1
linux/arch/sparc64/kernel/kprobes.c
Ananth N Mavinakayanahalli 66ff2d0691 [PATCH] Kprobes: rearrange preempt_disable/enable() calls
The following set of patches are aimed at improving kprobes scalability.  We
currently serialize kprobe registration, unregistration and handler execution
using a single spinlock - kprobe_lock.

With these changes, kprobe handlers can run without any locks held.  It also
allows for simultaneous kprobe handler executions on different processors as
we now track kprobe execution on a per processor basis.  It is now necessary
that the handlers be re-entrant since handlers can run concurrently on
multiple processors.

All changes have been tested on i386, ia64, ppc64 and x86_64, while sparc64
has been compile tested only.

The patches can be viewed as 3 logical chunks:

patch 1: 	Reorder preempt_(dis/en)able calls
patches 2-7: 	Introduce per_cpu data areas to track kprobe execution
patches 8-9: 	Use RCU to synchronize kprobe (un)registration and handler
		execution.

Thanks to Maneesh Soni, James Keniston and Anil Keshavamurthy for their
review and suggestions. Thanks again to Anil, Hien Nguyen and Kevin Stafford
for testing the patches.

This patch:

Reorder preempt_disable/enable() calls in arch kprobes files in preparation to
introduce locking changes.  No functional changes introduced by this patch.

Signed-off-by: Ananth N Mavinakayahanalli <ananth@in.ibm.com>
Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-11-07 07:53:45 -08:00

