5a0e3ad6af
percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
449 lines
11 KiB
C
449 lines
11 KiB
C
/* sunxvr500.c: Sun 3DLABS XVR-500 Expert3D driver for sparc64 systems
|
|
*
|
|
* Copyright (C) 2007 David S. Miller (davem@davemloft.net)
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/fb.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/init.h>
|
|
#include <linux/of_device.h>
|
|
|
|
#include <asm/io.h>
|
|
|
|
/* XXX This device has a 'dev-comm' property which aparently is
|
|
* XXX a pointer into the openfirmware's address space which is
|
|
* XXX a shared area the kernel driver can use to keep OBP
|
|
* XXX informed about the current resolution setting. The idea
|
|
* XXX is that the kernel can change resolutions, and as long
|
|
* XXX as the values in the 'dev-comm' area are accurate then
|
|
* XXX OBP can still render text properly to the console.
|
|
* XXX
|
|
* XXX I'm still working out the layout of this and whether there
|
|
* XXX are any signatures we need to look for etc.
|
|
*/
|
|
struct e3d_info {
|
|
struct fb_info *info;
|
|
struct pci_dev *pdev;
|
|
|
|
spinlock_t lock;
|
|
|
|
char __iomem *fb_base;
|
|
unsigned long fb_base_phys;
|
|
|
|
unsigned long fb8_buf_diff;
|
|
unsigned long regs_base_phys;
|
|
|
|
void __iomem *ramdac;
|
|
|
|
struct device_node *of_node;
|
|
|
|
unsigned int width;
|
|
unsigned int height;
|
|
unsigned int depth;
|
|
unsigned int fb_size;
|
|
|
|
u32 fb_base_reg;
|
|
u32 fb8_0_off;
|
|
u32 fb8_1_off;
|
|
|
|
u32 pseudo_palette[16];
|
|
};
|
|
|
|
static int __devinit e3d_get_props(struct e3d_info *ep)
|
|
{
|
|
ep->width = of_getintprop_default(ep->of_node, "width", 0);
|
|
ep->height = of_getintprop_default(ep->of_node, "height", 0);
|
|
ep->depth = of_getintprop_default(ep->of_node, "depth", 8);
|
|
|
|
if (!ep->width || !ep->height) {
|
|
printk(KERN_ERR "e3d: Critical properties missing for %s\n",
|
|
pci_name(ep->pdev));
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* My XVR-500 comes up, at 1280x768 and a FB base register value of
|
|
* 0x04000000, the following video layout register values:
|
|
*
|
|
* RAMDAC_VID_WH 0x03ff04ff
|
|
* RAMDAC_VID_CFG 0x1a0b0088
|
|
* RAMDAC_VID_32FB_0 0x04000000
|
|
* RAMDAC_VID_32FB_1 0x04800000
|
|
* RAMDAC_VID_8FB_0 0x05000000
|
|
* RAMDAC_VID_8FB_1 0x05200000
|
|
* RAMDAC_VID_XXXFB 0x05400000
|
|
* RAMDAC_VID_YYYFB 0x05c00000
|
|
* RAMDAC_VID_ZZZFB 0x05e00000
|
|
*/
|
|
/* Video layout registers */
|
|
#define RAMDAC_VID_WH 0x00000070UL /* (height-1)<<16 | (width-1) */
|
|
#define RAMDAC_VID_CFG 0x00000074UL /* 0x1a000088|(linesz_log2<<16) */
|
|
#define RAMDAC_VID_32FB_0 0x00000078UL /* PCI base 32bpp FB buffer 0 */
|
|
#define RAMDAC_VID_32FB_1 0x0000007cUL /* PCI base 32bpp FB buffer 1 */
|
|
#define RAMDAC_VID_8FB_0 0x00000080UL /* PCI base 8bpp FB buffer 0 */
|
|
#define RAMDAC_VID_8FB_1 0x00000084UL /* PCI base 8bpp FB buffer 1 */
|
|
#define RAMDAC_VID_XXXFB 0x00000088UL /* PCI base of XXX FB */
|
|
#define RAMDAC_VID_YYYFB 0x0000008cUL /* PCI base of YYY FB */
|
|
#define RAMDAC_VID_ZZZFB 0x00000090UL /* PCI base of ZZZ FB */
|
|
|
|
/* CLUT registers */
|
|
#define RAMDAC_INDEX 0x000000bcUL
