1
linux/arch/x86_64/mm/numa.c
Mel Gorman 6391af174a [PATCH] mm: use symbolic names instead of indices for zone initialisation
Arch-independent zone-sizing is using indices instead of symbolic names to
offset within an array related to zones (max_zone_pfns).  The unintended
impact is that ZONE_DMA and ZONE_NORMAL is initialised on powerpc instead
of ZONE_DMA and ZONE_HIGHMEM when CONFIG_HIGHMEM is set.  As a result, the
the machine fails to boot but will boot with CONFIG_HIGHMEM turned off.

The following patch properly initialises the max_zone_pfns[] array and uses
symbolic names instead of indices in each architecture using
arch-independent zone-sizing.  Two users have successfully booted their
powerpcs with it (one an ibook G4).  It has also been boot tested on x86,
x86_64, ppc64 and ia64.  Please merge for 2.6.19-rc2.

Credit to Benjamin Herrenschmidt for identifying the bug and rolling the
first fix.  Additional credit to Johannes Berg and Andreas Schwab for
reporting the problem and testing on powerpc.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-11 11:14:14 -07:00

430 lines
11 KiB
C

/*
* Generic VM initialization for x86-64 NUMA setups.
* Copyright 2002,2003 Andi Kleen, SuSE Labs.
*/
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/mmzone.h>
#include <linux/ctype.h>
#include <linux/module.h>
#include <linux/nodemask.h>
#include <asm/e820.h>
#include <asm/proto.h>
#include <asm/dma.h>
#include <asm/numa.h>
#include <asm/acpi.h>
#ifndef Dprintk
#define Dprintk(x...)
#endif
struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
bootmem_data_t plat_node_bdata[MAX_NUMNODES];
struct memnode memnode;
unsigned char cpu_to_node[NR_CPUS] __read_mostly = {
[0 ... NR_CPUS-1] = NUMA_NO_NODE
};
unsigned char apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = {
[0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
};
cpumask_t node_to_cpumask[MAX_NUMNODES] __read_mostly;
int numa_off __initdata;
/*
* Given a shift value, try to populate memnodemap[]
* Returns :
* 1 if OK
* 0 if memnodmap[] too small (of shift too small)
* -1 if node overlap or lost ram (shift too big)
*/
static int __init
populate_memnodemap(const struct bootnode *nodes, int numnodes, int shift)
{
int i;
int res = -1;
unsigned long addr, end;
if (shift >= 64)
return -1;
memset(memnodemap, 0xff, sizeof(memnodemap));
for (i = 0; i < numnodes; i++) {
addr = nodes[i].start;
end = nodes[i].end;
if (addr >= end)
continue;
if ((end >> shift) >= NODEMAPSIZE)
return 0;
do {
if (memnodemap[addr >> shift] != 0xff)
return -1;
memnodemap[addr >> shift] = i;
addr += (1UL << shift);
} while (addr < end);
res = 1;
}
return res;
}
int __init compute_hash_shift(struct bootnode *nodes, int numnodes)
{
int shift = 20;
while (populate_memnodemap(nodes, numnodes, shift + 1) >= 0)
shift++;
printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n",
shift);
if (populate_memnodemap(nodes, numnodes, shift) != 1) {
printk(KERN_INFO
"Your memory is not aligned you need to rebuild your kernel "
"with a bigger NODEMAPSIZE shift=%d\n",
shift);
return -1;
}
return shift;
}
#ifdef CONFIG_SPARSEMEM
int early_pfn_to_nid(unsigned long pfn)
{
return phys_to_nid(pfn << PAGE_SHIFT);
}
#endif
static void * __init
early_node_mem(int nodeid, unsigned long start, unsigned long end,
unsigned long size)
{
unsigned long mem = find_e820_area(start, end, size);
void *ptr;
if (mem != -1L)
return __va(mem);
ptr = __alloc_bootmem_nopanic(size,
SMP_CACHE_BYTES, __pa(MAX_DMA_ADDRESS));
if (ptr == 0) {
printk(KERN_ERR "Cannot find %lu bytes in node %d\n",
size, nodeid);
return NULL;
}
return ptr;
}
/* Initialize bootmem allocator for a node */
void __init setup_node_bootmem(int nodeid, unsigned long start, unsigned long end)
{
unsigned long start_pfn, end_pfn, bootmap_pages, bootmap_size, bootmap_start;
