1
linux/sound/oss/maestro3.c
Jesper Juhl 07e0e93d9a [PATCH] maestro3 vfree NULL check fixup
vfree() checks for NULL, no need to do it explicitly.

Signed-off-by: Jesper Juhl <jesper.juhl@gmail.com>
Acked-by: Zach Brown <zab@zabbo.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-28 09:16:08 -08:00

2970 lines
86 KiB
C

/*****************************************************************************
*
* ESS Maestro3/Allegro driver for Linux 2.4.x
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* (c) Copyright 2000 Zach Brown <zab@zabbo.net>
*
* I need to thank many people for helping make this driver happen.
* As always, Eric Brombaugh was a hacking machine and killed many bugs
* that I was too dumb to notice. Howard Kim at ESS provided reference boards
* and as much docs as he could. Todd and Mick at Dell tested snapshots on
* an army of laptops. msw and deviant at Red Hat also humoured me by hanging
* their laptops every few hours in the name of science.
*
* Shouts go out to Mike "DJ XPCom" Ang.
*
* History
* v1.23 - Jun 5 2002 - Michael Olson <olson@cs.odu.edu>
* added a module option to allow selection of GPIO pin number
* for external amp
* v1.22 - Feb 28 2001 - Zach Brown <zab@zabbo.net>
* allocate mem at insmod/setup, rather than open
* limit pci dma addresses to 28bit, thanks guys.
* v1.21 - Feb 04 2001 - Zach Brown <zab@zabbo.net>
* fix up really dumb notifier -> suspend oops
* v1.20 - Jan 30 2001 - Zach Brown <zab@zabbo.net>
* get rid of pm callback and use pci_dev suspend/resume instead
* m3_probe cleanups, including pm oops think-o
* v1.10 - Jan 6 2001 - Zach Brown <zab@zabbo.net>
* revert to lame remap_page_range mmap() just to make it work
* record mmap fixed.
* fix up incredibly broken open/release resource management
* duh. fix record format setting.
* add SMP locking and cleanup formatting here and there
* v1.00 - Dec 16 2000 - Zach Brown <zab@zabbo.net>
* port to sexy 2.4 interfaces
* properly align instance allocations so recording works
* clean up function namespace a little :/
* update PCI IDs based on mail from ESS
* arbitrarily bump version number to show its 2.4 now,
* 2.2 will stay 0., oss_audio port gets 2.
* v0.03 - Nov 05 2000 - Zach Brown <zab@zabbo.net>
* disable recording but allow dsp to be opened read
* pull out most silly compat defines
* v0.02 - Nov 04 2000 - Zach Brown <zab@zabbo.net>
* changed clocking setup for m3, slowdown fixed.
* codec reset is hopefully reliable now
* rudimentary apm/power management makes suspend/resume work
* v0.01 - Oct 31 2000 - Zach Brown <zab@zabbo.net>
* first release
* v0.00 - Sep 09 2000 - Zach Brown <zab@zabbo.net>
* first pass derivation from maestro.c
*
* TODO
* in/out allocated contiguously so fullduplex mmap will work?
* no beep on init (mute)
* resetup msrc data memory if freq changes?
*
* --
*
* Allow me to ramble a bit about the m3 architecture. The core of the
* chip is the 'assp', the custom ESS dsp that runs the show. It has
* a small amount of code and data ram. ESS drops binary dsp code images
* on our heads, but we don't get to see specs on the dsp.
*
* The constant piece of code on the dsp is the 'kernel'. It also has a
* chunk of the dsp memory that is statically set aside for its control
* info. This is the KDATA defines in maestro3.h. Part of its core
* data is a list of code addresses that point to the pieces of DSP code
* that it should walk through in its loop. These other pieces of code
* do the real work. The kernel presumably jumps into each of them in turn.
* These code images tend to have their own data area, and one can have
* multiple data areas representing different states for each of the 'client
* instance' code portions. There is generally a list in the kernel data
* that points to the data instances for a given piece of code.
*
* We've only been given the binary image for the 'minisrc', mini sample
* rate converter. This is rather annoying because it limits the work
* we can do on the dsp, but it also greatly simplifies the job of managing
* dsp data memory for the code and data for our playing streams :). We
* statically allocate the minisrc code into a region we 'know' to be free
* based on the map of the binary kernel image we're loading. We also
* statically allocate the data areas for the maximum number of pcm streams
* we can be dealing with. This max is set by the length of the static list
* in the kernel data that records the number of minisrc data regions we
* can have. Thats right, all software dsp mixing with static code list
* limits. Rock.
*
* How sound goes in and out is still a relative mystery. It appears
* that the dsp has the ability to get input and output through various
* 'connections'. To do IO from or to a connection, you put the address
* of the minisrc client area in the static kernel data lists for that
* input or output. so for pcm -> dsp -> mixer, we put the minisrc data
* instance in the DMA list and also in the list for the mixer. I guess
* it Just Knows which is in/out, and we give some dma control info that
* helps. There are all sorts of cool inputs/outputs that it seems we can't
* use without dsp code images that know how to use them.
*
* So at init time we preload all the memory allocation stuff and set some
* system wide parameters. When we really get a sound to play we build
* up its minisrc header (stream parameters, buffer addresses, input/output
* settings). Then we throw its header on the various lists. We also
* tickle some KDATA settings that ask the assp to raise clock interrupts
* and do some amount of software mixing before handing data to the ac97.
*
* Sorry for the vague details. Feel free to ask Eric or myself if you
* happen to be trying to use this driver elsewhere. Please accept my
* apologies for the quality of the OSS support code, its passed through
* too many hands now and desperately wants to be rethought.
*/
/*****************************************************************************/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/ioport.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/sound.h>
#include <linux/slab.h>
#include <linux/soundcard.h>
#include <linux/pci.h>
#include <linux/vmalloc.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/poll.h>
#include <linux/reboot.h>
#include <linux/spinlock.h>
#include <linux/ac97_codec.h>
#include <linux/wait.h>
#include <linux/mutex.h>
#include <asm/io.h>
#include <asm/dma.h>
#include <asm/uaccess.h>
#include "maestro3.h"
#define M_DEBUG 1
#define DRIVER_VERSION "1.23"
#define M3_MODULE_NAME "maestro3"
#define PFX M3_MODULE_NAME ": "
#define M3_STATE_MAGIC 0x734d724d
#define M3_CARD_MAGIC 0x646e6f50
#define ESS_FMT_STEREO 0x01
#define ESS_FMT_16BIT 0x02
#define ESS_FMT_MASK 0x03
#define ESS_DAC_SHIFT 0
#define ESS_ADC_SHIFT 4
#define DAC_RUNNING 1
#define ADC_RUNNING 2
#define SND_DEV_DSP16 5
#ifdef M_DEBUG
static int debug;
#define DPMOD 1 /* per module load */
#define DPSTR 2 /* per 'stream' */
#define DPSYS 3 /* per syscall */
#define DPCRAP 4 /* stuff the user shouldn't see unless they're really debuggin */
#define DPINT 5 /* per interrupt, LOTS */
#define DPRINTK(DP, args...) {if (debug >= (DP)) printk(KERN_DEBUG PFX args);}
#else
#define DPRINTK(x)
#endif
struct m3_list {
int curlen;
u16 mem_addr;
int max;
};
static int external_amp = 1;
static int gpio_pin = -1;
struct m3_state {
unsigned int magic;
struct m3_card *card;
unsigned char fmt, enable;
int index;
/* this locks around the oss state in the driver */
/* no, this lock is removed - only use card->lock */
/* otherwise: against what are you protecting on SMP
when irqhandler uses s->lock
and m3_assp_read uses card->lock ?
*/
struct mutex open_mutex;
wait_queue_head_t open_wait;
mode_t open_mode;
int dev_audio;
struct assp_instance {
u16 code, data;
} dac_inst, adc_inst;
/* should be in dmabuf */
unsigned int rateadc, ratedac;
struct dmabuf {
void *rawbuf;
unsigned buforder;
unsigned numfrag;
unsigned fragshift;
unsigned hwptr, swptr;
unsigned total_bytes;
int count;
unsigned error; /* over/underrun */
wait_queue_head_t wait;
/* redundant, but makes calculations easier */
unsigned fragsize;
unsigned dmasize;
unsigned fragsamples;
/* OSS stuff */
unsigned mapped:1;
unsigned ready:1;
unsigned endcleared:1;
unsigned ossfragshift;
int ossmaxfrags;
unsigned subdivision;
/* new in m3 */
int mixer_index, dma_index, msrc_index, adc1_index;
int in_lists;
/* 2.4.. */
dma_addr_t handle;
} dma_dac, dma_adc;
};
struct m3_card {
unsigned int magic;
struct m3_card *next;
struct ac97_codec *ac97;
spinlock_t ac97_lock;
int card_type;
#define NR_DSPS 1
#define MAX_DSPS NR_DSPS
struct m3_state channels[MAX_DSPS];
/* this locks around the physical registers on the card */
spinlock_t lock;
/* hardware resources */
struct pci_dev *pcidev;
u32 iobase;
u32 irq;
int dacs_active;
int timer_users;
struct m3_list msrc_list,
mixer_list,
adc1_list,
dma_list;
/* for storing reset state..*/
u8 reset_state;
u16 *suspend_mem;
int in_suspend;
wait_queue_head_t suspend_queue;
};
/*
* an arbitrary volume we set the internal
* volume settings to so that the ac97 volume
* range is a little less insane. 0x7fff is
* max.
*/
#define ARB_VOLUME ( 0x6800 )
static const unsigned sample_shift[] = { 0, 1, 1, 2 };
enum {
ESS_ALLEGRO,
ESS_MAESTRO3,
/*
* a maestro3 with 'hardware strapping', only
* found inside ESS?
*/
ESS_MAESTRO3HW,
};
static char *card_names[] = {
[ESS_ALLEGRO] = "Allegro",
[ESS_MAESTRO3] = "Maestro3(i)",
[ESS_MAESTRO3HW] = "Maestro3(i)hw"
};
#ifndef PCI_VENDOR_ESS
#define PCI_VENDOR_ESS 0x125D
#endif
#define M3_DEVICE(DEV, TYPE) \
{ \
.vendor = PCI_VENDOR_ESS, \
.device = DEV, \
.subvendor = PCI_ANY_ID, \
.subdevice = PCI_ANY_ID, \
.class = PCI_CLASS_MULTIMEDIA_AUDIO << 8, \
.class_mask = 0xffff << 8, \
.driver_data = TYPE, \
}
static struct pci_device_id m3_id_table[] = {
M3_DEVICE(0x1988, ESS_ALLEGRO),
M3_DEVICE(0x1998, ESS_MAESTRO3),
M3_DEVICE(0x199a, ESS_MAESTRO3HW),
{0,}
};
MODULE_DEVICE_TABLE (pci, m3_id_table);
/*
* reports seem to indicate that the m3 is limited
* to 28bit bus addresses. aaaargggh...
*/
#define M3_PCI_DMA_MASK 0x0fffffff
static unsigned
ld2(unsigned int x)
{
unsigned r = 0;
if (x >= 0x10000) {
x >>= 16;
r += 16;
}
if (x >= 0x100) {
x >>= 8;
r += 8;
}
if (x >= 0x10) {
x >>= 4;
r += 4;
}
if (x >= 4) {
x >>= 2;
r += 2;
}
if (x >= 2)
r++;
return r;
}
static struct m3_card *devs;
/*
* I'm not very good at laying out functions in a file :)
*/
static int m3_notifier(struct notifier_block *nb, unsigned long event, void *buf);
static int m3_suspend(struct pci_dev *pci_dev, pm_message_t state);
static void check_suspend(struct m3_card *card);
static struct notifier_block m3_reboot_nb = {
.notifier_call = m3_notifier,
};
static void m3_outw(struct m3_card *card,
u16 value, unsigned long reg)
{
check_suspend(card);
outw(value, card->iobase + reg);
}
static u16 m3_inw(struct m3_card *card, unsigned long reg)
{
check_suspend(card);
return inw(card->iobase + reg);
}
static void m3_outb(struct m3_card *card,
u8 value, unsigned long reg)
{
check_suspend(card);
outb(value, card->iobase + reg);
}
static u8 m3_inb(struct m3_card *card, unsigned long reg)
{
check_suspend(card);
return inb(card->iobase + reg);
}
/*
* access 16bit words to the code or data regions of the dsp's memory.
