1
linux/include/asm-ia64/processor.h
Keshavamurthy Anil S 35589a8fa8 [IA64] Move perfmon tables from thread_struct to pfm_context
This patch renders thread_struct->pmcs[] and thread_struct->pmds[]
OBSOLETE. The actual table is moved to pfm_context structure which
saves space in thread_struct (in turn saving space in task_struct
which frees up more space for kernel stacks).

Signed-off-by: Stephane Eranian <eranian@hpl.hp.com>
Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
2006-09-26 12:03:13 -07:00

705 lines
19 KiB
C

#ifndef _ASM_IA64_PROCESSOR_H
#define _ASM_IA64_PROCESSOR_H
/*
* Copyright (C) 1998-2004 Hewlett-Packard Co
* David Mosberger-Tang <davidm@hpl.hp.com>
* Stephane Eranian <eranian@hpl.hp.com>
* Copyright (C) 1999 Asit Mallick <asit.k.mallick@intel.com>
* Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
*
* 11/24/98 S.Eranian added ia64_set_iva()
* 12/03/99 D. Mosberger implement thread_saved_pc() via kernel unwind API
* 06/16/00 A. Mallick added csd/ssd/tssd for ia32 support
*/
#include <asm/intrinsics.h>
#include <asm/kregs.h>
#include <asm/ptrace.h>
#include <asm/ustack.h>
#define IA64_NUM_DBG_REGS 8
#define DEFAULT_MAP_BASE __IA64_UL_CONST(0x2000000000000000)
#define DEFAULT_TASK_SIZE __IA64_UL_CONST(0xa000000000000000)
/*
* TASK_SIZE really is a mis-named. It really is the maximum user
* space address (plus one). On IA-64, there are five regions of 2TB
* each (assuming 8KB page size), for a total of 8TB of user virtual
* address space.
*/
#define TASK_SIZE (current->thread.task_size)
/*
* This decides where the kernel will search for a free chunk of vm
* space during mmap's.
*/
#define TASK_UNMAPPED_BASE (current->thread.map_base)
#define IA64_THREAD_FPH_VALID (__IA64_UL(1) << 0) /* floating-point high state valid? */
#define IA64_THREAD_DBG_VALID (__IA64_UL(1) << 1) /* debug registers valid? */
#define IA64_THREAD_PM_VALID (__IA64_UL(1) << 2) /* performance registers valid? */
#define IA64_THREAD_UAC_NOPRINT (__IA64_UL(1) << 3) /* don't log unaligned accesses */
#define IA64_THREAD_UAC_SIGBUS (__IA64_UL(1) << 4) /* generate SIGBUS on unaligned acc. */
#define IA64_THREAD_MIGRATION (__IA64_UL(1) << 5) /* require migration
sync at ctx sw */
#define IA64_THREAD_FPEMU_NOPRINT (__IA64_UL(1) << 6) /* don't log any fpswa faults */
#define IA64_THREAD_FPEMU_SIGFPE (__IA64_UL(1) << 7) /* send a SIGFPE for fpswa faults */
#define IA64_THREAD_UAC_SHIFT 3
#define IA64_THREAD_UAC_MASK (IA64_THREAD_UAC_NOPRINT | IA64_THREAD_UAC_SIGBUS)
#define IA64_THREAD_FPEMU_SHIFT 6
#define IA64_THREAD_FPEMU_MASK (IA64_THREAD_FPEMU_NOPRINT | IA64_THREAD_FPEMU_SIGFPE)
/*
* This shift should be large enough to be able to represent 1000000000/itc_freq with good
* accuracy while being small enough to fit 10*1000000000<<IA64_NSEC_PER_CYC_SHIFT in 64 bits
* (this will give enough slack to represent 10 seconds worth of time as a scaled number).