|
|
#define RAMDAC_DATA 0x000000c0UL
|
|
|
|
static void e3d_clut_write(struct e3d_info *ep, int index, u32 val)
|
|
{
|
|
void __iomem *ramdac = ep->ramdac;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&ep->lock, flags);
|
|
|
|
writel(index, ramdac + RAMDAC_INDEX);
|
|
writel(val, ramdac + RAMDAC_DATA);
|
|
|
|
spin_unlock_irqrestore(&ep->lock, flags);
|
|
}
|
|
|
|
static int e3d_setcolreg(unsigned regno,
|
|
unsigned red, unsigned green, unsigned blue,
|
|
unsigned transp, struct fb_info *info)
|
|
{
|
|
struct e3d_info *ep = info->par;
|
|
u32 red_8, green_8, blue_8;
|
|
u32 red_10, green_10, blue_10;
|
|
u32 value;
|
|
|
|
if (regno >= 256)
|
|
return 1;
|
|
|
|
red_8 = red >> 8;
|
|
green_8 = green >> 8;
|
|
blue_8 = blue >> 8;
|
|
|
|
value = (blue_8 << 24) | (green_8 << 16) | (red_8 << 8);
|
|
|
|
if (info->fix.visual == FB_VISUAL_TRUECOLOR && regno < 16)
|
|
((u32 *)info->pseudo_palette)[regno] = value;
|
|
|
|
|
|
red_10 = red >> 6;
|
|
green_10 = green >> 6;
|
|
blue_10 = blue >> 6;
|
|
|
|
value = (blue_10 << 20) | (green_10 << 10) | (red_10 << 0);
|
|
e3d_clut_write(ep, regno, value);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* XXX This is a bit of a hack. I can't figure out exactly how the
|
|
* XXX two 8bpp areas of the framebuffer work. I imagine there is
|
|
* XXX a WID attribute somewhere else in the framebuffer which tells
|
|
* XXX the ramdac which of the two 8bpp framebuffer regions to take
|
|
* XXX the pixel from. So, for now, render into both regions to make
|
|
* XXX sure the pixel shows up.
|
|
*/
|
|
static void e3d_imageblit(struct fb_info *info, const struct fb_image *image)
|
|
{
|
|
struct e3d_info *ep = info->par;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&ep->lock, flags);
|
|
cfb_imageblit(info, image);
|
|
info->screen_base += ep->fb8_buf_diff;
|
|
cfb_imageblit(info, image);
|
|
info->screen_base -= ep->fb8_buf_diff;
|
|
spin_unlock_irqrestore(&ep->lock, flags);
|
|
}
|
|
|
|
static void e3d_fillrect(struct fb_info *info, const struct fb_fillrect *rect)
|
|
{
|
|
struct e3d_info *ep = info->par;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&ep->lock, flags);
|
|
cfb_fillrect(info, rect);
|
|
info->screen_base += ep->fb8_buf_diff;
|
|
cfb_fillrect(info, rect);
|
|
info->screen_base -= ep->fb8_buf_diff;
|
|
spin_unlock_irqrestore(&ep->lock, flags);
|
|
}
|
|
|
|
static void e3d_copyarea(struct fb_info *info, const struct fb_copyarea *area)
|
|
{
|
|
struct e3d_info *ep = info->par;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&ep->lock, flags);
|
|
cfb_copyarea(info, area);
|
|
info->screen_base += ep->fb8_buf_diff;
|
|
cfb_copyarea(info, area);
|
|
info->screen_base -= ep->fb8_buf_diff;
|
|
spin_unlock_irqrestore(&ep->lock, flags);
|
|
}
|
|
|
|
static struct fb_ops e3d_ops = {
|
|
.owner = THIS_MODULE,
|
|
.fb_setcolreg = e3d_setcolreg,
|
|
.fb_fillrect = e3d_fillrect,
|
|
.fb_copyarea = e3d_copyarea,
|
|
.fb_imageblit = e3d_imageblit,
|
|
};
|
|
|
|
static int __devinit e3d_set_fbinfo(struct e3d_info *ep)
|
|
{
|
|
struct fb_info *info = ep->info;
|
|
struct fb_var_screeninfo *var = &info->var;
|
|
|
|