* index addresses 16bit words.
*/
static u16 __m3_assp_read(struct m3_card *card, u16 region, u16 index)
{
m3_outw(card, region & MEMTYPE_MASK, DSP_PORT_MEMORY_TYPE);
m3_outw(card, index, DSP_PORT_MEMORY_INDEX);
return m3_inw(card, DSP_PORT_MEMORY_DATA);
}
static u16 m3_assp_read(struct m3_card *card, u16 region, u16 index)
{
unsigned long flags;
u16 ret;
spin_lock_irqsave(&(card->lock), flags);
ret = __m3_assp_read(card, region, index);
spin_unlock_irqrestore(&(card->lock), flags);
return ret;
}
static void __m3_assp_write(struct m3_card *card,
u16 region, u16 index, u16 data)
{
m3_outw(card, region & MEMTYPE_MASK, DSP_PORT_MEMORY_TYPE);
m3_outw(card, index, DSP_PORT_MEMORY_INDEX);
m3_outw(card, data, DSP_PORT_MEMORY_DATA);
}
static void m3_assp_write(struct m3_card *card,
u16 region, u16 index, u16 data)
{
unsigned long flags;
spin_lock_irqsave(&(card->lock), flags);
__m3_assp_write(card, region, index, data);
spin_unlock_irqrestore(&(card->lock), flags);
}
static void m3_assp_halt(struct m3_card *card)
{
card->reset_state = m3_inb(card, DSP_PORT_CONTROL_REG_B) & ~REGB_STOP_CLOCK;
mdelay(10);
m3_outb(card, card->reset_state & ~REGB_ENABLE_RESET, DSP_PORT_CONTROL_REG_B);
}
static void m3_assp_continue(struct m3_card *card)
{
m3_outb(card, card->reset_state | REGB_ENABLE_RESET, DSP_PORT_CONTROL_REG_B);
}
/*
* This makes me sad. the maestro3 has lists
* internally that must be packed.. 0 terminates,
* apparently, or maybe all unused entries have
* to be 0, the lists have static lengths set
* by the binary code images.
*/
static int m3_add_list(struct m3_card *card,
struct m3_list *list, u16 val)
{
DPRINTK(DPSTR, "adding val 0x%x to list 0x%p at pos %d\n",
val, list, list->curlen);
m3_assp_write(card, MEMTYPE_INTERNAL_DATA,
list->mem_addr + list->curlen,
val);
return list->curlen++;
}
static void m3_remove_list(struct m3_card *card,
struct m3_list *list, int index)
{
u16 val;
int lastindex = list->curlen - 1;
DPRINTK(DPSTR, "removing ind %d from list 0x%p\n",
index, list);
if(index != lastindex) {
val = m3_assp_read(card, MEMTYPE_INTERNAL_DATA,
list->mem_addr + lastindex);
m3_assp_write(card, MEMTYPE_INTERNAL_DATA,
list->mem_addr + index,
val);
}
m3_assp_write(card, MEMTYPE_INTERNAL_DATA,
list->mem_addr + lastindex,
0);
list->curlen--;
}
static void set_fmt(struct m3_state *s, unsigned char mask, unsigned char data)
{
int tmp;
s->fmt = (s->fmt & mask) | data;
tmp = (s->fmt >> ESS_DAC_SHIFT) & ESS_FMT_MASK;
/* write to 'mono' word */
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
s->dac_inst.data + SRC3_DIRECTION_OFFSET + 1,
(tmp & ESS_FMT_STEREO) ? 0 : 1);
/* write to '8bit' word */
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
s->dac_inst.data + SRC3_DIRECTION_OFFSET + 2,
(tmp & ESS_FMT_16BIT) ? 0 : 1);
tmp = (s->fmt >> ESS_ADC_SHIFT) & ESS_FMT_MASK;
/* write to 'mono' word */
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
s->adc_inst.data + SRC3_DIRECTION_OFFSET + 1,
(tmp & ESS_FMT_STEREO) ? 0 : 1);
/* write to '8bit' word */
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
s->adc_inst.data + SRC3_DIRECTION_OFFSET + 2,
(tmp & ESS_FMT_16BIT) ? 0 : 1);
}
static void set_dac_rate(struct m3_state *s, unsigned int rate)
{
u32 freq;
if (rate > 48000)
rate = 48000;
if (rate < 8000)
rate = 8000;
s->ratedac = rate;
freq = ((rate << 15) + 24000 ) / 48000;
if(freq)
freq--;
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
s->dac_inst.data + CDATA_FREQUENCY,
freq);
}
static void set_adc_rate(struct m3_state *s, unsigned int rate)
{
u32 freq;
if (rate > 48000)
rate = 48000;
if (rate < 8000)
rate = 8000;
s->rateadc = rate;
freq = ((rate << 15) + 24000 ) / 48000;
if(freq)
freq--;
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
s->adc_inst.data + CDATA_FREQUENCY,
freq);
}
static void inc_timer_users(struct m3_card *card)
{
unsigned long flags;
spin_lock_irqsave(&card->lock, flags);
card->timer_users++;
DPRINTK(DPSYS, "inc timer users now %d\n",
card->timer_users);
if(card->timer_users != 1)
goto out;
__m3_assp_write(card, MEMTYPE_INTERNAL_DATA,
KDATA_TIMER_COUNT_RELOAD,
240 ) ;
__m3_assp_write(card, MEMTYPE_INTERNAL_DATA,
KDATA_TIMER_COUNT_CURRENT,
240 ) ;
m3_outw(card,
m3_inw(card, HOST_INT_CTRL) | CLKRUN_GEN_ENABLE,
HOST_INT_CTRL);
out:
spin_unlock_irqrestore(&card->lock, flags);
}
static void dec_timer_users(struct m3_card *card)
{
unsigned long flags;
spin_lock_irqsave(&card->lock, flags);
card->timer_users--;
DPRINTK(DPSYS, "dec timer users now %d\n",
card->timer_users);
if(card->timer_users > 0 )
goto out;
__m3_assp_write(card, MEMTYPE_INTERNAL_DATA,
KDATA_TIMER_COUNT_RELOAD,
0 ) ;
__m3_assp_write(card, MEMTYPE_INTERNAL_DATA,
KDATA_TIMER_COUNT_CURRENT,
0 ) ;
m3_outw(card, m3_inw(card, HOST_INT_CTRL) & ~CLKRUN_GEN_ENABLE,
HOST_INT_CTRL);
out:
spin_unlock_irqrestore(&card->lock, flags);
}
/*
* {start,stop}_{adc,dac} should be called
* while holding the 'state' lock and they
* will try to grab the 'card' lock..
*/
static void stop_adc(struct m3_state *s)
{
if (! (s->enable & ADC_RUNNING))
return;
s->enable &= ~ADC_RUNNING;
dec_timer_users(s->card);
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
s->adc_inst.data + CDATA_INSTANCE_READY, 0);
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
KDATA_ADC1_REQUEST, 0);
}
static void stop_dac(struct m3_state *s)
{
if (! (s->enable & DAC_RUNNING))
return;
DPRINTK(DPSYS, "stop_dac()\n");
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
s->dac_inst.data + CDATA_INSTANCE_READY, 0);
s->enable &= ~DAC_RUNNING;
s->card->dacs_active--;
dec_timer_users(s->card);
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
KDATA_MIXER_TASK_NUMBER,
s->card->dacs_active ) ;
}
static void start_dac(struct m3_state *s)
{
if( (!s->dma_dac.mapped && s->dma_dac.count < 1) ||
!s->dma_dac.ready ||
(s->enable & DAC_RUNNING))
return;
DPRINTK(DPSYS, "start_dac()\n");
s->enable |= DAC_RUNNING;
s->card->dacs_active++;
inc_timer_users(s->card);
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
s->dac_inst.data + CDATA_INSTANCE_READY, 1);
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
KDATA_MIXER_TASK_NUMBER,
s->card->dacs_active ) ;
}
static void start_adc(struct m3_state *s)
{
if ((! s->dma_adc.mapped &&
s->dma_adc.count >= (signed)(s->dma_adc.dmasize - 2*s->dma_adc.fragsize))
|| !s->dma_adc.ready
|| (s->enable & ADC_RUNNING) )
return;
DPRINTK(DPSYS, "start_adc()\n");
s->enable |= ADC_RUNNING;
inc_timer_users(s->card);
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
KDATA_ADC1_REQUEST, 1);
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
s->adc_inst.data + CDATA_INSTANCE_READY, 1);
}
static struct play_vals {
u16 addr, val;
} pv[] = {
{CDATA_LEFT_VOLUME, ARB_VOLUME},
{CDATA_RIGHT_VOLUME, ARB_VOLUME},
{SRC3_DIRECTION_OFFSET, 0} ,
/* +1, +2 are stereo/16 bit */
{SRC3_DIRECTION_OFFSET + 3, 0x0000}, /* fraction? */
{SRC3_DIRECTION_OFFSET + 4, 0}, /* first l */
{SRC3_DIRECTION_OFFSET + 5, 0}, /* first r */
{SRC3_DIRECTION_OFFSET + 6, 0}, /* second l */
{SRC3_DIRECTION_OFFSET + 7, 0}, /* second r */
{SRC3_DIRECTION_OFFSET + 8, 0}, /* delta l */
{SRC3_DIRECTION_OFFSET + 9, 0}, /* delta r */
{SRC3_DIRECTION_OFFSET + 10, 0x8000}, /* round */
{SRC3_DIRECTION_OFFSET + 11, 0xFF00}, /* higher bute mark */
{SRC3_DIRECTION_OFFSET + 13, 0}, /* temp0 */
{SRC3_DIRECTION_OFFSET + 14, 0}, /* c fraction */
{SRC3_DIRECTION_OFFSET + 15, 0}, /* counter */
{SRC3_DIRECTION_OFFSET + 16, 8}, /* numin */
{SRC3_DIRECTION_OFFSET + 17, 50*2}, /* numout */
{SRC3_DIRECTION_OFFSET + 18, MINISRC_BIQUAD_STAGE - 1}, /* numstage */
{SRC3_DIRECTION_OFFSET + 20, 0}, /* filtertap */
{SRC3_DIRECTION_OFFSET + 21, 0} /* booster */
};
/* the mode passed should be already shifted and masked */
static void m3_play_setup(struct m3_state *s, int mode, u32 rate, void *buffer, int size)
{
int dsp_in_size = MINISRC_IN_BUFFER_SIZE - (0x20 * 2);
int dsp_out_size = MINISRC_OUT_BUFFER_SIZE - (0x20 * 2);
int dsp_in_buffer = s->dac_inst.data + (MINISRC_TMP_BUFFER_SIZE / 2);
int dsp_out_buffer = dsp_in_buffer + (dsp_in_size / 2) + 1;
struct dmabuf *db = &s->dma_dac;
int i;
DPRINTK(DPSTR, "mode=%d rate=%d buf=%p len=%d.\n",
mode, rate, buffer, size);
#define LO(x) ((x) & 0xffff)
#define HI(x) LO((x) >> 16)
/* host dma buffer pointers */
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
s->dac_inst.data + CDATA_HOST_SRC_ADDRL,
LO(virt_to_bus(buffer)));
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
s->dac_inst.data + CDATA_HOST_SRC_ADDRH,
HI(virt_to_bus(buffer)));
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
s->dac_inst.data + CDATA_HOST_SRC_END_PLUS_1L,
LO(virt_to_bus(buffer) + size));
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
s->dac_inst.data + CDATA_HOST_SRC_END_PLUS_1H,
HI(virt_to_bus(buffer) + size));
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
s->dac_inst.data + CDATA_HOST_SRC_CURRENTL,
LO(virt_to_bus(buffer)));
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
s->dac_inst.data + CDATA_HOST_SRC_CURRENTH,
HI(virt_to_bus(buffer)));
#undef LO
#undef HI
/* dsp buffers */
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
s->dac_inst.data + CDATA_IN_BUF_BEGIN,
dsp_in_buffer);
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
s->dac_inst.data + CDATA_IN_BUF_END_PLUS_1,
dsp_in_buffer + (dsp_in_size / 2));
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
s->dac_inst.data + CDATA_IN_BUF_HEAD,
dsp_in_buffer);
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
s->dac_inst.data + CDATA_IN_BUF_TAIL,
dsp_in_buffer);
