff *skb, u16 cons, u16 prod)
{
struct bnx2x *bp = fp->bp;
struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons];
struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod];
struct eth_rx_bd *cons_bd = &fp->rx_desc_ring[cons];
struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod];
dma_sync_single_for_device(&bp->pdev->dev,
dma_unmap_addr(cons_rx_buf, mapping),
RX_COPY_THRESH, DMA_FROM_DEVICE);
prod_rx_buf->skb = cons_rx_buf->skb;
dma_unmap_addr_set(prod_rx_buf, mapping,
dma_unmap_addr(cons_rx_buf, mapping));
*prod_bd = *cons_bd;
}
static inline void bnx2x_clear_sge_mask_next_elems(struct bnx2x_fastpath *fp)
{
int i, j;
for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
int idx = RX_SGE_CNT * i - 1;
for (j = 0; j < 2; j++) {
SGE_MASK_CLEAR_BIT(fp, idx);
idx--;
}
}
}
static inline void bnx2x_init_sge_ring_bit_mask(struct bnx2x_fastpath *fp)
{
/* Set the mask to all 1-s: it's faster to compare to 0 than to 0xf-s */
memset(fp->sge_mask, 0xff,
(NUM_RX_SGE >> RX_SGE_MASK_ELEM_SHIFT)*sizeof(u64));
/* Clear the two last indices in the page to 1:
these are the indices that correspond to the "next" element,
hence will never be indicated and should be removed from
the calculations. */
bnx2x_clear_sge_mask_next_elems(fp);
}
static inline void bnx2x_free_tpa_pool(struct bnx2x *bp,
struct bnx2x_fastpath *fp, int last)
{
int i;
for (i = 0; i < last; i++) {
struct sw_rx_bd *rx_buf = &(fp->tpa_pool[i]);
struct sk_buff *skb = rx_buf->skb;
if (skb == NULL) {
DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i);
continue;
}
if (fp->tpa_state[i] == BNX2X_TPA_START)
dma_unmap_single(&bp->pdev->dev,
dma_unmap_addr(rx_buf, mapping),
bp->rx_buf_size, DMA_FROM_DEVICE);
dev_kfree_skb(skb);
rx_buf->skb = NULL;
}
}
static inline void bnx2x_init_tx_ring(struct bnx2x *bp)
{
int i, j;
for_each_queue(bp, j) {
struct bnx2x_fastpath *fp = &bp->fp[j];
for (i = 1; i <= NUM_TX_RINGS; i++) {
struct eth_tx_next_bd *tx_next_bd =
&fp->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
tx_next_bd->addr_hi =
cpu_to_le32(U64_HI(fp->tx_desc_mapping +
BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
tx_next_bd->addr_lo =
cpu_to_le32(U64_LO(fp->tx_desc_mapping +
BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
}
fp->tx_db.data.header.header = DOORBELL_HDR_DB_TYPE;
fp->tx_db.data.zero_fill1 = 0;
fp->tx_db.data.prod = 0;
fp->tx_pkt_prod = 0;
fp->tx_pkt_cons = 0;
fp->tx_bd_prod = 0;
fp->tx_bd_cons = 0;
fp->tx_cons_sb = BNX2X_TX_SB_INDEX;
fp->tx_pkt = 0;
}
}
static inline int bnx2x_has_rx_work(struct bnx2x_fastpath *fp)
{
u16 rx_cons_sb;
/* Tell compiler that status block fields can change */
barrier();
rx_cons_sb = le16_to_cpu(*fp->rx_cons_sb);
if ((rx_cons_sb & MAX_RCQ_DESC_CNT) == MAX_RCQ_DESC_CNT)
rx_cons_sb++;
return (fp->rx_comp_cons != rx_cons_sb);
}
/* HW Lock for shared dual port PHYs */
void bnx2x_acquire_phy_lock(struct bnx2x *bp);
void bnx2x_release_phy_lock(struct bnx2x *bp);
void bnx2x_link_report(struct bnx2x *bp);
int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget);
int bnx2x_tx_int(struct bnx2x_fastpath *fp);
void bnx2x_init_rx_rings(struct bnx2x *bp);
netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev);
int bnx2x_change_mac_addr(struct net_device *dev, void *p);
void bnx2x_tx_timeout(struct net_device *dev);
void bnx2x_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp);
void bnx2x_netif_start(struct bnx2x *bp);
void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw);
void bnx2x_free_irq(struct bnx2x *bp, bool disable_only);
int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state);
int bnx2x_resume(struct pci_dev *pdev);
void bnx2x_free_skbs(struct bnx2x *bp);
int bnx2x_change_mtu(struct net_device *dev, int new_mtu);
int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode);
int bnx2x_nic_load(struct bnx2x *bp, int load_mode);
int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state);
#endif /* BNX2X_CMN_H */