info->flags = FBINFO_DEFAULT;
|
|
info->fbops = &e3d_ops;
|
|
info->screen_base = ep->fb_base;
|
|
info->screen_size = ep->fb_size;
|
|
|
|
info->pseudo_palette = ep->pseudo_palette;
|
|
|
|
/* Fill fix common fields */
|
|
strlcpy(info->fix.id, "e3d", sizeof(info->fix.id));
|
|
info->fix.smem_start = ep->fb_base_phys;
|
|
info->fix.smem_len = ep->fb_size;
|
|
info->fix.type = FB_TYPE_PACKED_PIXELS;
|
|
if (ep->depth == 32 || ep->depth == 24)
|
|
info->fix.visual = FB_VISUAL_TRUECOLOR;
|
|
else
|
|
info->fix.visual = FB_VISUAL_PSEUDOCOLOR;
|
|
|
|
var->xres = ep->width;
|
|
var->yres = ep->height;
|
|
var->xres_virtual = var->xres;
|
|
var->yres_virtual = var->yres;
|
|
var->bits_per_pixel = ep->depth;
|
|
|
|
var->red.offset = 8;
|
|
var->red.length = 8;
|
|
var->green.offset = 16;
|
|
var->green.length = 8;
|
|
var->blue.offset = 24;
|
|
var->blue.length = 8;
|
|
var->transp.offset = 0;
|
|
var->transp.length = 0;
|
|
|
|
if (fb_alloc_cmap(&info->cmap, 256, 0)) {
|
|
printk(KERN_ERR "e3d: Cannot allocate color map.\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __devinit e3d_pci_register(struct pci_dev *pdev,
|
|
const struct pci_device_id *ent)
|
|
{
|
|
struct fb_info *info;
|
|
struct e3d_info *ep;
|
|
unsigned int line_length;
|
|
int err;
|
|
|
|
err = pci_enable_device(pdev);
|
|
if (err < 0) {
|
|
printk(KERN_ERR "e3d: Cannot enable PCI device %s\n",
|
|
pci_name(pdev));
|
|
goto err_out;
|
|
}
|
|
|
|
info = framebuffer_alloc(sizeof(struct e3d_info), &pdev->dev);
|
|
if (!info) {
|
|
printk(KERN_ERR "e3d: Cannot allocate fb_info\n");
|
|
err = -ENOMEM;
|
|
goto err_disable;
|
|
}
|
|
|
|
ep = info->par;
|
|
ep->info = info;
|
|
ep->pdev = pdev;
|
|
spin_lock_init(&ep->lock);
|
|
ep->of_node = pci_device_to_OF_node(pdev);
|
|
if (!ep->of_node) {
|
|
printk(KERN_ERR "e3d: Cannot find OF node of %s\n",
|
|
pci_name(pdev));
|
|
err = -ENODEV;
|
|
goto err_release_fb;
|
|
}
|
|
|
|
/* Read the PCI base register of the frame buffer, which we
|
|
* need in order to interpret the RAMDAC_VID_*FB* values in
|
|
* the ramdac correctly.
|
|
*/
|
|
pci_read_config_dword(pdev, PCI_BASE_ADDRESS_0,
|
|
&ep->fb_base_reg);
|
|
ep->fb_base_reg &= PCI_BASE_ADDRESS_MEM_MASK;
|
|
|
|
ep->regs_base_phys = pci_resource_start (pdev, 1);
|
|
err = pci_request_region(pdev, 1, "e3d regs");
|
|
if (err < 0) {
|
|
printk("e3d: Cannot request region 1 for %s\n",
|
|
pci_name(pdev));
|
|
goto err_release_fb;
|
|
}
|
|
ep->ramdac = ioremap(ep->regs_base_phys + 0x8000, 0x1000);
|
|
if (!ep->ramdac)
|
|
goto err_release_pci1;
|
|
|
|
ep->fb8_0_off = readl(ep->ramdac + RAMDAC_VID_8FB_0);
|
|
ep->fb8_0_off -= ep->fb_base_reg;
|
|
|
|
ep->fb8_1_off = readl(ep->ramdac + RAMDAC_VID_8FB_1);
|
|
ep->fb8_1_off -= ep->fb_base_reg;
|
|
|
|
ep->fb8_buf_diff = ep->fb8_1_off - ep->fb8_0_off;
|
|
|
|
ep->fb_base_phys = pci_resource_start (pdev, 0);
|
|
ep->fb_base_phys += ep->fb8_0_off;
|
|
|
|
err = pci_request_region(pdev, 0, "e3d framebuffer");
|
|
if (err < 0) {
|
|
printk("e3d: Cannot request region 0 for %s\n",
|
|
pci_name(pdev));
|
|
goto err_unmap_ramdac;
|
|
}
|
|
|
|
err = e3d_get_props(ep);
|
|
if (err)
|
|
goto err_release_pci0;