*/
#define IA64_NSEC_PER_CYC_SHIFT 30
#ifndef __ASSEMBLY__
#include <linux/cache.h>
#include <linux/compiler.h>
#include <linux/threads.h>
#include <linux/types.h>
#include <asm/fpu.h>
#include <asm/page.h>
#include <asm/percpu.h>
#include <asm/rse.h>
#include <asm/unwind.h>
#include <asm/atomic.h>
#ifdef CONFIG_NUMA
#include <asm/nodedata.h>
#endif
/* like above but expressed as bitfields for more efficient access: */
struct ia64_psr {
__u64 reserved0 : 1;
__u64 be : 1;
__u64 up : 1;
__u64 ac : 1;
__u64 mfl : 1;
__u64 mfh : 1;
__u64 reserved1 : 7;
__u64 ic : 1;
__u64 i : 1;
__u64 pk : 1;
__u64 reserved2 : 1;
__u64 dt : 1;
__u64 dfl : 1;
__u64 dfh : 1;
__u64 sp : 1;
__u64 pp : 1;
__u64 di : 1;
__u64 si : 1;
__u64 db : 1;
__u64 lp : 1;
__u64 tb : 1;
__u64 rt : 1;
__u64 reserved3 : 4;
__u64 cpl : 2;
__u64 is : 1;
__u64 mc : 1;
__u64 it : 1;
__u64 id : 1;
__u64 da : 1;
__u64 dd : 1;
__u64 ss : 1;
__u64 ri : 2;
__u64 ed : 1;
__u64 bn : 1;
__u64 reserved4 : 19;
};
/*
* CPU type, hardware bug flags, and per-CPU state. Frequently used
* state comes earlier:
*/
struct cpuinfo_ia64 {
__u32 softirq_pending;
__u64 itm_delta; /* # of clock cycles between clock ticks */
__u64 itm_next; /* interval timer mask value to use for next clock tick */
__u64 nsec_per_cyc; /* (1000000000<<IA64_NSEC_PER_CYC_SHIFT)/itc_freq */
__u64 unimpl_va_mask; /* mask of unimplemented virtual address bits (from PAL) */
__u64 unimpl_pa_mask; /* mask of unimplemented physical address bits (from PAL) */
__u64 itc_freq; /* frequency of ITC counter */
__u64 proc_freq; /* frequency of processor */
__u64 cyc_per_usec; /* itc_freq/1000000 */
__u64 ptce_base;
__u32 ptce_count[2];
__u32 ptce_stride[2];
struct task_struct *ksoftirqd; /* kernel softirq daemon for this CPU */
#ifdef CONFIG_SMP
__u64 loops_per_jiffy;
int cpu;
__u32 socket_id; /* physical processor socket id */
__u16 core_id; /* core id */
__u16 thread_id; /* thread id */
__u16 num_log; /* Total number of logical processors on
* this socket that were successfully booted */
__u8 cores_per_socket; /* Cores per processor socket */
__u8 threads_per_core; /* Threads per core */
#endif
/* CPUID-derived information: */
__u64 ppn;
__u64 features;
__u8 number;
__u8 revision;
__u8 model;
__u8 family;
__u8 archrev;
char vendor[16];
char *model_name;
#ifdef CONFIG_NUMA
struct ia64_node_data *node_data;
#endif
};
DECLARE_PER_CPU(struct cpuinfo_ia64, cpu_info);
/*
* The "local" data variable. It refers to the per-CPU data of the currently executing
* CPU, much like "current" points to the per-task data of the currently executing task.
* Do not use the address of local_cpu_data, since it will be different from
* cpu_data(smp_processor_id())!
*/
#define local_cpu_data (&__ia64_per_cpu_var(cpu_info))
#define cpu_data(cpu) (&per_cpu(cpu_info, cpu))
extern void print_cpu_info (struct cpuinfo_ia64 *);
typedef struct {
unsigned long seg;
} mm_segment_t;
#define SET_UNALIGN_CTL(task,value) \
({ \
(task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_UAC_MASK) \
| (((value) << IA64_THREAD_UAC_SHIFT) & IA64_THREAD_UAC_MASK)); \
0; \
})
#define GET_UNALIGN_CTL(task,addr) \
({ \
put_user(((task)->thread.flags & IA64_THREAD_UAC_MASK) >> IA64_THREAD_UAC_SHIFT, \
(int __user *) (addr)); \
})
#define SET_FPEMU_CTL(task,value) \
({ \
(task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_FPEMU_MASK) \
| (((value) << IA64_THREAD_FPEMU_SHIFT) & IA64_THREAD_FPEMU_MASK)); \
0; \
})
#define GET_FPEMU_CTL(task,addr) \
({ \
