60682284e4
Report fields can be updated from HID drivers unlocked via hid_set_field(). It is protected by input_lock in HID core so only a single input event is handled at a time. USBHID can thus update the field unlocked and doesn't conflict with any HID vendor/device drivers. Note, many HID drivers make heavy use of hid_set_field() in that way. But usbhid also schedules a work to gather multiple LED changes in a single report. Hence, we used to lock the LED field update so the work can read a consistent state. However, hid_set_field() only writes a single integer field, which is guaranteed to be allocated all the time. So the worst possible race-condition is a garbage read on the LED field. Therefore, there is no need to protect the update. In fact, the only thing that is prevented by locking hid_set_field(), is an LED update while the scheduled work currently writes an older LED update out. However, this means, a new work is scheduled directly when the old one is done writing the new state to the device. So we actually _win_ by not protecting the write and allowing the write to be combined with the current write. A new worker is still scheduled, but will not write any new state. So the LED will not blink unnecessarily on the device. Assume we have the LED set to 0. Two request come in which enable the LED and immediately disable it. The current situation with two CPUs would be: usb_hidinput_input_event() | hid_led() ---------------------------------+---------------------------------- spin_lock(&usbhid->lock); hid_set_field(1); spin_unlock(&usbhid->lock); schedule_work(...); spin_lock(&usbhid->lock); __usbhid_submit_report(..1..); spin_unlock(&usbhid->lock); spin_lock(&usbhid->lock); hid_set_field(0); spin_unlock(&usbhid->lock); schedule_work(...); spin_lock(&usbhid->lock); __usbhid_submit_report(..0..); spin_unlock(&usbhid->lock); With the locking removed, we _might_ end up with (look at the changed __usbhid_submit_report() parameters in the first try!): usb_hidinput_input_event() | hid_led() ---------------------------------+---------------------------------- hid_set_field(1); schedule_work(...); spin_lock(&usbhid->lock); hid_set_field(0); schedule_work(...); __usbhid_submit_report(..0..); spin_unlock(&usbhid->lock); ... next work ... spin_lock(&usbhid->lock); __usbhid_submit_report(..0..); spin_unlock(&usbhid->lock); As one can see, we no longer send the "LED ON" signal as it is disabled immediately afterwards and the following "LED OFF" request overwrites the pending "LED ON". It is important to note that hid_set_field() is not atomic, so we might also end up with any other value. But that doesn't matter either as we _always_ schedule the next work with a correct value and schedule_work() acts as memory barrier, anyways. So in the worst case, we run __usbhid_submit_report(..<garbage>..) in the first case and the following __usbhid_submit_report() will write the correct value. But LED states are booleans so any garbage will be converted to either 0 or 1 and the remote device will never see invalid requests. Why all this? It avoids any custom locking around hid_set_field() in usbhid and finally allows us to provide a generic hidinput_input_event() handler for all HID transport drivers. Signed-off-by: David Herrmann <dh.herrmann@gmail.com> Reviewed-by: Benjamin Tissoires <benjamin.tissoires@redhat.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz> |
||
---|---|---|
.. | ||
hid-core.c | ||
hid-pidff.c | ||
hid-quirks.c | ||
hiddev.c | ||
Kconfig | ||
Makefile | ||
usbhid.h | ||
usbkbd.c | ||
usbmouse.c |