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
s->dac_inst.data + CDATA_OUT_BUF_BEGIN,
dsp_out_buffer);
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
s->dac_inst.data + CDATA_OUT_BUF_END_PLUS_1,
dsp_out_buffer + (dsp_out_size / 2));
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
s->dac_inst.data + CDATA_OUT_BUF_HEAD,
dsp_out_buffer);
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
s->dac_inst.data + CDATA_OUT_BUF_TAIL,
dsp_out_buffer);
/*
* some per client initializers
*/
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
s->dac_inst.data + SRC3_DIRECTION_OFFSET + 12,
s->dac_inst.data + 40 + 8);
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
s->dac_inst.data + SRC3_DIRECTION_OFFSET + 19,
s->dac_inst.code + MINISRC_COEF_LOC);
/* enable or disable low pass filter? */
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
s->dac_inst.data + SRC3_DIRECTION_OFFSET + 22,
s->ratedac > 45000 ? 0xff : 0 );
/* tell it which way dma is going? */
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
s->dac_inst.data + CDATA_DMA_CONTROL,
DMACONTROL_AUTOREPEAT + DMAC_PAGE3_SELECTOR + DMAC_BLOCKF_SELECTOR);
/*
* set an armload of static initializers
*/
for(i = 0 ; i < (sizeof(pv) / sizeof(pv[0])) ; i++)
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
s->dac_inst.data + pv[i].addr, pv[i].val);
/*
* put us in the lists if we're not already there
*/
if(db->in_lists == 0) {
db->msrc_index = m3_add_list(s->card, &s->card->msrc_list,
s->dac_inst.data >> DP_SHIFT_COUNT);
db->dma_index = m3_add_list(s->card, &s->card->dma_list,
s->dac_inst.data >> DP_SHIFT_COUNT);
db->mixer_index = m3_add_list(s->card, &s->card->mixer_list,
s->dac_inst.data >> DP_SHIFT_COUNT);
db->in_lists = 1;
}
set_dac_rate(s,rate);
start_dac(s);
}
/*
* Native record driver
*/
static struct rec_vals {
u16 addr, val;
} rv[] = {
{CDATA_LEFT_VOLUME, ARB_VOLUME},
{CDATA_RIGHT_VOLUME, ARB_VOLUME},
{SRC3_DIRECTION_OFFSET, 1} ,
/* +1, +2 are stereo/16 bit */
{SRC3_DIRECTION_OFFSET + 3, 0x0000}, /* fraction? */
{SRC3_DIRECTION_OFFSET + 4, 0}, /* first l */
{SRC3_DIRECTION_OFFSET + 5, 0}, /* first r */
{SRC3_DIRECTION_OFFSET + 6, 0}, /* second l */
{SRC3_DIRECTION_OFFSET + 7, 0}, /* second r */
{SRC3_DIRECTION_OFFSET + 8, 0}, /* delta l */
{SRC3_DIRECTION_OFFSET + 9, 0}, /* delta r */
{SRC3_DIRECTION_OFFSET + 10, 0x8000}, /* round */
{SRC3_DIRECTION_OFFSET + 11, 0xFF00}, /* higher bute mark */
{SRC3_DIRECTION_OFFSET + 13, 0}, /* temp0 */
{SRC3_DIRECTION_OFFSET + 14, 0}, /* c fraction */
{SRC3_DIRECTION_OFFSET + 15, 0}, /* counter */
{SRC3_DIRECTION_OFFSET + 16, 50},/* numin */
{SRC3_DIRECTION_OFFSET + 17, 8}, /* numout */
{SRC3_DIRECTION_OFFSET + 18, 0}, /* numstage */
{SRC3_DIRECTION_OFFSET + 19, 0}, /* coef */
{SRC3_DIRECTION_OFFSET + 20, 0}, /* filtertap */
{SRC3_DIRECTION_OFFSET + 21, 0}, /* booster */
{SRC3_DIRECTION_OFFSET + 22, 0xff} /* skip lpf */
};
/* again, passed mode is alrady shifted/masked */
static void m3_rec_setup(struct m3_state *s, int mode, u32 rate, void *buffer, int size)
{
int dsp_in_size = MINISRC_IN_BUFFER_SIZE + (0x10 * 2);
int dsp_out_size = MINISRC_OUT_BUFFER_SIZE - (0x10 * 2);
int dsp_in_buffer = s->adc_inst.data + (MINISRC_TMP_BUFFER_SIZE / 2);
int dsp_out_buffer = dsp_in_buffer + (dsp_in_size / 2) + 1;
struct dmabuf *db = &s->dma_adc;
int i;
DPRINTK(DPSTR, "rec_setup mode=%d rate=%d buf=%p len=%d.\n",
mode, rate, buffer, size);
#define LO(x) ((x) & 0xffff)
#define HI(x) LO((x) >> 16)
/* host dma buffer pointers */
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
s->adc_inst.data + CDATA_HOST_SRC_ADDRL,
LO(virt_to_bus(buffer)));
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
s->adc_inst.data + CDATA_HOST_SRC_ADDRH,
HI(virt_to_bus(buffer)));
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
s->adc_inst.data + CDATA_HOST_SRC_END_PLUS_1L,
LO(virt_to_bus(buffer) + size));
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
s->adc_inst.data + CDATA_HOST_SRC_END_PLUS_1H,
HI(virt_to_bus(buffer) + size));
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
s->adc_inst.data + CDATA_HOST_SRC_CURRENTL,
LO(virt_to_bus(buffer)));
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
s->adc_inst.data + CDATA_HOST_SRC_CURRENTH,
HI(virt_to_bus(buffer)));
#undef LO
#undef HI
/* dsp buffers */
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
s->adc_inst.data + CDATA_IN_BUF_BEGIN,
dsp_in_buffer);
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
s->adc_inst.data + CDATA_IN_BUF_END_PLUS_1,
dsp_in_buffer + (dsp_in_size / 2));
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
s->adc_inst.data + CDATA_IN_BUF_HEAD,
dsp_in_buffer);
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
s->adc_inst.data + CDATA_IN_BUF_TAIL,
dsp_in_buffer);
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
s->adc_inst.data + CDATA_OUT_BUF_BEGIN,
dsp_out_buffer);
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
s->adc_inst.data + CDATA_OUT_BUF_END_PLUS_1,
dsp_out_buffer + (dsp_out_size / 2));
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
s->adc_inst.data + CDATA_OUT_BUF_HEAD,
dsp_out_buffer);
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
s->adc_inst.data + CDATA_OUT_BUF_TAIL,
dsp_out_buffer);
/*
* some per client initializers
*/
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
s->adc_inst.data + SRC3_DIRECTION_OFFSET + 12,
s->adc_inst.data + 40 + 8);
/* tell it which way dma is going? */
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
s->adc_inst.data + CDATA_DMA_CONTROL,
DMACONTROL_DIRECTION + DMACONTROL_AUTOREPEAT +
DMAC_PAGE3_SELECTOR + DMAC_BLOCKF_SELECTOR);
/*
* set an armload of static initializers
*/
for(i = 0 ; i < (sizeof(rv) / sizeof(rv[0])) ; i++)
m3_assp_write(s->card, MEMTYPE_INTERNAL_DATA,
s->adc_inst.data + rv[i].addr, rv[i].val);
/*
* put us in the lists if we're not already there
*/
if(db->in_lists == 0) {
db->adc1_index = m3_add_list(s->card, &s->card->adc1_list,
s->adc_inst.data >> DP_SHIFT_COUNT);
db->dma_index = m3_add_list(s->card, &s->card->dma_list,
s->adc_inst.data >> DP_SHIFT_COUNT);
db->msrc_index = m3_add_list(s->card, &s->card->msrc_list,
s->adc_inst.data >> DP_SHIFT_COUNT);
db->in_lists = 1;
}
set_adc_rate(s,rate);
start_adc(s);
}
/* --------------------------------------------------------------------- */
static void set_dmaa(struct m3_state *s, unsigned int addr, unsigned int count)
{
DPRINTK(DPINT,"set_dmaa??\n");
}
static void set_dmac(struct m3_state *s, unsigned int addr, unsigned int count)
{
DPRINTK(DPINT,"set_dmac??\n");
}
static u32 get_dma_pos(struct m3_card *card,
int instance_addr)
{
u16 hi = 0, lo = 0;
int retry = 10;
/*
* try and get a valid answer
*/
while(retry--) {
hi = m3_assp_read(card, MEMTYPE_INTERNAL_DATA,
instance_addr + CDATA_HOST_SRC_CURRENTH);
lo = m3_assp_read(card, MEMTYPE_INTERNAL_DATA,
instance_addr + CDATA_HOST_SRC_CURRENTL);
if(hi == m3_assp_read(card, MEMTYPE_INTERNAL_DATA,
instance_addr + CDATA_HOST_SRC_CURRENTH))
break;
}
return lo | (hi<<16);
}
static u32 get_dmaa(struct m3_state *s)
{
u32 offset;
offset = get_dma_pos(s->card, s->dac_inst.data) -
virt_to_bus(s->dma_dac.rawbuf);
DPRINTK(DPINT,"get_dmaa: 0x%08x\n",offset);
return offset;
}
static u32 get_dmac(struct m3_state *s)
{
u32 offset;
offset = get_dma_pos(s->card, s->adc_inst.data) -
virt_to_bus(s->dma_adc.rawbuf);
DPRINTK(DPINT,"get_dmac: 0x%08x\n",offset);
return offset;
}
static int
prog_dmabuf(struct m3_state *s, unsigned rec)
{
struct dmabuf *db = rec ? &s->dma_adc : &s->dma_dac;
unsigned rate = rec ? s->rateadc : s->ratedac;
unsigned bytepersec;
unsigned bufs;
unsigned char fmt;
unsigned long flags;
spin_lock_irqsave(&s->card->lock, flags);
fmt = s->fmt;
if (rec) {
stop_adc(s);
fmt >>= ESS_ADC_SHIFT;
} else {
stop_dac(s);
fmt >>= ESS_DAC_SHIFT;
}
fmt &= ESS_FMT_MASK;
db->hwptr = db->swptr = db->total_bytes = db->count = db->error = db->endcleared = 0;
bytepersec = rate << sample_shift[fmt];
bufs = PAGE_SIZE << db->buforder;
if (db->ossfragshift) {
if ((1000 << db->ossfragshift) < bytepersec)
db->fragshift = ld2(bytepersec/1000);
else
db->fragshift = db->ossfragshift;
} else {
db->fragshift = ld2(bytepersec/100/(db->subdivision ? db->subdivision : 1));
if (db->fragshift < 3)
db->fragshift = 3;
}
db->numfrag = bufs >> db->fragshift;
while (db->numfrag < 4 && db->fragshift > 3) {
db->fragshift--;
db->numfrag = bufs >> db->fragshift;
}
db->fragsize = 1 << db->fragshift;
if (db->ossmaxfrags >= 4 && db->ossmaxfrags < db->numfrag)
db->numfrag = db->ossmaxfrags;
db->fragsamples = db->fragsize >> sample_shift[fmt];
db->dmasize = db->numfrag << db->fragshift;
DPRINTK(DPSTR,"prog_dmabuf: numfrag: %d fragsize: %d dmasize: %d\n",db->numfrag,db->fragsize,db->dmasize);
memset(db->rawbuf, (fmt & ESS_FMT_16BIT) ? 0 : 0x80, db->dmasize);
if (rec)
m3_rec_setup(s, fmt, s->rateadc, db->rawbuf, db->dmasize);
else
m3_play_setup(s, fmt, s->ratedac, db->rawbuf, db->dmasize);
db->ready = 1;
spin_unlock_irqrestore(&s->card->lock, flags);
return 0;
}
static void clear_advance(struct m3_state *s)
{
unsigned char c = ((s->fmt >> ESS_DAC_SHIFT) & ESS_FMT_16BIT) ? 0 : 0x80;
unsigned char *buf = s->dma_dac.rawbuf;
unsigned bsize = s->dma_dac.dmasize;
unsigned bptr = s->dma_dac.swptr;
unsigned len = s->dma_dac.fragsize;
if (bptr + len > bsize) {
unsigned x = bsize - bptr;
memset(buf + bptr, c, x);
/* account for wrapping? */
bptr = 0;
len -= x;
}
memset(buf + bptr, c, len);
}
/* call with spinlock held! */
static void m3_update_ptr(struct m3_state *s)
{
unsigned hwptr;