put_user(((task)->thread.flags & IA64_THREAD_FPEMU_MASK) >> IA64_THREAD_FPEMU_SHIFT, \
(int __user *) (addr)); \
})
#ifdef CONFIG_IA32_SUPPORT
struct desc_struct {
unsigned int a, b;
};
#define desc_empty(desc) (!((desc)->a + (desc)->b))
#define desc_equal(desc1, desc2) (((desc1)->a == (desc2)->a) && ((desc1)->b == (desc2)->b))
#define GDT_ENTRY_TLS_ENTRIES 3
#define GDT_ENTRY_TLS_MIN 6
#define GDT_ENTRY_TLS_MAX (GDT_ENTRY_TLS_MIN + GDT_ENTRY_TLS_ENTRIES - 1)
#define TLS_SIZE (GDT_ENTRY_TLS_ENTRIES * 8)
struct partial_page_list;
#endif
struct thread_struct {
__u32 flags; /* various thread flags (see IA64_THREAD_*) */
/* writing on_ustack is performance-critical, so it's worth spending 8 bits on it... */
__u8 on_ustack; /* executing on user-stacks? */
__u8 pad[3];
__u64 ksp; /* kernel stack pointer */
__u64 map_base; /* base address for get_unmapped_area() */
__u64 task_size; /* limit for task size */
__u64 rbs_bot; /* the base address for the RBS */
int last_fph_cpu; /* CPU that may hold the contents of f32-f127 */
#ifdef CONFIG_IA32_SUPPORT
__u64 eflag; /* IA32 EFLAGS reg */
__u64 fsr; /* IA32 floating pt status reg */
__u64 fcr; /* IA32 floating pt control reg */
__u64 fir; /* IA32 fp except. instr. reg */
__u64 fdr; /* IA32 fp except. data reg */
__u64 old_k1; /* old value of ar.k1 */
__u64 old_iob; /* old IOBase value */
struct partial_page_list *ppl; /* partial page list for 4K page size issue */
/* cached TLS descriptors. */
struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES];
# define INIT_THREAD_IA32 .eflag = 0, \
.fsr = 0, \
.fcr = 0x17800000037fULL, \
.fir = 0, \
.fdr = 0, \
.old_k1 = 0, \
.old_iob = 0, \
.ppl = NULL,
#else
# define INIT_THREAD_IA32
#endif /* CONFIG_IA32_SUPPORT */
#ifdef CONFIG_PERFMON
void *pfm_context; /* pointer to detailed PMU context */
unsigned long pfm_needs_checking; /* when >0, pending perfmon work on kernel exit */
# define INIT_THREAD_PM .pfm_context = NULL, \
.pfm_needs_checking = 0UL,
#else
# define INIT_THREAD_PM
#endif
__u64 dbr[IA64_NUM_DBG_REGS];
__u64 ibr[IA64_NUM_DBG_REGS];
struct ia64_fpreg fph[96]; /* saved/loaded on demand */
};
#define INIT_THREAD { \
.flags = 0, \
.on_ustack = 0, \
.ksp = 0, \
.map_base = DEFAULT_MAP_BASE, \
.rbs_bot = STACK_TOP - DEFAULT_USER_STACK_SIZE, \
.task_size = DEFAULT_TASK_SIZE, \
.last_fph_cpu = -1, \
INIT_THREAD_IA32 \
INIT_THREAD_PM \
.dbr = {0, }, \
.ibr = {0, }, \
.fph = {{{{0}}}, } \
}
#define start_thread(regs,new_ip,new_sp) do { \
set_fs(USER_DS); \
regs->cr_ipsr = ((regs->cr_ipsr | (IA64_PSR_BITS_TO_SET | IA64_PSR_CPL)) \
& ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_RI | IA64_PSR_IS)); \
regs->cr_iip = new_ip; \
regs->ar_rsc = 0xf; /* eager mode, privilege level 3 */ \
regs->ar_rnat = 0; \
regs->ar_bspstore = current->thread.rbs_bot; \
regs->ar_fpsr = FPSR_DEFAULT; \
regs->loadrs = 0; \
regs->r8 = current->mm->dumpable; /* set "don't zap registers" flag */ \
regs->r12 = new_sp - 16; /* allocate 16 byte scratch area */ \
if (unlikely(!current->mm->dumpable)) { \
/* \
* Zap scratch regs to avoid leaking bits between processes with different \
* uid/privileges. \
*/ \
regs->ar_pfs = 0; regs->b0 = 0; regs->pr = 0; \
regs->r1 = 0; regs->r9 = 0; regs->r11 = 0; regs->r13 = 0; regs->r15 = 0; \
} \
} while (0)
/* Forward declarations, a strange C thing... */
struct mm_struct;
struct task_struct;
/*
* Free all resources held by a thread. This is called after the
* parent of DEAD_TASK has collected the exit status of the task via
* wait().
