1
linux/tools/perf/util/callchain.c
Frederic Weisbecker 612d4fd7d0 perf: Support for callchains merge
If we sort the histograms by comm, which is the default,
we need to merge some of them, typically different thread
histograms of a same process, or just same comm. But during
this merge, we forgot to merge callchains.

So imagine we have three threads (tids: 1000, 1001, 1002) that
belong to comm "foo".

tid 1000 got 100 events
tid 1001 got 10 events
tid 1002 got 3 events

Once we merge these histograms to get a per comm result, we'll
finally get:

"foo" got 113 events

The problem is if we merge 1000 and 1001 histograms into 1002, then
the end merge result, wrt callchains, will be only callchains that
belong to 1002.
This is because we haven't handled callchains in the merge. Only those
from one of the threads inside a common comm survive.

It means during this merge, we can lose a lot of callchains.

Fix this by implementing callchains merge and apply it on histograms
that collapse.

Reported-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
2010-08-22 21:10:35 +02:00

465 lines
10 KiB
C

/*
* Copyright (C) 2009-2010, Frederic Weisbecker <fweisbec@gmail.com>
*
* Handle the callchains from the stream in an ad-hoc radix tree and then
* sort them in an rbtree.
*
* Using a radix for code path provides a fast retrieval and factorizes
* memory use. Also that lets us use the paths in a hierarchical graph view.
*
*/
#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
#include <errno.h>
#include <math.h>
#include "util.h"
#include "callchain.h"
bool ip_callchain__valid(struct ip_callchain *chain, const event_t *event)
{
unsigned int chain_size = event->header.size;
chain_size -= (unsigned long)&event->ip.__more_data - (unsigned long)event;
return chain->nr * sizeof(u64) <= chain_size;
}
#define chain_for_each_child(child, parent) \
list_for_each_entry(child, &parent->children, brothers)
#define chain_for_each_child_safe(child, next, parent) \
list_for_each_entry_safe(child, next, &parent->children, brothers)
static void
rb_insert_callchain(struct rb_root *root, struct callchain_node *chain,
enum chain_mode mode)
{
struct rb_node **p = &root->rb_node;
struct rb_node *parent = NULL;
struct callchain_node *rnode;
u64 chain_cumul = cumul_hits(chain);
while (*p) {
u64 rnode_cumul;
parent = *p;
rnode = rb_entry(parent, struct callchain_node, rb_node);
rnode_cumul = cumul_hits(rnode);
switch (mode) {
case CHAIN_FLAT:
if (rnode->hit < chain->hit)
p = &(*p)->rb_left;
else
p = &(*p)->rb_right;
break;
case CHAIN_GRAPH_ABS: /* Falldown */
case CHAIN_GRAPH_REL:
if (rnode_cumul < chain_cumul)
p = &(*p)->rb_left;
else
p = &(*p)->rb_right;
break;
case CHAIN_NONE:
default:
break;
}
}
rb_link_node(&chain->rb_node, parent, p);
rb_insert_color(&chain->rb_node, root);
}
static void
__sort_chain_flat(struct rb_root *rb_root, struct callchain_node *node,
u64 min_hit)
{
struct callchain_node *child;
chain_for_each_child(child, node)
__sort_chain_flat(rb_root, child, min_hit);
if (node->hit && node->hit >= min_hit)
rb_insert_callchain(rb_root, node, CHAIN_FLAT);
}
/*
* Once we get every callchains from the stream, we can now
* sort them by hit
*/
static void
sort_chain_flat(struct rb_root *rb_root, struct callchain_root *root,
u64 min_hit, struct callchain_param *param __used)
{
__sort_chain_flat(rb_root, &root->node, min_hit);
}
static void __sort_chain_graph_abs(struct callchain_node *node,
u64 min_hit)
{
struct callchain_node *child;
node->rb_root = RB_ROOT;
chain_for_each_child(child, node) {
__sort_chain_graph_abs(child, min_hit);
if (cumul_hits(child) >= min_hit)
rb_insert_callchain(&node->rb_root, child,
CHAIN_GRAPH_ABS);
}
}
static void