int diff;
/* update ADC pointer */
if (s->dma_adc.ready) {
hwptr = get_dmac(s) % s->dma_adc.dmasize;
diff = (s->dma_adc.dmasize + hwptr - s->dma_adc.hwptr) % s->dma_adc.dmasize;
s->dma_adc.hwptr = hwptr;
s->dma_adc.total_bytes += diff;
s->dma_adc.count += diff;
if (s->dma_adc.count >= (signed)s->dma_adc.fragsize)
wake_up(&s->dma_adc.wait);
if (!s->dma_adc.mapped) {
if (s->dma_adc.count > (signed)(s->dma_adc.dmasize - ((3 * s->dma_adc.fragsize) >> 1))) {
stop_adc(s);
/* brute force everyone back in sync, sigh */
s->dma_adc.count = 0;
s->dma_adc.swptr = 0;
s->dma_adc.hwptr = 0;
s->dma_adc.error++;
}
}
}
/* update DAC pointer */
if (s->dma_dac.ready) {
hwptr = get_dmaa(s) % s->dma_dac.dmasize;
diff = (s->dma_dac.dmasize + hwptr - s->dma_dac.hwptr) % s->dma_dac.dmasize;
DPRINTK(DPINT,"updating dac: hwptr: %6d diff: %6d count: %6d\n",
hwptr,diff,s->dma_dac.count);
s->dma_dac.hwptr = hwptr;
s->dma_dac.total_bytes += diff;
if (s->dma_dac.mapped) {
s->dma_dac.count += diff;
if (s->dma_dac.count >= (signed)s->dma_dac.fragsize) {
wake_up(&s->dma_dac.wait);
}
} else {
s->dma_dac.count -= diff;
if (s->dma_dac.count <= 0) {
DPRINTK(DPCRAP,"underflow! diff: %d (0x%x) count: %d (0x%x) hw: %d (0x%x) sw: %d (0x%x)\n",
diff, diff,
s->dma_dac.count,
s->dma_dac.count,
hwptr, hwptr,
s->dma_dac.swptr,
s->dma_dac.swptr);
stop_dac(s);
/* brute force everyone back in sync, sigh */
s->dma_dac.count = 0;
s->dma_dac.swptr = hwptr;
s->dma_dac.error++;
} else if (s->dma_dac.count <= (signed)s->dma_dac.fragsize && !s->dma_dac.endcleared) {
clear_advance(s);
s->dma_dac.endcleared = 1;
}
if (s->dma_dac.count + (signed)s->dma_dac.fragsize <= (signed)s->dma_dac.dmasize) {
wake_up(&s->dma_dac.wait);
DPRINTK(DPINT,"waking up DAC count: %d sw: %d hw: %d\n",
s->dma_dac.count, s->dma_dac.swptr, hwptr);
}
}
}
}
static irqreturn_t m3_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
struct m3_card *c = (struct m3_card *)dev_id;
struct m3_state *s = &c->channels[0];
u8 status;
status = inb(c->iobase+0x1A);
if(status == 0xff)
return IRQ_NONE;
/* presumably acking the ints? */
outw(status, c->iobase+0x1A);
if(c->in_suspend)
return IRQ_HANDLED;
/*
* ack an assp int if its running
* and has an int pending
*/
if( status & ASSP_INT_PENDING) {
u8 ctl = inb(c->iobase + ASSP_CONTROL_B);
if( !(ctl & STOP_ASSP_CLOCK)) {
ctl = inb(c->iobase + ASSP_HOST_INT_STATUS );
if(ctl & DSP2HOST_REQ_TIMER) {
outb( DSP2HOST_REQ_TIMER, c->iobase + ASSP_HOST_INT_STATUS);
/* update adc/dac info if it was a timer int */
spin_lock(&c->lock);
m3_update_ptr(s);
spin_unlock(&c->lock);
}
}
}
/* XXX is this needed? */
if(status & 0x40)
outb(0x40, c->iobase+0x1A);
return IRQ_HANDLED;
}
/* --------------------------------------------------------------------- */
static const char invalid_magic[] = KERN_CRIT PFX "invalid magic value in %s\n";
#define VALIDATE_MAGIC(FOO,MAG) \
({ \
if (!(FOO) || (FOO)->magic != MAG) { \
printk(invalid_magic,__FUNCTION__); \
return -ENXIO; \
} \
})
#define VALIDATE_STATE(a) VALIDATE_MAGIC(a,M3_STATE_MAGIC)
#define VALIDATE_CARD(a) VALIDATE_MAGIC(a,M3_CARD_MAGIC)
/* --------------------------------------------------------------------- */
static int drain_dac(struct m3_state *s, int nonblock)
{
DECLARE_WAITQUEUE(wait,current);
unsigned long flags;
int count;
signed long tmo;
if (s->dma_dac.mapped || !s->dma_dac.ready)
return 0;
set_current_state(TASK_INTERRUPTIBLE);
add_wait_queue(&s->dma_dac.wait, &wait);
for (;;) {
spin_lock_irqsave(&s->card->lock, flags);
count = s->dma_dac.count;
spin_unlock_irqrestore(&s->card->lock, flags);
if (count <= 0)
break;
if (signal_pending(current))
break;
if (nonblock) {
remove_wait_queue(&s->dma_dac.wait, &wait);
set_current_state(TASK_RUNNING);
return -EBUSY;
}
tmo = (count * HZ) / s->ratedac;
tmo >>= sample_shift[(s->fmt >> ESS_DAC_SHIFT) & ESS_FMT_MASK];
/* XXX this is just broken. someone is waking us up alot, or schedule_timeout is broken.
or something. who cares. - zach */
if (!schedule_timeout(tmo ? tmo : 1) && tmo)
DPRINTK(DPCRAP,"dma timed out?? %ld\n",jiffies);
}
remove_wait_queue(&s->dma_dac.wait, &wait);
set_current_state(TASK_RUNNING);
if (signal_pending(current))
return -ERESTARTSYS;
return 0;
}
static ssize_t m3_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos)
{
struct m3_state *s = (struct m3_state *)file->private_data;
ssize_t ret;
unsigned long flags;
unsigned swptr;
int cnt;
VALIDATE_STATE(s);
if (s->dma_adc.mapped)
return -ENXIO;
if (!s->dma_adc.ready && (ret = prog_dmabuf(s, 1)))
return ret;
if (!access_ok(VERIFY_WRITE, buffer, count))
return -EFAULT;
ret = 0;
spin_lock_irqsave(&s->card->lock, flags);
while (count > 0) {
int timed_out;
swptr = s->dma_adc.swptr;
cnt = s->dma_adc.dmasize-swptr;
if (s->dma_adc.count < cnt)
cnt = s->dma_adc.count;
if (cnt > count)
cnt = count;
if (cnt <= 0) {
start_adc(s);
if (file->f_flags & O_NONBLOCK)
{
ret = ret ? ret : -EAGAIN;
goto out;
}
spin_unlock_irqrestore(&s->card->lock, flags);
timed_out = interruptible_sleep_on_timeout(&s->dma_adc.wait, HZ) == 0;
spin_lock_irqsave(&s->card->lock, flags);
if(timed_out) {
printk("read: chip lockup? dmasz %u fragsz %u count %u hwptr %u swptr %u\n",
s->dma_adc.dmasize, s->dma_adc.fragsize, s->dma_adc.count,
s->dma_adc.hwptr, s->dma_adc.swptr);
stop_adc(s);
set_dmac(s, virt_to_bus(s->dma_adc.rawbuf), s->dma_adc.numfrag << s->dma_adc.fragshift);
s->dma_adc.count = s->dma_adc.hwptr = s->dma_adc.swptr = 0;
}
if (signal_pending(current))
{
ret = ret ? ret : -ERESTARTSYS;
goto out;
}
continue;
}
spin_unlock_irqrestore(&s->card->lock, flags);
if (copy_to_user(buffer, s->dma_adc.rawbuf + swptr, cnt)) {
ret = ret ? ret : -EFAULT;
return ret;
}
spin_lock_irqsave(&s->card->lock, flags);
swptr = (swptr + cnt) % s->dma_adc.dmasize;
s->dma_adc.swptr = swptr;
s->dma_adc.count -= cnt;
count -= cnt;
buffer += cnt;
ret += cnt;
start_adc(s);
}
out:
spin_unlock_irqrestore(&s->card->lock, flags);
return ret;
}
static ssize_t m3_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos)
{
struct m3_state *s = (struct m3_state *)file->private_data;
ssize_t ret;
unsigned long flags;
unsigned swptr;
int cnt;
VALIDATE_STATE(s);
if (s->dma_dac.mapped)
return -ENXIO;
if (!s->dma_dac.ready && (ret = prog_dmabuf(s, 0)))
return ret;
if (!access_ok(VERIFY_READ, buffer, count))
return -EFAULT;
ret = 0;
spin_lock_irqsave(&s->card->lock, flags);
while (count > 0) {
int timed_out;
if (s->dma_dac.count < 0) {
s->dma_dac.count = 0;
s->dma_dac.swptr = s->dma_dac.hwptr;
}
swptr = s->dma_dac.swptr;
cnt = s->dma_dac.dmasize-swptr;
if (s->dma_dac.count + cnt > s->dma_dac.dmasize)
cnt = s->dma_dac.dmasize - s->dma_dac.count;
if (cnt > count)
cnt = count;
if (cnt <= 0) {
start_dac(s);
if (file->f_flags & O_NONBLOCK) {
if(!ret) ret = -EAGAIN;
goto out;
}
spin_unlock_irqrestore(&s->card->lock, flags);
timed_out = interruptible_sleep_on_timeout(&s->dma_dac.wait, HZ) == 0;
spin_lock_irqsave(&s->card->lock, flags);
if(timed_out) {
DPRINTK(DPCRAP,"write: chip lockup? dmasz %u fragsz %u count %u hwptr %u swptr %u\n",
s->dma_dac.dmasize, s->dma_dac.fragsize, s->dma_dac.count,
s->dma_dac.hwptr, s->dma_dac.swptr);
stop_dac(s);
set_dmaa(s, virt_to_bus(s->dma_dac.rawbuf), s->dma_dac.numfrag << s->dma_dac.fragshift);
s->dma_dac.count = s->dma_dac.hwptr = s->dma_dac.swptr = 0;
}
if (signal_pending(current)) {
if (!ret) ret = -ERESTARTSYS;
goto out;
}
continue;
}
spin_unlock_irqrestore(&s->card->lock, flags);
if (copy_from_user(s->dma_dac.rawbuf + swptr, buffer, cnt)) {
if (!ret) ret = -EFAULT;
return ret;
}
spin_lock_irqsave(&s->card->lock, flags);
DPRINTK(DPSYS,"wrote %6d bytes at sw: %6d cnt: %6d while hw: %6d\n",
cnt, swptr, s->dma_dac.count, s->dma_dac.hwptr);
swptr = (swptr + cnt) % s->dma_dac.dmasize;
s->dma_dac.swptr = swptr;
s->dma_dac.count += cnt;
s->dma_dac.endcleared = 0;
count -= cnt;
buffer += cnt;
ret += cnt;
start_dac(s);
}
out:
spin_unlock_irqrestore(&s->card->lock, flags);
return ret;
}
static unsigned int m3_poll(struct file *file, struct poll_table_struct *wait)
{
struct m3_state *s = (struct m3_state *)file->private_data;
unsigned long flags;
unsigned int mask = 0;
VALIDATE_STATE(s);
if (file->f_mode & FMODE_WRITE)
poll_wait(file, &s->dma_dac.wait, wait);
if (file->f_mode & FMODE_READ)
poll_wait(file, &s->dma_adc.wait, wait);
spin_lock_irqsave(&s->card->lock, flags);
m3_update_ptr(s);
if (file->f_mode & FMODE_READ) {
if (s->dma_adc.count >= (signed)s->dma_adc.fragsize)
mask |= POLLIN | POLLRDNORM;
}
if (file->f_mode & FMODE_WRITE) {
if (s->dma_dac.mapped) {
if (s->dma_dac.count >= (signed)s->dma_dac.fragsize)
mask |= POLLOUT | POLLWRNORM;
} else {
if ((signed)s->dma_dac.dmasize >= s->dma_dac.count + (signed)s->dma_dac.fragsize)
mask |= POLLOUT | POLLWRNORM;
}
}
spin_unlock_irqrestore(&s->card->lock, flags);
return mask;
}
static int m3_mmap(struct file *file, struct vm_area_struct *vma)
{
struct m3_state *s = (struct m3_state *)file->private_data;
unsigned long max_size, size, start, offset;
struct dmabuf *db;
int ret = -EINVAL;
VALIDATE_STATE(s);
if (vma->vm_flags & VM_WRITE) {
if ((ret = prog_dmabuf(s, 0)) != 0)
return ret;
db = &s->dma_dac;
} else
if (vma->vm_flags & VM_READ) {
if ((ret = prog_dmabuf(s, 1)) != 0)
return ret;
db = &s->dma_adc;
} else
return -EINVAL;
max_size = db->dmasize;
start = vma->vm_start;
offset = (vma->vm_pgoff << PAGE_SHIFT);
size = vma->vm_end - vma->vm_start;
if(size > max_size)
goto out;
if(offset > max_size - size)
goto out;
/*
* this will be ->nopage() once I can
* ask Jeff what the hell I'm doing wrong.
