1
linux/drivers/base/firmware_class.c
Markus Rechberger 109f0e93b6 Fix Firmware class name collision
following patch fixes the i2c name collision with i2c-dev.

http://mcentral.de/wiki/index.php/Bugtracker#i2c_core_problem

This issue has been experienced with em28xx and saa7133 based devices.
I discussed that problem with Jean Delvare a while ago and he proposed 
to add a prefix to the class name.

Signed-off-by: Markus Rechberger <markus.rechberger@amd.com>
Acked-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2007-10-12 14:51:06 -07:00

596 lines
14 KiB
C

/*
* firmware_class.c - Multi purpose firmware loading support
*
* Copyright (c) 2003 Manuel Estrada Sainz
*
* Please see Documentation/firmware_class/ for more information.
*
*/
#include <linux/capability.h>
#include <linux/device.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/timer.h>
#include <linux/vmalloc.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/mutex.h>
#include <linux/kthread.h>
#include <linux/firmware.h>
#include "base.h"
#define to_dev(obj) container_of(obj, struct device, kobj)
MODULE_AUTHOR("Manuel Estrada Sainz");
MODULE_DESCRIPTION("Multi purpose firmware loading support");
MODULE_LICENSE("GPL");
enum {
FW_STATUS_LOADING,
FW_STATUS_DONE,
FW_STATUS_ABORT,
};
static int loading_timeout = 60; /* In seconds */
/* fw_lock could be moved to 'struct firmware_priv' but since it is just
* guarding for corner cases a global lock should be OK */
static DEFINE_MUTEX(fw_lock);
struct firmware_priv {
char fw_id[FIRMWARE_NAME_MAX];
struct completion completion;
struct bin_attribute attr_data;
struct firmware *fw;
unsigned long status;
int alloc_size;
struct timer_list timeout;
};
static void
fw_load_abort(struct firmware_priv *fw_priv)
{
set_bit(FW_STATUS_ABORT, &fw_priv->status);
wmb();
complete(&fw_priv->completion);
}
static ssize_t
firmware_timeout_show(struct class *class, char *buf)
{
return sprintf(buf, "%d\n", loading_timeout);
}
/**
* firmware_timeout_store - set number of seconds to wait for firmware
* @class: device class pointer
* @buf: buffer to scan for timeout value
* @count: number of bytes in @buf
*
* Sets the number of seconds to wait for the firmware. Once
* this expires an error will be returned to the driver and no
* firmware will be provided.
*
* Note: zero means 'wait forever'.
**/
static ssize_t
firmware_timeout_store(struct class *class, const char *buf, size_t count)
{
loading_timeout = simple_strtol(buf, NULL, 10);
if (loading_timeout < 0)
loading_timeout = 0;
return count;
}
static CLASS_ATTR(timeout, 0644, firmware_timeout_show, firmware_timeout_store);
static void fw_dev_release(struct device *dev);
static int firmware_uevent(struct device *dev, struct kobj_uevent_env *env)
{
struct firmware_priv *fw_priv = dev_get_drvdata(dev);
if (add_uevent_var(env, "FIRMWARE=%s", fw_priv->fw_id))
return -ENOMEM;
if (add_uevent_var(env, "TIMEOUT=%i", loading_timeout))
return -ENOMEM;
return 0;
}
static struct class firmware_class = {
.name = "firmware",
.dev_uevent = firmware_uevent,
.dev_release = fw_dev_release,
};
static ssize_t firmware_loading_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct firmware_priv *fw_priv = dev_get_drvdata(dev);
int loading = test_bit(FW_STATUS_LOADING, &fw_priv->status);
return sprintf(buf, "%d\n", loading);
}
/**
* firmware_loading_store - set value in the 'loading' control file
* @dev: device pointer
* @attr: device attribute pointer
* @buf: buffer to scan for loading control value
* @count: number of bytes in @buf
*
* The relevant values are:
*
* 1: Start a load, discarding any previous partial load.
* 0: Conclude the load and hand the data to the driver code.
* -1: Conclude the load with an error and discard any written data.