unsigned long nodedata_phys;
void *bootmap;
const int pgdat_size = round_up(sizeof(pg_data_t), PAGE_SIZE);
start = round_up(start, ZONE_ALIGN);
printk(KERN_INFO "Bootmem setup node %d %016lx-%016lx\n", nodeid, start, end);
start_pfn = start >> PAGE_SHIFT;
end_pfn = end >> PAGE_SHIFT;
node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size);
if (node_data[nodeid] == NULL)
return;
nodedata_phys = __pa(node_data[nodeid]);
memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t));
NODE_DATA(nodeid)->bdata = &plat_node_bdata[nodeid];
NODE_DATA(nodeid)->node_start_pfn = start_pfn;
NODE_DATA(nodeid)->node_spanned_pages = end_pfn - start_pfn;
/* Find a place for the bootmem map */
bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
bootmap_start = round_up(nodedata_phys + pgdat_size, PAGE_SIZE);
bootmap = early_node_mem(nodeid, bootmap_start, end,
bootmap_pages<<PAGE_SHIFT);
if (bootmap == NULL) {
if (nodedata_phys < start || nodedata_phys >= end)
free_bootmem((unsigned long)node_data[nodeid],pgdat_size);
node_data[nodeid] = NULL;
return;
}
bootmap_start = __pa(bootmap);
Dprintk("bootmap start %lu pages %lu\n", bootmap_start, bootmap_pages);
bootmap_size = init_bootmem_node(NODE_DATA(nodeid),
bootmap_start >> PAGE_SHIFT,
start_pfn, end_pfn);
free_bootmem_with_active_regions(nodeid, end);
reserve_bootmem_node(NODE_DATA(nodeid), nodedata_phys, pgdat_size);
reserve_bootmem_node(NODE_DATA(nodeid), bootmap_start, bootmap_pages<<PAGE_SHIFT);
#ifdef CONFIG_ACPI_NUMA
srat_reserve_add_area(nodeid);
#endif
node_set_online(nodeid);
}
/* Initialize final allocator for a zone */
void __init setup_node_zones(int nodeid)
{
unsigned long start_pfn, end_pfn, memmapsize, limit;
start_pfn = node_start_pfn(nodeid);
end_pfn = node_end_pfn(nodeid);
Dprintk(KERN_INFO "Setting up memmap for node %d %lx-%lx\n",
nodeid, start_pfn, end_pfn);
/* Try to allocate mem_map at end to not fill up precious <4GB
memory. */
memmapsize = sizeof(struct page) * (end_pfn-start_pfn);
limit = end_pfn << PAGE_SHIFT;
#ifdef CONFIG_FLAT_NODE_MEM_MAP
NODE_DATA(nodeid)->node_mem_map =
__alloc_bootmem_core(NODE_DATA(nodeid)->bdata,
memmapsize, SMP_CACHE_BYTES,
round_down(limit - memmapsize, PAGE_SIZE),
limit);
#endif
}
void __init numa_init_array(void)
{
int rr, i;
/* There are unfortunately some poorly designed mainboards around
that only connect memory to a single CPU. This breaks the 1:1 cpu->node
mapping. To avoid this fill in the mapping for all possible
CPUs, as the number of CPUs is not known yet.
We round robin the existing nodes. */
rr = first_node(node_online_map);
for (i = 0; i < NR_CPUS; i++) {
if (cpu_to_node[i] != NUMA_NO_NODE)
continue;
numa_set_node(i, rr);
rr = next_node(rr, node_online_map);
if (rr == MAX_NUMNODES)
rr = first_node(node_online_map);
}
}
#ifdef CONFIG_NUMA_EMU
int numa_fake __initdata = 0;
/* Numa emulation */
static int __init numa_emulation(unsigned long start_pfn, unsigned long end_pfn)
{
int i;
struct bootnode nodes[MAX_NUMNODES];
unsigned long sz = ((end_pfn - start_pfn)<<PAGE_SHIFT) / numa_fake;
/* Kludge needed for the hash function */
if (hweight64(sz) > 1) {
unsigned long x = 1;
while ((x << 1) < sz)
x <<= 1;
if (x < sz/2)
printk(KERN_ERR "Numa emulation unbalanced. Complain to maintainer\n");
sz = x;
}
memset(&nodes,0,sizeof(nodes));
for (i = 0; i < numa_fake; i++) {
nodes[i].start = (start_pfn<<PAGE_SHIFT) + i*sz;
if (i == numa_fake-1)
sz = (end_pfn<<PAGE_SHIFT) - nodes[i].start;
nodes[i].end = nodes[i].start + sz;
printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n",
i,
nodes[i].start, nodes[i].end,
(nodes[i].end - nodes[i].start) >> 20);
node_set_online(i);
}
memnode_shift = compute_hash_shift(nodes, numa_fake);
if (memnode_shift < 0) {
memnode_shift = 0;
printk(KERN_ERR "No NUMA hash function found. Emulation disabled.\n");
return -1;
}