*/
ret = -EAGAIN;
if (remap_pfn_range(vma, vma->vm_start,
virt_to_phys(db->rawbuf) >> PAGE_SHIFT,
size, vma->vm_page_prot))
goto out;
db->mapped = 1;
ret = 0;
out:
return ret;
}
/*
* this function is a disaster..
*/
#define get_user_ret(x, ptr, ret) ({ if(get_user(x, ptr)) return ret; })
static int m3_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
{
struct m3_state *s = (struct m3_state *)file->private_data;
struct m3_card *card=s->card;
unsigned long flags;
audio_buf_info abinfo;
count_info cinfo;
int val, mapped, ret;
unsigned char fmtm, fmtd;
void __user *argp = (void __user *)arg;
int __user *p = argp;
VALIDATE_STATE(s);
mapped = ((file->f_mode & FMODE_WRITE) && s->dma_dac.mapped) ||
((file->f_mode & FMODE_READ) && s->dma_adc.mapped);
DPRINTK(DPSYS,"m3_ioctl: cmd %d\n", cmd);
switch (cmd) {
case OSS_GETVERSION:
return put_user(SOUND_VERSION, p);
case SNDCTL_DSP_SYNC:
if (file->f_mode & FMODE_WRITE)
return drain_dac(s, file->f_flags & O_NONBLOCK);
return 0;
case SNDCTL_DSP_SETDUPLEX:
/* XXX fix */
return 0;
case SNDCTL_DSP_GETCAPS:
return put_user(DSP_CAP_DUPLEX | DSP_CAP_REALTIME | DSP_CAP_TRIGGER | DSP_CAP_MMAP, p);
case SNDCTL_DSP_RESET:
spin_lock_irqsave(&card->lock, flags);
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
synchronize_irq(s->card->pcidev->irq);
s->dma_dac.swptr = s->dma_dac.hwptr = s->dma_dac.count = s->dma_dac.total_bytes = 0;
}
if (file->f_mode & FMODE_READ) {
stop_adc(s);
synchronize_irq(s->card->pcidev->irq);
s->dma_adc.swptr = s->dma_adc.hwptr = s->dma_adc.count = s->dma_adc.total_bytes = 0;
}
spin_unlock_irqrestore(&card->lock, flags);
return 0;
case SNDCTL_DSP_SPEED:
get_user_ret(val, p, -EFAULT);
spin_lock_irqsave(&card->lock, flags);
if (val >= 0) {
if (file->f_mode & FMODE_READ) {
stop_adc(s);
s->dma_adc.ready = 0;
set_adc_rate(s, val);
}
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
s->dma_dac.ready = 0;
set_dac_rate(s, val);
}
}
spin_unlock_irqrestore(&card->lock, flags);
return put_user((file->f_mode & FMODE_READ) ? s->rateadc : s->ratedac, p);
case SNDCTL_DSP_STEREO:
get_user_ret(val, p, -EFAULT);
spin_lock_irqsave(&card->lock, flags);
fmtd = 0;
fmtm = ~0;
if (file->f_mode & FMODE_READ) {
stop_adc(s);
s->dma_adc.ready = 0;
if (val)
fmtd |= ESS_FMT_STEREO << ESS_ADC_SHIFT;
else
fmtm &= ~(ESS_FMT_STEREO << ESS_ADC_SHIFT);
}
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
s->dma_dac.ready = 0;
if (val)
fmtd |= ESS_FMT_STEREO << ESS_DAC_SHIFT;
else
fmtm &= ~(ESS_FMT_STEREO << ESS_DAC_SHIFT);
}
set_fmt(s, fmtm, fmtd);
spin_unlock_irqrestore(&card->lock, flags);
return 0;
case SNDCTL_DSP_CHANNELS:
get_user_ret(val, p, -EFAULT);
spin_lock_irqsave(&card->lock, flags);
if (val != 0) {
fmtd = 0;
fmtm = ~0;
if (file->f_mode & FMODE_READ) {
stop_adc(s);
s->dma_adc.ready = 0;
if (val >= 2)
fmtd |= ESS_FMT_STEREO << ESS_ADC_SHIFT;
else
fmtm &= ~(ESS_FMT_STEREO << ESS_ADC_SHIFT);
}
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
s->dma_dac.ready = 0;
if (val >= 2)
fmtd |= ESS_FMT_STEREO << ESS_DAC_SHIFT;
else
fmtm &= ~(ESS_FMT_STEREO << ESS_DAC_SHIFT);
}
set_fmt(s, fmtm, fmtd);
}
spin_unlock_irqrestore(&card->lock, flags);
return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (ESS_FMT_STEREO << ESS_ADC_SHIFT)
: (ESS_FMT_STEREO << ESS_DAC_SHIFT))) ? 2 : 1, p);
case SNDCTL_DSP_GETFMTS: /* Returns a mask */
return put_user(AFMT_U8|AFMT_S16_LE, p);
case SNDCTL_DSP_SETFMT: /* Selects ONE fmt*/
get_user_ret(val, p, -EFAULT);
spin_lock_irqsave(&card->lock, flags);
if (val != AFMT_QUERY) {
fmtd = 0;
fmtm = ~0;
if (file->f_mode & FMODE_READ) {
stop_adc(s);
s->dma_adc.ready = 0;
if (val == AFMT_S16_LE)
fmtd |= ESS_FMT_16BIT << ESS_ADC_SHIFT;
else
fmtm &= ~(ESS_FMT_16BIT << ESS_ADC_SHIFT);
}
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
s->dma_dac.ready = 0;
if (val == AFMT_S16_LE)
fmtd |= ESS_FMT_16BIT << ESS_DAC_SHIFT;
else
fmtm &= ~(ESS_FMT_16BIT << ESS_DAC_SHIFT);
}
set_fmt(s, fmtm, fmtd);
}
spin_unlock_irqrestore(&card->lock, flags);
return put_user((s->fmt & ((file->f_mode & FMODE_READ) ?
(ESS_FMT_16BIT << ESS_ADC_SHIFT)
: (ESS_FMT_16BIT << ESS_DAC_SHIFT))) ?
AFMT_S16_LE :
AFMT_U8,
p);
case SNDCTL_DSP_POST:
return 0;
case SNDCTL_DSP_GETTRIGGER:
val = 0;
if ((file->f_mode & FMODE_READ) && (s->enable & ADC_RUNNING))
val |= PCM_ENABLE_INPUT;
if ((file->f_mode & FMODE_WRITE) && (s->enable & DAC_RUNNING))
val |= PCM_ENABLE_OUTPUT;
return put_user(val, p);
case SNDCTL_DSP_SETTRIGGER:
get_user_ret(val, p, -EFAULT);
if (file->f_mode & FMODE_READ) {
if (val & PCM_ENABLE_INPUT) {
if (!s->dma_adc.ready && (ret = prog_dmabuf(s, 1)))
return ret;
start_adc(s);
} else
stop_adc(s);
}
if (file->f_mode & FMODE_WRITE) {
if (val & PCM_ENABLE_OUTPUT) {
if (!s->dma_dac.ready && (ret = prog_dmabuf(s, 0)))
return ret;
start_dac(s);
} else
stop_dac(s);
}
return 0;
case SNDCTL_DSP_GETOSPACE:
if (!(file->f_mode & FMODE_WRITE))
return -EINVAL;
if (!(s->enable & DAC_RUNNING) && (val = prog_dmabuf(s, 0)) != 0)
return val;
spin_lock_irqsave(&card->lock, flags);
m3_update_ptr(s);
abinfo.fragsize = s->dma_dac.fragsize;
abinfo.bytes = s->dma_dac.dmasize - s->dma_dac.count;
abinfo.fragstotal = s->dma_dac.numfrag;
abinfo.fragments = abinfo.bytes >> s->dma_dac.fragshift;
spin_unlock_irqrestore(&card->lock, flags);
return copy_to_user(argp, &abinfo, sizeof(abinfo)) ? -EFAULT : 0;
case SNDCTL_DSP_GETISPACE:
if (!(file->f_mode & FMODE_READ))
return -EINVAL;
if (!(s->enable & ADC_RUNNING) && (val = prog_dmabuf(s, 1)) != 0)
return val;
spin_lock_irqsave(&card->lock, flags);
m3_update_ptr(s);
abinfo.fragsize = s->dma_adc.fragsize;
abinfo.bytes = s->dma_adc.count;
abinfo.fragstotal = s->dma_adc.numfrag;
abinfo.fragments = abinfo.bytes >> s->dma_adc.fragshift;
spin_unlock_irqrestore(&card->lock, flags);
return copy_to_user(argp, &abinfo, sizeof(abinfo)) ? -EFAULT : 0;
case SNDCTL_DSP_NONBLOCK:
file->f_flags |= O_NONBLOCK;
return 0;
case SNDCTL_DSP_GETODELAY:
if (!(file->f_mode & FMODE_WRITE))
return -EINVAL;
spin_lock_irqsave(&card->lock, flags);
m3_update_ptr(s);
val = s->dma_dac.count;
spin_unlock_irqrestore(&card->lock, flags);
return put_user(val, p);
case SNDCTL_DSP_GETIPTR:
if (!(file->f_mode & FMODE_READ))
return -EINVAL;
spin_lock_irqsave(&card->lock, flags);
m3_update_ptr(s);
cinfo.bytes = s->dma_adc.total_bytes;
cinfo.blocks = s->dma_adc.count >> s->dma_adc.fragshift;
cinfo.ptr = s->dma_adc.hwptr;
if (s->dma_adc.mapped)
s->dma_adc.count &= s->dma_adc.fragsize-1;
spin_unlock_irqrestore(&card->lock, flags);
if (copy_to_user(argp, &cinfo, sizeof(cinfo)))
return -EFAULT;
return 0;
case SNDCTL_DSP_GETOPTR:
if (!(file->f_mode & FMODE_WRITE))