**/
static ssize_t firmware_loading_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct firmware_priv *fw_priv = dev_get_drvdata(dev);
int loading = simple_strtol(buf, NULL, 10);
switch (loading) {
case 1:
mutex_lock(&fw_lock);
if (!fw_priv->fw) {
mutex_unlock(&fw_lock);
break;
}
vfree(fw_priv->fw->data);
fw_priv->fw->data = NULL;
fw_priv->fw->size = 0;
fw_priv->alloc_size = 0;
set_bit(FW_STATUS_LOADING, &fw_priv->status);
mutex_unlock(&fw_lock);
break;
case 0:
if (test_bit(FW_STATUS_LOADING, &fw_priv->status)) {
complete(&fw_priv->completion);
clear_bit(FW_STATUS_LOADING, &fw_priv->status);
break;
}
/* fallthrough */
default:
printk(KERN_ERR "%s: unexpected value (%d)\n", __FUNCTION__,
loading);
/* fallthrough */
case -1:
fw_load_abort(fw_priv);
break;
}
return count;
}
static DEVICE_ATTR(loading, 0644, firmware_loading_show, firmware_loading_store);
static ssize_t
firmware_data_read(struct kobject *kobj, struct bin_attribute *bin_attr,
char *buffer, loff_t offset, size_t count)
{
struct device *dev = to_dev(kobj);
struct firmware_priv *fw_priv = dev_get_drvdata(dev);
struct firmware *fw;
ssize_t ret_count = count;
mutex_lock(&fw_lock);
fw = fw_priv->fw;
if (!fw || test_bit(FW_STATUS_DONE, &fw_priv->status)) {
ret_count = -ENODEV;
goto out;
}
if (offset > fw->size) {
ret_count = 0;
goto out;
}
if (offset + ret_count > fw->size)
ret_count = fw->size - offset;
memcpy(buffer, fw->data + offset, ret_count);
out:
mutex_unlock(&fw_lock);
return ret_count;
}
static int
fw_realloc_buffer(struct firmware_priv *fw_priv, int min_size)
{
u8 *new_data;
int new_size = fw_priv->alloc_size;
if (min_size <= fw_priv->alloc_size)
return 0;
new_size = ALIGN(min_size, PAGE_SIZE);
new_data = vmalloc(new_size);
if (!new_data) {
printk(KERN_ERR "%s: unable to alloc buffer\n", __FUNCTION__);
/* Make sure that we don't keep incomplete data */
fw_load_abort(fw_priv);
return -ENOMEM;
}
fw_priv->alloc_size = new_size;
if (fw_priv->fw->data) {
memcpy(new_data, fw_priv->fw->data, fw_priv->fw->size);
vfree(fw_priv->fw->data);
}
fw_priv->fw->data = new_data;
BUG_ON(min_size > fw_priv->alloc_size);
return 0;
}
/**
* firmware_data_write - write method for firmware
* @kobj: kobject for the device
* @bin_attr: bin_attr structure
* @buffer: buffer being written
* @offset: buffer offset for write in total data store area
* @count: buffer size
*
* Data written to the 'data' attribute will be later handed to
* the driver as a firmware image.