sort_chain_graph_abs(struct rb_root *rb_root, struct callchain_root *chain_root,
u64 min_hit, struct callchain_param *param __used)
{
__sort_chain_graph_abs(&chain_root->node, min_hit);
rb_root->rb_node = chain_root->node.rb_root.rb_node;
}
static void __sort_chain_graph_rel(struct callchain_node *node,
double min_percent)
{
struct callchain_node *child;
u64 min_hit;
node->rb_root = RB_ROOT;
min_hit = ceil(node->children_hit * min_percent);
chain_for_each_child(child, node) {
__sort_chain_graph_rel(child, min_percent);
if (cumul_hits(child) >= min_hit)
rb_insert_callchain(&node->rb_root, child,
CHAIN_GRAPH_REL);
}
}
static void
sort_chain_graph_rel(struct rb_root *rb_root, struct callchain_root *chain_root,
u64 min_hit __used, struct callchain_param *param)
{
__sort_chain_graph_rel(&chain_root->node, param->min_percent / 100.0);
rb_root->rb_node = chain_root->node.rb_root.rb_node;
}
int register_callchain_param(struct callchain_param *param)
{
switch (param->mode) {
case CHAIN_GRAPH_ABS:
param->sort = sort_chain_graph_abs;
break;
case CHAIN_GRAPH_REL:
param->sort = sort_chain_graph_rel;
break;
case CHAIN_FLAT:
param->sort = sort_chain_flat;
break;
case CHAIN_NONE:
default:
return -1;
}
return 0;
}
/*
* Create a child for a parent. If inherit_children, then the new child
* will become the new parent of it's parent children
*/
static struct callchain_node *
create_child(struct callchain_node *parent, bool inherit_children)
{
struct callchain_node *new;
new = zalloc(sizeof(*new));
if (!new) {
perror("not enough memory to create child for code path tree");
return NULL;
}
new->parent = parent;
INIT_LIST_HEAD(&new->children);
INIT_LIST_HEAD(&new->val);
if (inherit_children) {
struct callchain_node *next;
list_splice(&parent->children, &new->children);
INIT_LIST_HEAD(&parent->children);
chain_for_each_child(next, new)
next->parent = new;
}
list_add_tail(&new->brothers, &parent->children);
return new;
}
struct resolved_ip {
u64 ip;
struct map_symbol ms;
};
struct resolved_chain {
u64 nr;
struct resolved_ip ips[0];
};
/*
* Fill the node with callchain values
*/
static void
fill_node(struct callchain_node *node, struct resolved_chain *chain, int start)
{
unsigned int i;
for (i = start; i < chain->nr; i++) {
struct callchain_list *call;
call = zalloc(sizeof(*call));
if (!call) {
perror("not enough memory for the code path tree");
return;
}
call->ip = chain->ips[i].ip;
call->ms = chain->ips[i].ms;
list_add_tail(&call->list, &node->val);
}
node->val_nr = chain->nr - start;
if (!node->val_nr)
pr_warning("Warning: empty node in callchain tree\n");
}
static void
add_child(struct callchain_node *parent, struct resolved_chain *chain,
int start, u64 period)
{
struct callchain_node *new;
new = create_child(parent, false);
fill_node(new, chain, start);
new->children_hit = 0;
new->hit = period;
}
/*
* Split the parent in two parts (a new child is created) and
* give a part of its callchain to the created child.
* Then create another child to host the given callchain of new branch
*/
static void
split_add_child(struct callchain_node *parent, struct resolved_chain *chain,
struct callchain_list *to_split, int idx_parents, int idx_local,
u64 period)
{
struct callchain_node *new;
struct list_head *old_tail;
unsigned int idx_total = idx_parents + idx_local;
/* split */
new = create_child(parent, true);
/* split the callchain and move a part to the new child */
old_tail = parent->val.prev;
list_del_range(&to_split->list, old_tail);
new->val.next = &to_split->list;
new->val.prev = old_tail;
to_split->list.prev = &new->val;
old_tail->next = &new->val;
/* split the hits */
new->hit = parent->hit;
new->children_hit = parent->children_hit;
parent->children_hit = cumul_hits(new);