return -EINVAL;
spin_lock_irqsave(&card->lock, flags);
m3_update_ptr(s);
cinfo.bytes = s->dma_dac.total_bytes;
cinfo.blocks = s->dma_dac.count >> s->dma_dac.fragshift;
cinfo.ptr = s->dma_dac.hwptr;
if (s->dma_dac.mapped)
s->dma_dac.count &= s->dma_dac.fragsize-1;
spin_unlock_irqrestore(&card->lock, flags);
if (copy_to_user(argp, &cinfo, sizeof(cinfo)))
return -EFAULT;
return 0;
case SNDCTL_DSP_GETBLKSIZE:
if (file->f_mode & FMODE_WRITE) {
if ((val = prog_dmabuf(s, 0)))
return val;
return put_user(s->dma_dac.fragsize, p);
}
if ((val = prog_dmabuf(s, 1)))
return val;
return put_user(s->dma_adc.fragsize, p);
case SNDCTL_DSP_SETFRAGMENT:
get_user_ret(val, p, -EFAULT);
spin_lock_irqsave(&card->lock, flags);
if (file->f_mode & FMODE_READ) {
s->dma_adc.ossfragshift = val & 0xffff;
s->dma_adc.ossmaxfrags = (val >> 16) & 0xffff;
if (s->dma_adc.ossfragshift < 4)
s->dma_adc.ossfragshift = 4;
if (s->dma_adc.ossfragshift > 15)
s->dma_adc.ossfragshift = 15;
if (s->dma_adc.ossmaxfrags < 4)
s->dma_adc.ossmaxfrags = 4;
}
if (file->f_mode & FMODE_WRITE) {
s->dma_dac.ossfragshift = val & 0xffff;
s->dma_dac.ossmaxfrags = (val >> 16) & 0xffff;
if (s->dma_dac.ossfragshift < 4)
s->dma_dac.ossfragshift = 4;
if (s->dma_dac.ossfragshift > 15)
s->dma_dac.ossfragshift = 15;
if (s->dma_dac.ossmaxfrags < 4)
s->dma_dac.ossmaxfrags = 4;
}
spin_unlock_irqrestore(&card->lock, flags);
return 0;
case SNDCTL_DSP_SUBDIVIDE:
if ((file->f_mode & FMODE_READ && s->dma_adc.subdivision) ||
(file->f_mode & FMODE_WRITE && s->dma_dac.subdivision))
return -EINVAL;
get_user_ret(val, p, -EFAULT);
if (val != 1 && val != 2 && val != 4)
return -EINVAL;
if (file->f_mode & FMODE_READ)
s->dma_adc.subdivision = val;
if (file->f_mode & FMODE_WRITE)
s->dma_dac.subdivision = val;
return 0;
case SOUND_PCM_READ_RATE:
return put_user((file->f_mode & FMODE_READ) ? s->rateadc : s->ratedac, p);
case SOUND_PCM_READ_CHANNELS:
return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (ESS_FMT_STEREO << ESS_ADC_SHIFT)
: (ESS_FMT_STEREO << ESS_DAC_SHIFT))) ? 2 : 1, p);
case SOUND_PCM_READ_BITS:
return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (ESS_FMT_16BIT << ESS_ADC_SHIFT)
: (ESS_FMT_16BIT << ESS_DAC_SHIFT))) ? 16 : 8, p);
case SOUND_PCM_WRITE_FILTER:
case SNDCTL_DSP_SETSYNCRO:
case SOUND_PCM_READ_FILTER:
return -EINVAL;
}
return -EINVAL;
}
static int
allocate_dmabuf(struct pci_dev *pci_dev, struct dmabuf *db)
{
int order;
DPRINTK(DPSTR,"allocating for dmabuf %p\n", db);
/*
* alloc as big a chunk as we can, start with
* 64k 'cause we're insane. based on order cause
* the amazingly complicated prog_dmabuf wants it.
*
* pci_alloc_sonsistent guarantees that it won't cross a natural
* boundary; the m3 hardware can't have dma cross a 64k bus
* address boundary.
*/
for (order = 16-PAGE_SHIFT; order >= 1; order--) {
db->rawbuf = pci_alloc_consistent(pci_dev, PAGE_SIZE << order,
&(db->handle));
if(db->rawbuf)
break;
}
if (!db->rawbuf)
return 1;
DPRINTK(DPSTR,"allocated %ld (%d) bytes at %p\n",
PAGE_SIZE<<order, order, db->rawbuf);
{
struct page *page, *pend;
pend = virt_to_page(db->rawbuf + (PAGE_SIZE << order) - 1);
for (page = virt_to_page(db->rawbuf); page <= pend; page++)
SetPageReserved(page);
}
db->buforder = order;
db->ready = 0;
db->mapped = 0;
return 0;
}
static void
nuke_lists(struct m3_card *card, struct dmabuf *db)
{
m3_remove_list(card, &(card->dma_list), db->dma_index);
m3_remove_list(card, &(card->msrc_list), db->msrc_index);
db->in_lists = 0;
}
static void
free_dmabuf(struct pci_dev *pci_dev, struct dmabuf *db)
{
if(db->rawbuf == NULL)
return;
DPRINTK(DPSTR,"freeing %p from dmabuf %p\n",db->rawbuf, db);
{
struct page *page, *pend;
pend = virt_to_page(db->rawbuf + (PAGE_SIZE << db->buforder) - 1);
for (page = virt_to_page(db->rawbuf); page <= pend; page++)
ClearPageReserved(page);
}
pci_free_consistent(pci_dev, PAGE_SIZE << db->buforder,
db->rawbuf, db->handle);
db->rawbuf = NULL;
db->buforder = 0;
db->mapped = 0;
db->ready = 0;
}
static int m3_open(struct inode *inode, struct file *file)
{
unsigned int minor = iminor(inode);
struct m3_card *c;
struct m3_state *s = NULL;
int i;
unsigned char fmtm = ~0, fmts = 0;
unsigned long flags;
/*
* Scan the cards and find the channel. We only
* do this at open time so it is ok
*/
for(c = devs ; c != NULL ; c = c->next) {
for(i=0;i<NR_DSPS;i++) {
if(c->channels[i].dev_audio < 0)
continue;
if((c->channels[i].dev_audio ^ minor) & ~0xf)
continue;
s = &c->channels[i];
break;
}
}
if (!s)
return -ENODEV;
VALIDATE_STATE(s);
file->private_data = s;
/* wait for device to become free */
mutex_lock(&s->open_mutex);
while (s->open_mode & file->f_mode) {
if (file->f_flags & O_NONBLOCK) {
mutex_unlock(&s->open_mutex);
return -EWOULDBLOCK;
}
mutex_unlock(&s->open_mutex);
interruptible_sleep_on(&s->open_wait);
if (signal_pending(current))
return -ERESTARTSYS;
mutex_lock(&s->open_mutex);
}
spin_lock_irqsave(&c->lock, flags);
if (file->f_mode & FMODE_READ) {
fmtm &= ~((ESS_FMT_STEREO | ESS_FMT_16BIT) << ESS_ADC_SHIFT);
if ((minor & 0xf) == SND_DEV_DSP16)
fmts |= ESS_FMT_16BIT << ESS_ADC_SHIFT;
s->dma_adc.ossfragshift = s->dma_adc.ossmaxfrags = s->dma_adc.subdivision = 0;
set_adc_rate(s, 8000);
}
if (file->f_mode & FMODE_WRITE) {
fmtm &= ~((ESS_FMT_STEREO | ESS_FMT_16BIT) << ESS_DAC_SHIFT);
if ((minor & 0xf) == SND_DEV_DSP16)
fmts |= ESS_FMT_16BIT << ESS_DAC_SHIFT;
s->dma_dac.ossfragshift = s->dma_dac.ossmaxfrags = s->dma_dac.subdivision = 0;
set_dac_rate(s, 8000);
}
set_fmt(s, fmtm, fmts);
s->open_mode |= file->f_mode & (FMODE_READ | FMODE_WRITE);
mutex_unlock(&s->open_mutex);
spin_unlock_irqrestore(&c->lock, flags);
return nonseekable_open(inode, file);
}
static int m3_release(struct inode *inode, struct file *file)
{
struct m3_state *s = (struct m3_state *)file->private_data;
struct m3_card *card=s->card;
unsigned long flags;
VALIDATE_STATE(s);
if (file->f_mode & FMODE_WRITE)
drain_dac(s, file->f_flags & O_NONBLOCK);
mutex_lock(&s->open_mutex);
spin_lock_irqsave(&card->lock, flags);
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
if(s->dma_dac.in_lists) {
m3_remove_list(s->card, &(s->card->mixer_list), s->dma_dac.mixer_index);
nuke_lists(s->card, &(s->dma_dac));
}
}
if (file->f_mode & FMODE_READ) {
stop_adc(s);
if(s->dma_adc.in_lists) {
m3_remove_list(s->card, &(s->card->adc1_list), s->dma_adc.adc1_index);
nuke_lists(s->card, &(s->dma_adc));
}
}
s->open_mode &= (~file->f_mode) & (FMODE_READ|FMODE_WRITE);
spin_unlock_irqrestore(&card->lock, flags);
mutex_unlock(&s->open_mutex);
wake_up(&s->open_wait);
return 0;
}
/*
* Wait for the ac97 serial bus to be free.
* return nonzero if the bus is still busy.