**/
static ssize_t
firmware_data_write(struct kobject *kobj, struct bin_attribute *bin_attr,
char *buffer, loff_t offset, size_t count)
{
struct device *dev = to_dev(kobj);
struct firmware_priv *fw_priv = dev_get_drvdata(dev);
struct firmware *fw;
ssize_t retval;
if (!capable(CAP_SYS_RAWIO))
return -EPERM;
mutex_lock(&fw_lock);
fw = fw_priv->fw;
if (!fw || test_bit(FW_STATUS_DONE, &fw_priv->status)) {
retval = -ENODEV;
goto out;
}
retval = fw_realloc_buffer(fw_priv, offset + count);
if (retval)
goto out;
memcpy(fw->data + offset, buffer, count);
fw->size = max_t(size_t, offset + count, fw->size);
retval = count;
out:
mutex_unlock(&fw_lock);
return retval;
}
static struct bin_attribute firmware_attr_data_tmpl = {
.attr = {.name = "data", .mode = 0644},
.size = 0,
.read = firmware_data_read,
.write = firmware_data_write,
};
static void fw_dev_release(struct device *dev)
{
struct firmware_priv *fw_priv = dev_get_drvdata(dev);
kfree(fw_priv);
kfree(dev);
module_put(THIS_MODULE);
}
static void
firmware_class_timeout(u_long data)
{
struct firmware_priv *fw_priv = (struct firmware_priv *) data;
fw_load_abort(fw_priv);
}
static inline void fw_setup_device_id(struct device *f_dev, struct device *dev)
{
snprintf(f_dev->bus_id, BUS_ID_SIZE, "firmware-%s", dev->bus_id);
}
static int fw_register_device(struct device **dev_p, const char *fw_name,
struct device *device)
{
int retval;
struct firmware_priv *fw_priv = kzalloc(sizeof(*fw_priv),
GFP_KERNEL);
struct device *f_dev = kzalloc(sizeof(*f_dev), GFP_KERNEL);
*dev_p = NULL;
if (!fw_priv || !f_dev) {
printk(KERN_ERR "%s: kmalloc failed\n", __FUNCTION__);
retval = -ENOMEM;
goto error_kfree;
}
init_completion(&fw_priv->completion);
fw_priv->attr_data = firmware_attr_data_tmpl;
strlcpy(fw_priv->fw_id, fw_name, FIRMWARE_NAME_MAX);
fw_priv->timeout.function = firmware_class_timeout;
fw_priv->timeout.data = (u_long) fw_priv;
init_timer(&fw_priv->timeout);
fw_setup_device_id(f_dev, device);
f_dev->parent = device;
f_dev->class = &firmware_class;
dev_set_drvdata(f_dev, fw_priv);
f_dev->uevent_suppress = 1;
retval = device_register(f_dev);
if (retval) {
printk(KERN_ERR "%s: device_register failed\n",
__FUNCTION__);
goto error_kfree;
}
*dev_p = f_dev;
return 0;
error_kfree:
kfree(fw_priv);
kfree(f_dev);
return retval;
}
static int fw_setup_device(struct firmware *fw, struct device **dev_p,
const char *fw_name, struct device *device,
int uevent)
{
struct device *f_dev;
struct firmware_priv *fw_priv;
int retval;
*dev_p = NULL;
retval = fw_register_device(&f_dev, fw_name, device);
if (retval)
goto out;
/* Need to pin this module until class device is destroyed */
__module_get(THIS_MODULE);
fw_priv = dev_get_drvdata(f_dev);
fw_priv->fw = fw;
retval = sysfs_create_bin_file(&f_dev->kobj, &fw_priv->attr_data);
if (retval) {
printk(KERN_ERR "%s: sysfs_create_bin_file failed\n",
__FUNCTION__);
goto error_unreg;
}
retval = device_create_file(f_dev, &dev_attr_loading);
if (retval) {
printk(KERN_ERR "%s: device_create_file failed\n",
__FUNCTION__);
goto error_unreg;
}
if (uevent)
f_dev->uevent_suppress = 0;
*dev_p = f_dev;
goto out;
error_unreg:
device_unregister(f_dev);
out:
return retval;
}
static int
_request_firmware(const struct firmware **firmware_p, const char *name,
struct device *device, int uevent)
{
struct device *f_dev;
struct firmware_priv *fw_priv;
struct firmware *firmware;
int retval;
if (!firmware_p)
return -EINVAL;
*firmware_p = firmware = kzalloc(sizeof(*firmware), GFP_KERNEL);
if (!firmware) {
printk(KERN_ERR "%s: kmalloc(struct firmware) failed\n",
__FUNCTION__);
retval = -ENOMEM;
goto out;
}
retval = fw_setup_device(firmware, &f_dev, name, device, uevent);
if (retval)
goto error_kfree_fw;
fw_priv = dev_get_drvdata(f_dev);
if (uevent) {
if (loading_timeout > 0) {
fw_priv->timeout.expires = jiffies + loading_timeout * HZ;
add_timer(&fw_priv->timeout);
}
kobject_uevent(&f_dev->kobj, KOBJ_ADD);
wait_for_completion(&fw_priv->completion);
set_bit(FW_STATUS_DONE, &fw_priv->status);
del_timer_sync(&fw_priv->timeout);
} else
wait_for_completion(&fw_priv->completion);
mutex_lock(&fw_lock);
if (!fw_priv->fw->size || test_bit(FW_STATUS_ABORT, &fw_priv->status)) {
retval = -ENOENT;
release_firmware(fw_priv->fw);
*firmware_p = NULL;
}
fw_priv->fw = NULL;
mutex_unlock(&fw_lock);
device_unregister(f_dev);
goto out;
error_kfree_fw:
kfree(firmware);
*firmware_p = NULL;
out:
return retval;
}
/**
* request_firmware: - send firmware request and wait for it
* @firmware_p: pointer to firmware image
* @name: name of firmware file
* @device: device for which firmware is being loaded
*
* @firmware_p will be used to return a firmware image by the name
* of @name for device @device.