for_each_online_node(i) {
e820_register_active_regions(i, nodes[i].start >> PAGE_SHIFT,
nodes[i].end >> PAGE_SHIFT);
setup_node_bootmem(i, nodes[i].start, nodes[i].end);
}
numa_init_array();
return 0;
}
#endif
void __init numa_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
{
int i;
#ifdef CONFIG_NUMA_EMU
if (numa_fake && !numa_emulation(start_pfn, end_pfn))
return;
#endif
#ifdef CONFIG_ACPI_NUMA
if (!numa_off && !acpi_scan_nodes(start_pfn << PAGE_SHIFT,
end_pfn << PAGE_SHIFT))
return;
#endif
#ifdef CONFIG_K8_NUMA
if (!numa_off && !k8_scan_nodes(start_pfn<<PAGE_SHIFT, end_pfn<<PAGE_SHIFT))
return;
#endif
printk(KERN_INFO "%s\n",
numa_off ? "NUMA turned off" : "No NUMA configuration found");
printk(KERN_INFO "Faking a node at %016lx-%016lx\n",
start_pfn << PAGE_SHIFT,
end_pfn << PAGE_SHIFT);
/* setup dummy node covering all memory */
memnode_shift = 63;
memnodemap[0] = 0;
nodes_clear(node_online_map);
node_set_online(0);
for (i = 0; i < NR_CPUS; i++)
numa_set_node(i, 0);
node_to_cpumask[0] = cpumask_of_cpu(0);
e820_register_active_regions(0, start_pfn, end_pfn);
setup_node_bootmem(0, start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
}
__cpuinit void numa_add_cpu(int cpu)
{
set_bit(cpu, &node_to_cpumask[cpu_to_node(cpu)]);
}
void __cpuinit numa_set_node(int cpu, int node)
{
cpu_pda(cpu)->nodenumber = node;
cpu_to_node[cpu] = node;
}
unsigned long __init numa_free_all_bootmem(void)
{
int i;
unsigned long pages = 0;
for_each_online_node(i) {
pages += free_all_bootmem_node(NODE_DATA(i));
}
return pages;
}
#ifdef CONFIG_SPARSEMEM
static void __init arch_sparse_init(void)
{
int i;
for_each_online_node(i)
memory_present(i, node_start_pfn(i), node_end_pfn(i));
sparse_init();
}
#else
#define arch_sparse_init() do {} while (0)
#endif
void __init paging_init(void)
{
int i;
unsigned long max_zone_pfns[MAX_NR_ZONES];
memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
max_zone_pfns[ZONE_NORMAL] = end_pfn;
arch_sparse_init();
for_each_online_node(i) {
setup_node_zones(i);
}
free_area_init_nodes(max_zone_pfns);
}
static __init int numa_setup(char *opt)
{
if (!opt)
return -EINVAL;
if (!strncmp(opt,"off",3))
numa_off = 1;
#ifdef CONFIG_NUMA_EMU
if(!strncmp(opt, "fake=", 5)) {
numa_fake = simple_strtoul(opt+5,NULL,0); ;
if (numa_fake >= MAX_NUMNODES)
numa_fake = MAX_NUMNODES;
}
#endif
#ifdef CONFIG_ACPI_NUMA
if (!strncmp(opt,"noacpi",6))
acpi_numa = -1;
if (!strncmp(opt,"hotadd=", 7))
hotadd_percent = simple_strtoul(opt+7, NULL, 10);
#endif
return 0;
}
early_param("numa", numa_setup);
/*
* Setup early cpu_to_node.
*
* Populate cpu_to_node[] only if x86_cpu_to_apicid[],
* and apicid_to_node[] tables have valid entries for a CPU.
* This means we skip cpu_to_node[] initialisation for NUMA
* emulation and faking node case (when running a kernel compiled
* for NUMA on a non NUMA box), which is OK as cpu_to_node[]
* is already initialized in a round robin manner at numa_init_array,
* prior to this call, and this initialization is good enough
* for the fake NUMA cases.
*/
void __init init_cpu_to_node(void)
{
int i;
for (i = 0; i < NR_CPUS; i++) {
u8 apicid = x86_cpu_to_apicid[i];
if (apicid == BAD_APICID)
continue;
if (apicid_to_node[apicid] == NUMA_NO_NODE)
continue;
numa_set_node(i,apicid_to_node[apicid]);
}
}
EXPORT_SYMBOL(cpu_to_node);
EXPORT_SYMBOL(node_to_cpumask);
EXPORT_SYMBOL(memnode);
EXPORT_SYMBOL(node_data);
#ifdef CONFIG_DISCONTIGMEM
/*
* Functions to convert PFNs from/to per node page addresses.
* These are out of line because they are quite big.
* They could be all tuned by pre caching more state.
* Should do that.
*/
int pfn_valid(unsigned long pfn)
{
unsigned nid;
if (pfn >= num_physpages)
return 0;
nid = pfn_to_nid(pfn);
if (nid == 0xff)
return 0;
return pfn >= node_start_pfn(nid) && (pfn) < node_end_pfn(nid);
}
EXPORT_SYMBOL(pfn_valid);
#endif