*/
static int m3_ac97_wait(struct m3_card *card)
{
int i = 10000;
while( (m3_inb(card, 0x30) & 1) && i--) ;
return i == 0;
}
static u16 m3_ac97_read(struct ac97_codec *codec, u8 reg)
{
u16 ret = 0;
struct m3_card *card = codec->private_data;
spin_lock(&card->ac97_lock);
if(m3_ac97_wait(card)) {
printk(KERN_ERR PFX "serial bus busy reading reg 0x%x\n",reg);
goto out;
}
m3_outb(card, 0x80 | (reg & 0x7f), 0x30);
if(m3_ac97_wait(card)) {
printk(KERN_ERR PFX "serial bus busy finishing read reg 0x%x\n",reg);
goto out;
}
ret = m3_inw(card, 0x32);
DPRINTK(DPCRAP,"reading 0x%04x from 0x%02x\n",ret, reg);
out:
spin_unlock(&card->ac97_lock);
return ret;
}
static void m3_ac97_write(struct ac97_codec *codec, u8 reg, u16 val)
{
struct m3_card *card = codec->private_data;
spin_lock(&card->ac97_lock);
if(m3_ac97_wait(card)) {
printk(KERN_ERR PFX "serial bus busy writing 0x%x to 0x%x\n",val, reg);
goto out;
}
DPRINTK(DPCRAP,"writing 0x%04x to 0x%02x\n", val, reg);
m3_outw(card, val, 0x32);
m3_outb(card, reg & 0x7f, 0x30);
out:
spin_unlock(&card->ac97_lock);
}
/* OSS /dev/mixer file operation methods */
static int m3_open_mixdev(struct inode *inode, struct file *file)
{
unsigned int minor = iminor(inode);
struct m3_card *card = devs;
for (card = devs; card != NULL; card = card->next) {
if((card->ac97 != NULL) && (card->ac97->dev_mixer == minor))
break;
}
if (!card) {
return -ENODEV;
}
file->private_data = card->ac97;
return nonseekable_open(inode, file);
}
static int m3_release_mixdev(struct inode *inode, struct file *file)
{
return 0;
}
static int m3_ioctl_mixdev(struct inode *inode, struct file *file, unsigned int cmd,
unsigned long arg)
{
struct ac97_codec *codec = (struct ac97_codec *)file->private_data;
return codec->mixer_ioctl(codec, cmd, arg);
}
static struct file_operations m3_mixer_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.ioctl = m3_ioctl_mixdev,
.open = m3_open_mixdev,
.release = m3_release_mixdev,
};
static void remote_codec_config(int io, int isremote)
{
isremote = isremote ? 1 : 0;
outw( (inw(io + RING_BUS_CTRL_B) & ~SECOND_CODEC_ID_MASK) | isremote,
io + RING_BUS_CTRL_B);
outw( (inw(io + SDO_OUT_DEST_CTRL) & ~COMMAND_ADDR_OUT) | isremote,
io + SDO_OUT_DEST_CTRL);
outw( (inw(io + SDO_IN_DEST_CTRL) & ~STATUS_ADDR_IN) | isremote,
io + SDO_IN_DEST_CTRL);
}
/*
* hack, returns non zero on err
*/
static int try_read_vendor(struct m3_card *card)
{
u16 ret;
if(m3_ac97_wait(card))
return 1;
m3_outb(card, 0x80 | (AC97_VENDOR_ID1 & 0x7f), 0x30);
if(m3_ac97_wait(card))
return 1;
ret = m3_inw(card, 0x32);
return (ret == 0) || (ret == 0xffff);
}
static void m3_codec_reset(struct m3_card *card, int busywait)
{
u16 dir;
int delay1 = 0, delay2 = 0, i;
int io = card->iobase;
switch (card->card_type) {
/*
* the onboard codec on the allegro seems
* to want to wait a very long time before
* coming back to life
*/
case ESS_ALLEGRO:
delay1 = 50;
delay2 = 800;
break;
case ESS_MAESTRO3:
case ESS_MAESTRO3HW:
delay1 = 20;
delay2 = 500;
break;
}
for(i = 0; i < 5; i ++) {
dir = inw(io + GPIO_DIRECTION);
dir |= 0x10; /* assuming pci bus master? */
remote_codec_config(io, 0);
outw(IO_SRAM_ENABLE, io + RING_BUS_CTRL_A);
udelay(20);
outw(dir & ~GPO_PRIMARY_AC97 , io + GPIO_DIRECTION);
outw(~GPO_PRIMARY_AC97 , io + GPIO_MASK);
outw(0, io + GPIO_DATA);
outw(dir | GPO_PRIMARY_AC97, io + GPIO_DIRECTION);
if(busywait) {
mdelay(delay1);
} else {
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout((delay1 * HZ) / 1000);
}
outw(GPO_PRIMARY_AC97, io + GPIO_DATA);
udelay(5);
/* ok, bring back the ac-link */
outw(IO_SRAM_ENABLE | SERIAL_AC_LINK_ENABLE, io + RING_BUS_CTRL_A);
outw(~0, io + GPIO_MASK);
if(busywait) {
mdelay(delay2);
} else {
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout((delay2 * HZ) / 1000);
}
if(! try_read_vendor(card))
break;
delay1 += 10;
delay2 += 100;
DPRINTK(DPMOD, "retrying codec reset with delays of %d and %d ms\n",
delay1, delay2);
}
#if 0
/* more gung-ho reset that doesn't
* seem to work anywhere :)
*/
tmp = inw(io + RING_BUS_CTRL_A);
outw(RAC_SDFS_ENABLE|LAC_SDFS_ENABLE, io + RING_BUS_CTRL_A);
mdelay(20);
outw(tmp, io + RING_BUS_CTRL_A);
mdelay(50);
#endif
}
static int __devinit m3_codec_install(struct m3_card *card)
{
struct ac97_codec *codec;
if ((codec = ac97_alloc_codec()) == NULL)
return -ENOMEM;
codec->private_data = card;
codec->codec_read = m3_ac97_read;
codec->codec_write = m3_ac97_write;
/* someday we should support secondary codecs.. */
codec->id = 0;
if (ac97_probe_codec(codec) == 0) {
printk(KERN_ERR PFX "codec probe failed\n");
ac97_release_codec(codec);
return -1;
}
if ((codec->dev_mixer = register_sound_mixer(&m3_mixer_fops, -1)) < 0) {
printk(KERN_ERR PFX "couldn't register mixer!\n");
ac97_release_codec(codec);
return -1;
}
card->ac97 = codec;
return 0;
}
#define MINISRC_LPF_LEN 10
static u16 minisrc_lpf[MINISRC_LPF_LEN] = {
0X0743, 0X1104, 0X0A4C, 0XF88D, 0X242C,
0X1023, 0X1AA9, 0X0B60, 0XEFDD, 0X186F
};
static void m3_assp_init(struct m3_card *card)
{
int i;
/* zero kernel data */
for(i = 0 ; i < (REV_B_DATA_MEMORY_UNIT_LENGTH * NUM_UNITS_KERNEL_DATA) / 2; i++)
m3_assp_write(card, MEMTYPE_INTERNAL_DATA,
KDATA_BASE_ADDR + i, 0);
/* zero mixer data? */
for(i = 0 ; i < (REV_B_DATA_MEMORY_UNIT_LENGTH * NUM_UNITS_KERNEL_DATA) / 2; i++)
m3_assp_write(card, MEMTYPE_INTERNAL_DATA,
KDATA_BASE_ADDR2 + i, 0);
/* init dma pointer */
m3_assp_write(card, MEMTYPE_INTERNAL_DATA,
KDATA_CURRENT_DMA,
KDATA_DMA_XFER0);
/* write kernel into code memory.. */
for(i = 0 ; i < sizeof(assp_kernel_image) / 2; i++) {
m3_assp_write(card, MEMTYPE_INTERNAL_CODE,
REV_B_CODE_MEMORY_BEGIN + i,
assp_kernel_image[i]);
}
/*
* We only have this one client and we know that 0x400
* is free in our kernel's mem map, so lets just
* drop it there. It seems that the minisrc doesn't
* need vectors, so we won't bother with them..
*/
for(i = 0 ; i < sizeof(assp_minisrc_image) / 2; i++) {
m3_assp_write(card, MEMTYPE_INTERNAL_CODE,
0x400 + i,
assp_minisrc_image[i]);
}
/*
* write the coefficients for the low pass filter?
*/
for(i = 0; i < MINISRC_LPF_LEN ; i++) {
m3_assp_write(card, MEMTYPE_INTERNAL_CODE,
0x400 + MINISRC_COEF_LOC + i,
minisrc_lpf[i]);
}
m3_assp_write(card, MEMTYPE_INTERNAL_CODE,
0x400 + MINISRC_COEF_LOC + MINISRC_LPF_LEN,
0x8000);
/*
* the minisrc is the only thing on
* our task list..
*/
m3_assp_write(card, MEMTYPE_INTERNAL_DATA,
KDATA_TASK0,
0x400);
/*
* init the mixer number..
*/
m3_assp_write(card, MEMTYPE_INTERNAL_DATA,
KDATA_MIXER_TASK_NUMBER,0);
/*
* EXTREME KERNEL MASTER VOLUME
*/
m3_assp_write(card, MEMTYPE_INTERNAL_DATA,
KDATA_DAC_LEFT_VOLUME, ARB_VOLUME);
m3_assp_write(card, MEMTYPE_INTERNAL_DATA,
KDATA_DAC_RIGHT_VOLUME, ARB_VOLUME);
card->mixer_list.mem_addr = KDATA_MIXER_XFER0;
card->mixer_list.max = MAX_VIRTUAL_MIXER_CHANNELS;
card->adc1_list.mem_addr = KDATA_ADC1_XFER0;
card->adc1_list.max = MAX_VIRTUAL_ADC1_CHANNELS;
card->dma_list.mem_addr = KDATA_DMA_XFER0;
card->dma_list.max = MAX_VIRTUAL_DMA_CHANNELS;
card->msrc_list.mem_addr = KDATA_INSTANCE0_MINISRC;
card->msrc_list.max = MAX_INSTANCE_MINISRC;
}
static int setup_msrc(struct m3_card *card,
struct assp_instance *inst, int index)
{
int data_bytes = 2 * ( MINISRC_TMP_BUFFER_SIZE / 2 +
MINISRC_IN_BUFFER_SIZE / 2 +
1 + MINISRC_OUT_BUFFER_SIZE / 2 + 1 );
int address, i;
/*
* the revb memory map has 0x1100 through 0x1c00
* free.
*/
/*
* align instance address to 256 bytes so that it's
* shifted list address is aligned.
* list address = (mem address >> 1) >> 7;
*/
data_bytes = (data_bytes + 255) & ~255;
address = 0x1100 + ((data_bytes/2) * index);
if((address + (data_bytes/2)) >= 0x1c00) {
printk(KERN_ERR PFX "no memory for %d bytes at ind %d (addr 0x%x)\n",
data_bytes, index, address);
return -1;
}
for(i = 0; i < data_bytes/2 ; i++)
m3_assp_write(card, MEMTYPE_INTERNAL_DATA,
address + i, 0);
inst->code = 0x400;
inst->data = address;
return 0;
}
static int m3_assp_client_init(struct m3_state *s)
{
setup_msrc(s->card, &(s->dac_inst), s->index * 2);
setup_msrc(s->card, &(s->adc_inst), (s->index * 2) + 1);
return 0;
}
static void m3_amp_enable(struct m3_card *card, int enable)
{
/*
* this works for the reference board, have to find
* out about others
*
* this needs more magic for 4 speaker, but..
*/
int io = card->iobase;
u16 gpo, polarity_port, polarity;
if(!external_amp)
return;
if (gpio_pin >= 0 && gpio_pin <= 15) {
polarity_port = 0x1000 + (0x100 * gpio_pin);
} else {
switch (card->card_type) {
case ESS_ALLEGRO:
polarity_port = 0x1800;
break;
default:
polarity_port = 0x1100;
/* Panasonic toughbook CF72 has to be different... */
if(card->pcidev->subsystem_vendor == 0x10F7 && card->pcidev->subsystem_device == 0x833D)
polarity_port = 0x1D00;
break;
}
}
gpo = (polarity_port >> 8) & 0x0F;
polarity = polarity_port >> 12;
if ( enable )
polarity = !polarity;
polarity = polarity << gpo;
gpo = 1 << gpo;
outw(~gpo , io + GPIO_MASK);
outw( inw(io + GPIO_DIRECTION) | gpo ,
io + GPIO_DIRECTION);
outw( (GPO_SECONDARY_AC97 | GPO_PRIMARY_AC97 | polarity) ,
io + GPIO_DATA);
outw(0xffff , io + GPIO_MASK);
}
static int
maestro_config(struct m3_card *card)
{
struct pci_dev *pcidev = card->pcidev;
u32 n;
u8 t; /* makes as much sense as 'n', no? */
pci_read_config_dword(pcidev, PCI_ALLEGRO_CONFIG, &n);
n &= REDUCED_DEBOUNCE;
n |= PM_CTRL_ENABLE | CLK_DIV_BY_49 | USE_PCI_TIMING;
pci_write_config_dword(pcidev, PCI_ALLEGRO_CONFIG, n);
outb(RESET_ASSP, card->iobase + ASSP_CONTROL_B);
pci_read_config_dword(pcidev, PCI_ALLEGRO_CONFIG, &n);
n &= ~INT_CLK_SELECT;
if(card->card_type >= ESS_MAESTRO3) {
n &= ~INT_CLK_MULT_ENABLE;
n |= INT_CLK_SRC_NOT_PCI;
}
n &= ~( CLK_MULT_MODE_SELECT | CLK_MULT_MODE_SELECT_2 );
pci_write_config_dword(pcidev, PCI_ALLEGRO_CONFIG, n);
if(card->card_type <= ESS_ALLEGRO) {
pci_read_config_dword(pcidev, PCI_USER_CONFIG, &n);
n |= IN_CLK_12MHZ_SELECT;
pci_write_config_dword(pcidev, PCI_USER_CONFIG, n);
}
t = inb(card->iobase + ASSP_CONTROL_A);
t &= ~( DSP_CLK_36MHZ_SELECT | ASSP_CLK_49MHZ_SELECT);
t |= ASSP_CLK_49MHZ_SELECT;
t |= ASSP_0_WS_ENABLE;
outb(t, card->iobase + ASSP_CONTROL_A);
outb(RUN_ASSP, card->iobase + ASSP_CONTROL_B);
return 0;
}
static void m3_enable_ints(struct m3_card *card)
{
unsigned long io = card->iobase;
outw(ASSP_INT_ENABLE, io + HOST_INT_CTRL);
outb(inb(io + ASSP_CONTROL_C) | ASSP_HOST_INT_ENABLE,
io + ASSP_CONTROL_C);
}
static struct file_operations m3_audio_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.read = m3_read,
.write = m3_write,
.poll = m3_poll,
.ioctl = m3_ioctl,
.mmap = m3_mmap,
.open = m3_open,
.release = m3_release,
};
#ifdef CONFIG_PM
static int alloc_dsp_suspendmem(struct m3_card *card)
{
int len = sizeof(u16) * (REV_B_CODE_MEMORY_LENGTH + REV_B_DATA_MEMORY_LENGTH);
if( (card->suspend_mem = vmalloc(len)) == NULL)
return 1;
return 0;
}
#else
#define alloc_dsp_suspendmem(args...) 0
#endif
/*
* great day! this function is ugly as hell.