*
* Should be called from user context where sleeping is allowed.
*
* @name will be used as $FIRMWARE in the uevent environment and
* should be distinctive enough not to be confused with any other
* firmware image for this or any other device.
**/
int
request_firmware(const struct firmware **firmware_p, const char *name,
struct device *device)
{
int uevent = 1;
return _request_firmware(firmware_p, name, device, uevent);
}
/**
* release_firmware: - release the resource associated with a firmware image
* @fw: firmware resource to release
**/
void
release_firmware(const struct firmware *fw)
{
if (fw) {
vfree(fw->data);
kfree(fw);
}
}
/* Async support */
struct firmware_work {
struct work_struct work;
struct module *module;
const char *name;
struct device *device;
void *context;
void (*cont)(const struct firmware *fw, void *context);
int uevent;
};
static int
request_firmware_work_func(void *arg)
{
struct firmware_work *fw_work = arg;
const struct firmware *fw;
int ret;
if (!arg) {
WARN_ON(1);
return 0;
}
ret = _request_firmware(&fw, fw_work->name, fw_work->device,
fw_work->uevent);
if (ret < 0)
fw_work->cont(NULL, fw_work->context);
else {
fw_work->cont(fw, fw_work->context);
release_firmware(fw);
}
module_put(fw_work->module);
kfree(fw_work);
return ret;
}
/**
* request_firmware_nowait: asynchronous version of request_firmware
* @module: module requesting the firmware
* @uevent: sends uevent to copy the firmware image if this flag
* is non-zero else the firmware copy must be done manually.
* @name: name of firmware file
* @device: device for which firmware is being loaded
* @context: will be passed over to @cont, and
* @fw may be %NULL if firmware request fails.
* @cont: function will be called asynchronously when the firmware
* request is over.
*
* Asynchronous variant of request_firmware() for contexts where
* it is not possible to sleep.
**/
int
request_firmware_nowait(
struct module *module, int uevent,
const char *name, struct device *device, void *context,
void (*cont)(const struct firmware *fw, void *context))
{
struct task_struct *task;
struct firmware_work *fw_work = kmalloc(sizeof (struct firmware_work),
GFP_ATOMIC);
if (!fw_work)
return -ENOMEM;
if (!try_module_get(module)) {
kfree(fw_work);
return -EFAULT;
}
*fw_work = (struct firmware_work) {
.module = module,
.name = name,
.device = device,
.context = context,
.cont = cont,
.uevent = uevent,
};
task = kthread_run(request_firmware_work_func, fw_work,
"firmware/%s", name);
if (IS_ERR(task)) {
fw_work->cont(NULL, fw_work->context);
module_put(fw_work->module);
kfree(fw_work);
return PTR_ERR(task);
}
return 0;
}
static int __init
firmware_class_init(void)
{
int error;
error = class_register(&firmware_class);
if (error) {
printk(KERN_ERR "%s: class_register failed\n", __FUNCTION__);
return error;
}
error = class_create_file(&firmware_class, &class_attr_timeout);
if (error) {
printk(KERN_ERR "%s: class_create_file failed\n",
__FUNCTION__);
class_unregister(&firmware_class);
}
return error;
}
static void __exit
firmware_class_exit(void)
{
class_unregister(&firmware_class);
}
fs_initcall(firmware_class_init);
module_exit(firmware_class_exit);
EXPORT_SYMBOL(release_firmware);
EXPORT_SYMBOL(request_firmware);
EXPORT_SYMBOL(request_firmware_nowait);