new->val_nr = parent->val_nr - idx_local;
parent->val_nr = idx_local;
/* create a new child for the new branch if any */
if (idx_total < chain->nr) {
parent->hit = 0;
add_child(parent, chain, idx_total, period);
parent->children_hit += period;
} else {
parent->hit = period;
}
}
static int
append_chain(struct callchain_node *root, struct resolved_chain *chain,
unsigned int start, u64 period);
static void
append_chain_children(struct callchain_node *root, struct resolved_chain *chain,
unsigned int start, u64 period)
{
struct callchain_node *rnode;
/* lookup in childrens */
chain_for_each_child(rnode, root) {
unsigned int ret = append_chain(rnode, chain, start, period);
if (!ret)
goto inc_children_hit;
}
/* nothing in children, add to the current node */
add_child(root, chain, start, period);
inc_children_hit:
root->children_hit += period;
}
static int
append_chain(struct callchain_node *root, struct resolved_chain *chain,
unsigned int start, u64 period)
{
struct callchain_list *cnode;
unsigned int i = start;
bool found = false;
/*
* Lookup in the current node
* If we have a symbol, then compare the start to match
* anywhere inside a function.
*/
list_for_each_entry(cnode, &root->val, list) {
struct symbol *sym;
if (i == chain->nr)
break;
sym = chain->ips[i].ms.sym;
if (cnode->ms.sym && sym) {
if (cnode->ms.sym->start != sym->start)
break;
} else if (cnode->ip != chain->ips[i].ip)
break;
if (!found)
found = true;
i++;
}
/* matches not, relay on the parent */
if (!found)
return -1;
/* we match only a part of the node. Split it and add the new chain */
if (i - start < root->val_nr) {
split_add_child(root, chain, cnode, start, i - start, period);
return 0;
}
/* we match 100% of the path, increment the hit */
if (i - start == root->val_nr && i == chain->nr) {
root->hit += period;
return 0;
}
/* We match the node and still have a part remaining */
append_chain_children(root, chain, i, period);
return 0;
}
static void filter_context(struct ip_callchain *old, struct resolved_chain *new,
struct map_symbol *syms)
{
int i, j = 0;
for (i = 0; i < (int)old->nr; i++) {
if (old->ips[i] >= PERF_CONTEXT_MAX)
continue;
new->ips[j].ip = old->ips[i];
new->ips[j].ms = syms[i];
j++;
}
new->nr = j;
}
int callchain_append(struct callchain_root *root, struct ip_callchain *chain,
struct map_symbol *syms, u64 period)
{
struct resolved_chain *filtered;
if (!chain->nr)
return 0;
filtered = zalloc(sizeof(*filtered) +
chain->nr * sizeof(struct resolved_ip));
if (!filtered)
return -ENOMEM;
filter_context(chain, filtered, syms);
if (!filtered->nr)
goto end;
append_chain_children(&root->node, filtered, 0, period);
if (filtered->nr > root->max_depth)
root->max_depth = filtered->nr;
end:
free(filtered);
return 0;
}
static int
merge_chain_branch(struct callchain_node *dst, struct callchain_node *src,
struct resolved_chain *chain)
{
struct callchain_node *child, *next_child;
struct callchain_list *list, *next_list;
int old_pos = chain->nr;
int err = 0;
list_for_each_entry_safe(list, next_list, &src->val, list) {
chain->ips[chain->nr].ip = list->ip;
chain->ips[chain->nr].ms = list->ms;
chain->nr++;
list_del(&list->list);
free(list);
}
if (src->hit)
append_chain_children(dst, chain, 0, src->hit);
chain_for_each_child_safe(child, next_child, src) {
err = merge_chain_branch(dst, child, chain);
if (err)
break;
list_del(&child->brothers);
free(child);
}
chain->nr = old_pos;
return err;
}
int callchain_merge(struct callchain_root *dst, struct callchain_root *src)
{
struct resolved_chain *chain;
int err;
chain = malloc(sizeof(*chain) +
src->max_depth * sizeof(struct resolved_ip));
if (!chain)
return -ENOMEM;
chain->nr = 0;
err = merge_chain_branch(&dst->node, &src->node, chain);
free(chain);
return err;
}