446 lines
12 KiB
C

/* arch/sparc64/kernel/kprobes.c
*
* Copyright (C) 2004 David S. Miller <davem@davemloft.net>
*/
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/kprobes.h>
#include <asm/kdebug.h>
#include <asm/signal.h>
#include <asm/cacheflush.h>
/* We do not have hardware single-stepping on sparc64.
* So we implement software single-stepping with breakpoint
* traps. The top-level scheme is similar to that used
* in the x86 kprobes implementation.
*
* In the kprobe->ainsn.insn[] array we store the original
* instruction at index zero and a break instruction at
* index one.
*
* When we hit a kprobe we:
* - Run the pre-handler
* - Remember "regs->tnpc" and interrupt level stored in
* "regs->tstate" so we can restore them later
* - Disable PIL interrupts
* - Set regs->tpc to point to kprobe->ainsn.insn[0]
* - Set regs->tnpc to point to kprobe->ainsn.insn[1]
* - Mark that we are actively in a kprobe
*
* At this point we wait for the second breakpoint at
* kprobe->ainsn.insn[1] to hit. When it does we:
* - Run the post-handler
* - Set regs->tpc to "remembered" regs->tnpc stored above,
* restore the PIL interrupt level in "regs->tstate" as well
* - Make any adjustments necessary to regs->tnpc in order
* to handle relative branches correctly. See below.
* - Mark that we are no longer actively in a kprobe.
*/
int __kprobes arch_prepare_kprobe(struct kprobe *p)
{
return 0;
}
void __kprobes arch_copy_kprobe(struct kprobe *p)
{
p->ainsn.insn[0] = *p->addr;
p->ainsn.insn[1] = BREAKPOINT_INSTRUCTION_2;
p->opcode = *p->addr;
}
void __kprobes arch_arm_kprobe(struct kprobe *p)
{
*p->addr = BREAKPOINT_INSTRUCTION;
flushi(p->addr);
}
void __kprobes arch_disarm_kprobe(struct kprobe *p)
{
*p->addr = p->opcode;
flushi(p->addr);
}
void __kprobes arch_remove_kprobe(struct kprobe *p)
{
}
static struct kprobe *current_kprobe;
static unsigned long current_kprobe_orig_tnpc;
static unsigned long current_kprobe_orig_tstate_pil;
static unsigned int kprobe_status;
static struct kprobe *kprobe_prev;
static unsigned long kprobe_orig_tnpc_prev;
static unsigned long kprobe_orig_tstate_pil_prev;
static unsigned int kprobe_status_prev;
static inline void save_previous_kprobe(void)
{
kprobe_status_prev = kprobe_status;
kprobe_orig_tnpc_prev = current_kprobe_orig_tnpc;
kprobe_orig_tstate_pil_prev = current_kprobe_orig_tstate_pil;
kprobe_prev = current_kprobe;
}
static inline void restore_previous_kprobe(void)
{
kprobe_status = kprobe_status_prev;
current_kprobe_orig_tnpc = kprobe_orig_tnpc_prev;
current_kprobe_orig_tstate_pil = kprobe_orig_tstate_pil_prev;
current_kprobe = kprobe_prev;
}
static inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs)
{
current_kprobe_orig_tnpc = regs->tnpc;
current_kprobe_orig_tstate_pil = (regs->tstate & TSTATE_PIL);
current_kprobe = p;
}
static inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
{
regs->tstate |= TSTATE_PIL;
/*single step inline, if it a breakpoint instruction*/
if (p->opcode == BREAKPOINT_INSTRUCTION) {
regs->tpc = (unsigned long) p->addr;
regs->tnpc = current_kprobe_orig_tnpc;
} else {
regs->tpc = (unsigned long) &p->ainsn.insn[0];
regs->tnpc = (unsigned long) &p->ainsn.insn[1];
}
}
static int __kprobes kprobe_handler(struct pt_regs *regs)
{
struct kprobe *p;
void *addr = (void *) regs->tpc;
int ret = 0;
if (kprobe_running()) {
/* We *are* holding lock here, so this is safe.
* Disarm the probe we just hit, and ignore it.
*/
p = get_kprobe(addr);
if (p) {
if (kprobe_status == KPROBE_HIT_SS) {
regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
current_kprobe_orig_tstate_pil);
unlock_kprobes();
goto no_kprobe;
}
/* We have reentered the kprobe_handler(), since
* another probe was hit while within the handler.
* We here save the original kprobes variables and
* just single step on the instruction of the new probe
* without calling any user handlers.
*/
save_previous_kprobe();
set_current_kprobe(p, regs);
p->nmissed++;
kprobe_status = KPROBE_REENTER;
prepare_singlestep(p, regs);
return 1;
} else {
p = current_kprobe;
if (p->break_handler && p->break_handler(p, regs))
goto ss_probe;
}
/* If it's not ours, can't be delete race, (we hold lock). */
goto no_kprobe;
}
lock_kprobes();
p = get_kprobe(addr);
if (!p) {
unlock_kprobes();
if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
/*
* The breakpoint instruction was removed right
* after we hit it. Another cpu has removed
* either a probepoint or a debugger breakpoint
* at this address. In either case, no further
* handling of this interrupt is appropriate.
*/
ret = 1;
}
/* Not one of ours: let kernel handle it */
goto no_kprobe;
}
/*
* This preempt_disable() matches the preempt_enable_no_resched()
* in post_kprobes_handler()
*/
preempt_disable();
set_current_kprobe(p, regs);
kprobe_status = KPROBE_HIT_ACTIVE;
if (p->pre_handler && p->pre_handler(p, regs))
return 1;
ss_probe:
prepare_singlestep(p, regs);
kprobe_status = KPROBE_HIT_SS;
return 1;
no_kprobe:
return ret;
}
/* If INSN is a relative control transfer instruction,
* return the corrected branch destination value.
*
* The original INSN location was REAL_PC, it actually
* executed at PC and produced destination address NPC.
*/
static unsigned long __kprobes relbranch_fixup(u32 insn, unsigned long real_pc,
unsigned long pc,
unsigned long npc)
{
/* Branch not taken, no mods necessary. */
if (npc == pc + 0x4UL)
return real_pc + 0x4UL;
/* The three cases are call, branch w/prediction,
* and traditional branch.
*/
if ((insn & 0xc0000000) == 0x40000000 ||