*/
static int __devinit m3_probe(struct pci_dev *pci_dev, const struct pci_device_id *pci_id)
{
u32 n;
int i;
struct m3_card *card = NULL;
int ret = 0;
int card_type = pci_id->driver_data;
DPRINTK(DPMOD, "in maestro_install\n");
if (pci_enable_device(pci_dev))
return -EIO;
if (pci_set_dma_mask(pci_dev, M3_PCI_DMA_MASK)) {
printk(KERN_ERR PFX "architecture does not support limiting to 28bit PCI bus addresses\n");
return -ENODEV;
}
pci_set_master(pci_dev);
if( (card = kmalloc(sizeof(struct m3_card), GFP_KERNEL)) == NULL) {
printk(KERN_WARNING PFX "out of memory\n");
return -ENOMEM;
}
memset(card, 0, sizeof(struct m3_card));
card->pcidev = pci_dev;
init_waitqueue_head(&card->suspend_queue);
if ( ! request_region(pci_resource_start(pci_dev, 0),
pci_resource_len (pci_dev, 0), M3_MODULE_NAME)) {
printk(KERN_WARNING PFX "unable to reserve I/O space.\n");
ret = -EBUSY;
goto out;
}
card->iobase = pci_resource_start(pci_dev, 0);
if(alloc_dsp_suspendmem(card)) {
printk(KERN_WARNING PFX "couldn't alloc %d bytes for saving dsp state on suspend\n",
REV_B_CODE_MEMORY_LENGTH + REV_B_DATA_MEMORY_LENGTH);
ret = -ENOMEM;
goto out;
}
card->card_type = card_type;
card->irq = pci_dev->irq;
card->next = devs;
card->magic = M3_CARD_MAGIC;
spin_lock_init(&card->lock);
spin_lock_init(&card->ac97_lock);
devs = card;
for(i = 0; i<NR_DSPS; i++) {
struct m3_state *s = &(card->channels[i]);
s->dev_audio = -1;
}
printk(KERN_INFO PFX "Configuring ESS %s found at IO 0x%04X IRQ %d\n",
card_names[card->card_type], card->iobase, card->irq);
pci_read_config_dword(pci_dev, PCI_SUBSYSTEM_VENDOR_ID, &n);
printk(KERN_INFO PFX " subvendor id: 0x%08x\n",n);
maestro_config(card);
m3_assp_halt(card);
m3_codec_reset(card, 0);
if(m3_codec_install(card)) {
ret = -EIO;
goto out;
}
m3_assp_init(card);
m3_amp_enable(card, 1);
for(i=0;i<NR_DSPS;i++) {
struct m3_state *s=&card->channels[i];
s->index = i;
s->card = card;
init_waitqueue_head(&s->dma_adc.wait);
init_waitqueue_head(&s->dma_dac.wait);
init_waitqueue_head(&s->open_wait);
mutex_init(&(s->open_mutex));
s->magic = M3_STATE_MAGIC;
m3_assp_client_init(s);
if(s->dma_adc.ready || s->dma_dac.ready || s->dma_adc.rawbuf)
printk(KERN_WARNING PFX "initing a dsp device that is already in use?\n");
/* register devices */
if ((s->dev_audio = register_sound_dsp(&m3_audio_fops, -1)) < 0) {
break;
}
if( allocate_dmabuf(card->pcidev, &(s->dma_adc)) ||
allocate_dmabuf(card->pcidev, &(s->dma_dac))) {
ret = -ENOMEM;
goto out;
}
}
if(request_irq(card->irq, m3_interrupt, SA_SHIRQ, card_names[card->card_type], card)) {
printk(KERN_ERR PFX "unable to allocate irq %d,\n", card->irq);
ret = -EIO;
goto out;
}
pci_set_drvdata(pci_dev, card);
m3_enable_ints(card);
m3_assp_continue(card);
out:
if(ret) {
if(card->iobase)
release_region(pci_resource_start(pci_dev, 0), pci_resource_len(pci_dev, 0));
vfree(card->suspend_mem);
if(card->ac97) {
unregister_sound_mixer(card->ac97->dev_mixer);
kfree(card->ac97);
}
for(i=0;i<NR_DSPS;i++)
{
struct m3_state *s = &card->channels[i];
if(s->dev_audio != -1)
unregister_sound_dsp(s->dev_audio);
}
kfree(card);
}
return ret;
}
static void m3_remove(struct pci_dev *pci_dev)
{
struct m3_card *card;
unregister_reboot_notifier(&m3_reboot_nb);
while ((card = devs)) {
int i;
devs = devs->next;
free_irq(card->irq, card);
unregister_sound_mixer(card->ac97->dev_mixer);
kfree(card->ac97);
for(i=0;i<NR_DSPS;i++)
{
struct m3_state *s = &card->channels[i];
if(s->dev_audio < 0)
continue;
unregister_sound_dsp(s->dev_audio);
free_dmabuf(card->pcidev, &s->dma_adc);
free_dmabuf(card->pcidev, &s->dma_dac);
}
release_region(card->iobase, 256);
vfree(card->suspend_mem);
kfree(card);
}
devs = NULL;
}
/*
* some bioses like the sound chip to be powered down
* at shutdown. We're just calling _suspend to
* achieve that..
*/
static int m3_notifier(struct notifier_block *nb, unsigned long event, void *buf)
{
struct m3_card *card;
DPRINTK(DPMOD, "notifier suspending all cards\n");
for(card = devs; card != NULL; card = card->next) {
if(!card->in_suspend)
m3_suspend(card->pcidev, PMSG_SUSPEND); /* XXX legal? */
}
return 0;
}
static int m3_suspend(struct pci_dev *pci_dev, pm_message_t state)
{
unsigned long flags;
int i;
struct m3_card *card = pci_get_drvdata(pci_dev);
/* must be a better way.. */
spin_lock_irqsave(&card->lock, flags);
DPRINTK(DPMOD, "pm in dev %p\n",card);
for(i=0;i<NR_DSPS;i++) {
struct m3_state *s = &card->channels[i];
if(s->dev_audio == -1)
continue;
DPRINTK(DPMOD, "stop_adc/dac() device %d\n",i);
stop_dac(s);
stop_adc(s);
}
mdelay(10); /* give the assp a chance to idle.. */
m3_assp_halt(card);
if(card->suspend_mem) {
int index = 0;
DPRINTK(DPMOD, "saving code\n");
for(i = REV_B_CODE_MEMORY_BEGIN ; i <= REV_B_CODE_MEMORY_END; i++)
card->suspend_mem[index++] =
m3_assp_read(card, MEMTYPE_INTERNAL_CODE, i);
DPRINTK(DPMOD, "saving data\n");
for(i = REV_B_DATA_MEMORY_BEGIN ; i <= REV_B_DATA_MEMORY_END; i++)
card->suspend_mem[index++] =
m3_assp_read(card, MEMTYPE_INTERNAL_DATA, i);
}
DPRINTK(DPMOD, "powering down apci regs\n");
m3_outw(card, 0xffff, 0x54);
m3_outw(card, 0xffff, 0x56);
card->in_suspend = 1;
spin_unlock_irqrestore(&card->lock, flags);
return 0;
}
static int m3_resume(struct pci_dev *pci_dev)
{
unsigned long flags;
int index;
int i;
struct m3_card *card = pci_get_drvdata(pci_dev);
spin_lock_irqsave(&card->lock, flags);
card->in_suspend = 0;
DPRINTK(DPMOD, "resuming\n");
/* first lets just bring everything back. .*/
DPRINTK(DPMOD, "bringing power back on card 0x%p\n",card);
m3_outw(card, 0, 0x54);
m3_outw(card, 0, 0x56);
DPRINTK(DPMOD, "restoring pci configs and reseting codec\n");
maestro_config(card);
m3_assp_halt(card);
m3_codec_reset(card, 1);
DPRINTK(DPMOD, "restoring dsp code card\n");
index = 0;
for(i = REV_B_CODE_MEMORY_BEGIN ; i <= REV_B_CODE_MEMORY_END; i++)
m3_assp_write(card, MEMTYPE_INTERNAL_CODE, i,
card->suspend_mem[index++]);
for(i = REV_B_DATA_MEMORY_BEGIN ; i <= REV_B_DATA_MEMORY_END; i++)
m3_assp_write(card, MEMTYPE_INTERNAL_DATA, i,
card->suspend_mem[index++]);
/* tell the dma engine to restart itself */
m3_assp_write(card, MEMTYPE_INTERNAL_DATA,
KDATA_DMA_ACTIVE, 0);
DPRINTK(DPMOD, "resuming dsp\n");
m3_assp_continue(card);
DPRINTK(DPMOD, "enabling ints\n");
m3_enable_ints(card);
/* bring back the old school flavor */
for(i = 0; i < SOUND_MIXER_NRDEVICES ; i++) {
int state = card->ac97->mixer_state[i];
if (!supported_mixer(card->ac97, i))
continue;
card->ac97->write_mixer(card->ac97, i,
state & 0xff, (state >> 8) & 0xff);
}
m3_amp_enable(card, 1);
/*
* now we flip on the music
*/
for(i=0;i<NR_DSPS;i++) {
struct m3_state *s = &card->channels[i];
if(s->dev_audio == -1)
continue;
/*
* db->ready makes it so these guys can be
* called unconditionally..
*/
DPRINTK(DPMOD, "turning on dacs ind %d\n",i);
start_dac(s);
start_adc(s);
}
spin_unlock_irqrestore(&card->lock, flags);
/*
* all right, we think things are ready,
* wake up people who were using the device
* when we suspended
*/
wake_up(&card->suspend_queue);
return 0;
}
MODULE_AUTHOR("Zach Brown <zab@zabbo.net>");
MODULE_DESCRIPTION("ESS Maestro3/Allegro Driver");
MODULE_LICENSE("GPL");
#ifdef M_DEBUG
module_param(debug, int, 0);
#endif
module_param(external_amp, int, 0);
module_param(gpio_pin, int, 0);
static struct pci_driver m3_pci_driver = {
.name = "ess_m3_audio",
.id_table = m3_id_table,
.probe = m3_probe,
.remove = m3_remove,
.suspend = m3_suspend,
.resume = m3_resume,
};
static int __init m3_init_module(void)
{
printk(KERN_INFO PFX "version " DRIVER_VERSION " built at " __TIME__ " " __DATE__ "\n");
if (register_reboot_notifier(&m3_reboot_nb)) {
printk(KERN_WARNING PFX "reboot notifier registration failed\n");
return -ENODEV; /* ? */
}
if (pci_register_driver(&m3_pci_driver)) {
unregister_reboot_notifier(&m3_reboot_nb);
return -ENODEV;
}
return 0;
}
static void __exit m3_cleanup_module(void)
{
pci_unregister_driver(&m3_pci_driver);
}
module_init(m3_init_module);
module_exit(m3_cleanup_module);
void check_suspend(struct m3_card *card)
{
DECLARE_WAITQUEUE(wait, current);
if(!card->in_suspend)
return;
card->in_suspend++;
add_wait_queue(&card->suspend_queue, &wait);
set_current_state(TASK_UNINTERRUPTIBLE);
schedule();
remove_wait_queue(&card->suspend_queue, &wait);
set_current_state(TASK_RUNNING);
}