|
|
|
|
line_length = (readl(ep->ramdac + RAMDAC_VID_CFG) >> 16) & 0xff;
|
|
line_length = 1 << line_length;
|
|
|
|
switch (ep->depth) {
|
|
case 8:
|
|
info->fix.line_length = line_length;
|
|
break;
|
|
case 16:
|
|
info->fix.line_length = line_length * 2;
|
|
break;
|
|
case 24:
|
|
info->fix.line_length = line_length * 3;
|
|
break;
|
|
case 32:
|
|
info->fix.line_length = line_length * 4;
|
|
break;
|
|
}
|
|
ep->fb_size = info->fix.line_length * ep->height;
|
|
|
|
ep->fb_base = ioremap(ep->fb_base_phys, ep->fb_size);
|
|
if (!ep->fb_base)
|
|
goto err_release_pci0;
|
|
|
|
err = e3d_set_fbinfo(ep);
|
|
if (err)
|
|
goto err_unmap_fb;
|
|
|
|
pci_set_drvdata(pdev, info);
|
|
|
|
printk("e3d: Found device at %s\n", pci_name(pdev));
|
|
|
|
err = register_framebuffer(info);
|
|
if (err < 0) {
|
|
printk(KERN_ERR "e3d: Could not register framebuffer %s\n",
|
|
pci_name(pdev));
|
|
goto err_free_cmap;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_free_cmap:
|
|
fb_dealloc_cmap(&info->cmap);
|
|
|
|
err_unmap_fb:
|
|
iounmap(ep->fb_base);
|
|
|
|
err_release_pci0:
|
|
pci_release_region(pdev, 0);
|
|
|
|
err_unmap_ramdac:
|
|
iounmap(ep->ramdac);
|
|
|
|
err_release_pci1:
|
|
pci_release_region(pdev, 1);
|
|
|
|
err_release_fb:
|
|
framebuffer_release(info);
|
|
|
|
err_disable:
|
|
pci_disable_device(pdev);
|
|
|
|
err_out:
|
|
return err;
|
|
}
|
|
|
|
static void __devexit e3d_pci_unregister(struct pci_dev *pdev)
|
|
{
|
|
struct fb_info *info = pci_get_drvdata(pdev);
|
|
struct e3d_info *ep = info->par;
|
|
|
|
unregister_framebuffer(info);
|
|
|
|
iounmap(ep->ramdac);
|
|
iounmap(ep->fb_base);
|
|
|
|
pci_release_region(pdev, 0);
|
|
pci_release_region(pdev, 1);
|
|
|
|
fb_dealloc_cmap(&info->cmap);
|
|
framebuffer_release(info);
|
|
|
|
pci_disable_device(pdev);
|
|
}
|
|
|
|
static struct pci_device_id e3d_pci_table[] = {
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_3DLABS, 0x7a0), },
|
|
{ PCI_DEVICE(0x1091, 0x7a0), },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_3DLABS, 0x7a2), },
|
|
{ .vendor = PCI_VENDOR_ID_3DLABS,
|
|
.device = PCI_ANY_ID,
|
|
.subvendor = PCI_VENDOR_ID_3DLABS,
|
|
.subdevice = 0x0108,
|
|
},
|
|
{ .vendor = PCI_VENDOR_ID_3DLABS,
|
|
.device = PCI_ANY_ID,
|
|
.subvendor = PCI_VENDOR_ID_3DLABS,
|
|
.subdevice = 0x0140,
|
|
},
|
|
{ .vendor = PCI_VENDOR_ID_3DLABS,
|
|
.device = PCI_ANY_ID,
|
|
.subvendor = PCI_VENDOR_ID_3DLABS,
|
|
.subdevice = 0x1024,
|
|
},
|
|
{ 0, }
|
|
};
|
|
|
|
static struct pci_driver e3d_driver = {
|
|
.name = "e3d",
|
|
.id_table = e3d_pci_table,
|
|
.probe = e3d_pci_register,
|
|
.remove = __devexit_p(e3d_pci_unregister),
|
|
};
|
|
|
|
static int __init e3d_init(void)
|
|
{
|
|
if (fb_get_options("e3d", NULL))
|
|
return -ENODEV;
|
|
|
|
return pci_register_driver(&e3d_driver);
|
|
}
|
|
|
|
static void __exit e3d_exit(void)
|
|
{
|
|
pci_unregister_driver(&e3d_driver);
|
|
}
|
|
|
|
module_init(e3d_init);
|
|
module_exit(e3d_exit);
|
|
|
|
MODULE_DESCRIPTION("framebuffer driver for Sun XVR-500 graphics");
|
|
MODULE_AUTHOR("David S. Miller <davem@davemloft.net>");
|
|
MODULE_VERSION("1.0");
|
|
MODULE_LICENSE("GPL");
|