(insn & 0xc1c00000) == 0x00400000 ||
(insn & 0xc1c00000) == 0x00800000) {
/* The instruction did all the work for us
* already, just apply the offset to the correct
* instruction location.
*/
return (real_pc + (npc - pc));
}
return real_pc + 0x4UL;
}
/* If INSN is an instruction which writes it's PC location
* into a destination register, fix that up.
*/
static void __kprobes retpc_fixup(struct pt_regs *regs, u32 insn,
unsigned long real_pc)
{
unsigned long *slot = NULL;
/* Simplest cast is call, which always uses %o7 */
if ((insn & 0xc0000000) == 0x40000000) {
slot = &regs->u_regs[UREG_I7];
}
/* Jmpl encodes the register inside of the opcode */
if ((insn & 0xc1f80000) == 0x81c00000) {
unsigned long rd = ((insn >> 25) & 0x1f);
if (rd <= 15) {
slot = &regs->u_regs[rd];
} else {
/* Hard case, it goes onto the stack. */
flushw_all();
rd -= 16;
slot = (unsigned long *)
(regs->u_regs[UREG_FP] + STACK_BIAS);
slot += rd;
}
}
if (slot != NULL)
*slot = real_pc;
}
/*
* Called after single-stepping. p->addr is the address of the
* instruction whose first byte has been replaced by the breakpoint
* instruction. To avoid the SMP problems that can occur when we
* temporarily put back the original opcode to single-step, we
* single-stepped a copy of the instruction. The address of this
* copy is p->ainsn.insn.
*
* This function prepares to return from the post-single-step
* breakpoint trap.
*/
static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
{
u32 insn = p->ainsn.insn[0];
regs->tpc = current_kprobe_orig_tnpc;
regs->tnpc = relbranch_fixup(insn,
(unsigned long) p->addr,
(unsigned long) &p->ainsn.insn[0],
regs->tnpc);
retpc_fixup(regs, insn, (unsigned long) p->addr);
regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
current_kprobe_orig_tstate_pil);
}
static inline int post_kprobe_handler(struct pt_regs *regs)
{
if (!kprobe_running())
return 0;
if ((kprobe_status != KPROBE_REENTER) && current_kprobe->post_handler) {
kprobe_status = KPROBE_HIT_SSDONE;
current_kprobe->post_handler(current_kprobe, regs, 0);
}
resume_execution(current_kprobe, regs);
/*Restore back the original saved kprobes variables and continue. */
if (kprobe_status == KPROBE_REENTER) {
restore_previous_kprobe();
goto out;
}
unlock_kprobes();
out:
preempt_enable_no_resched();
return 1;
}
/* Interrupts disabled, kprobe_lock held. */
static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
{
if (current_kprobe->fault_handler
&& current_kprobe->fault_handler(current_kprobe, regs, trapnr))
return 1;
if (kprobe_status & KPROBE_HIT_SS) {
resume_execution(current_kprobe, regs);
unlock_kprobes();
preempt_enable_no_resched();
}
return 0;
}
/*
* Wrapper routine to for handling exceptions.
*/
int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
unsigned long val, void *data)
{
struct die_args *args = (struct die_args *)data;
int ret = NOTIFY_DONE;
preempt_disable();
switch (val) {
case DIE_DEBUG:
if (kprobe_handler(args->regs))
ret = NOTIFY_STOP;
break;
case DIE_DEBUG_2:
if (post_kprobe_handler(args->regs))
ret = NOTIFY_STOP;
break;
case DIE_GPF:
case DIE_PAGE_FAULT:
if (kprobe_running() &&
kprobe_fault_handler(args->regs, args->trapnr))
ret = NOTIFY_STOP;
break;
default:
break;
}
preempt_enable();
return ret;
}
asmlinkage void __kprobes kprobe_trap(unsigned long trap_level,
struct pt_regs *regs)
{
BUG_ON(trap_level != 0x170 && trap_level != 0x171);
if (user_mode(regs)) {
local_irq_enable();
bad_trap(regs, trap_level);
return;
}
/* trap_level == 0x170 --> ta 0x70
* trap_level == 0x171 --> ta 0x71
*/
if (notify_die((trap_level == 0x170) ? DIE_DEBUG : DIE_DEBUG_2,
(trap_level == 0x170) ? "debug" : "debug_2",
regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP)
bad_trap(regs, trap_level);
}
/* Jprobes support. */
static struct pt_regs jprobe_saved_regs;
static struct pt_regs *jprobe_saved_regs_location;
static struct sparc_stackf jprobe_saved_stack;
int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
{
struct jprobe *jp = container_of(p, struct jprobe, kp);
jprobe_saved_regs_location = regs;
memcpy(&jprobe_saved_regs, regs, sizeof(*regs));
/* Save a whole stack frame, this gets arguments
* pushed onto the stack after using up all the
* arg registers.
*/
memcpy(&jprobe_saved_stack,
(char *) (regs->u_regs[UREG_FP] + STACK_BIAS),
sizeof(jprobe_saved_stack));
regs->tpc = (unsigned long) jp->entry;
regs->tnpc = ((unsigned long) jp->entry) + 0x4UL;
regs->tstate |= TSTATE_PIL;
return 1;
}
void __kprobes jprobe_return(void)
{
__asm__ __volatile__(
".globl jprobe_return_trap_instruction\n"
"jprobe_return_trap_instruction:\n\t"
"ta 0x70");
}
extern void jprobe_return_trap_instruction(void);
extern void __show_regs(struct pt_regs * regs);
int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
{
u32 *addr = (u32 *) regs->tpc;
if (addr == (u32 *) jprobe_return_trap_instruction) {
if (jprobe_saved_regs_location != regs) {
printk("JPROBE: Current regs (%p) does not match "
"saved regs (%p).\n",
regs, jprobe_saved_regs_location);
printk("JPROBE: Saved registers\n");
__show_regs(jprobe_saved_regs_location);
printk("JPROBE: Current registers\n");
__show_regs(regs);
BUG();
}
/* Restore old register state. Do pt_regs
* first so that UREG_FP is the original one for
* the stack frame restore.
*/
memcpy(regs, &jprobe_saved_regs, sizeof(*regs));
memcpy((char *) (regs->u_regs[UREG_FP] + STACK_BIAS),
&jprobe_saved_stack,
sizeof(jprobe_saved_stack));
return 1;
}
return 0;
}
/* architecture specific initialization */
int arch_init_kprobes(void)
{
return 0;
}