*/
#define release_thread(dead_task)
/* Prepare to copy thread state - unlazy all lazy status */
#define prepare_to_copy(tsk) do { } while (0)
/*
* This is the mechanism for creating a new kernel thread.
*
* NOTE 1: Only a kernel-only process (ie the swapper or direct
* descendants who haven't done an "execve()") should use this: it
* will work within a system call from a "real" process, but the
* process memory space will not be free'd until both the parent and
* the child have exited.
*
* NOTE 2: This MUST NOT be an inlined function. Otherwise, we get
* into trouble in init/main.c when the child thread returns to
* do_basic_setup() and the timing is such that free_initmem() has
* been called already.
*/
extern pid_t kernel_thread (int (*fn)(void *), void *arg, unsigned long flags);
/* Get wait channel for task P. */
extern unsigned long get_wchan (struct task_struct *p);
/* Return instruction pointer of blocked task TSK. */
#define KSTK_EIP(tsk) \
({ \
struct pt_regs *_regs = task_pt_regs(tsk); \
_regs->cr_iip + ia64_psr(_regs)->ri; \
})
/* Return stack pointer of blocked task TSK. */
#define KSTK_ESP(tsk) ((tsk)->thread.ksp)
extern void ia64_getreg_unknown_kr (void);
extern void ia64_setreg_unknown_kr (void);
#define ia64_get_kr(regnum) \
({ \
unsigned long r = 0; \
\
switch (regnum) { \
case 0: r = ia64_getreg(_IA64_REG_AR_KR0); break; \
case 1: r = ia64_getreg(_IA64_REG_AR_KR1); break; \
case 2: r = ia64_getreg(_IA64_REG_AR_KR2); break; \
case 3: r = ia64_getreg(_IA64_REG_AR_KR3); break; \
case 4: r = ia64_getreg(_IA64_REG_AR_KR4); break; \
case 5: r = ia64_getreg(_IA64_REG_AR_KR5); break; \
case 6: r = ia64_getreg(_IA64_REG_AR_KR6); break; \
case 7: r = ia64_getreg(_IA64_REG_AR_KR7); break; \
default: ia64_getreg_unknown_kr(); break; \
} \
r; \
})
#define ia64_set_kr(regnum, r) \
({ \
switch (regnum) { \
case 0: ia64_setreg(_IA64_REG_AR_KR0, r); break; \
case 1: ia64_setreg(_IA64_REG_AR_KR1, r); break; \
case 2: ia64_setreg(_IA64_REG_AR_KR2, r); break; \
case 3: ia64_setreg(_IA64_REG_AR_KR3, r); break; \
case 4: ia64_setreg(_IA64_REG_AR_KR4, r); break; \
case 5: ia64_setreg(_IA64_REG_AR_KR5, r); break; \
case 6: ia64_setreg(_IA64_REG_AR_KR6, r); break; \
case 7: ia64_setreg(_IA64_REG_AR_KR7, r); break; \
default: ia64_setreg_unknown_kr(); break; \
} \
})
/*
* The following three macros can't be inline functions because we don't have struct
* task_struct at this point.
*/
/*
* Return TRUE if task T owns the fph partition of the CPU we're running on.
* Must be called from code that has preemption disabled.
*/
#define ia64_is_local_fpu_owner(t) \
({ \
struct task_struct *__ia64_islfo_task = (t); \
(__ia64_islfo_task->thread.last_fph_cpu == smp_processor_id() \
&& __ia64_islfo_task == (struct task_struct *) ia64_get_kr(IA64_KR_FPU_OWNER)); \
})
/*
* Mark task T as owning the fph partition of the CPU we're running on.
* Must be called from code that has preemption disabled.
*/
#define ia64_set_local_fpu_owner(t) do { \
struct task_struct *__ia64_slfo_task = (t); \
__ia64_slfo_task->thread.last_fph_cpu = smp_processor_id(); \
ia64_set_kr(IA64_KR_FPU_OWNER, (unsigned long) __ia64_slfo_task); \
} while (0)
/* Mark the fph partition of task T as being invalid on all CPUs. */
#define ia64_drop_fpu(t) ((t)->thread.last_fph_cpu = -1)
extern void __ia64_init_fpu (void);
extern void __ia64_save_fpu (struct ia64_fpreg *fph);
extern void __ia64_load_fpu (struct ia64_fpreg *fph);
extern void ia64_save_debug_regs (unsigned long *save_area);
extern void ia64_load_debug_regs (unsigned long *save_area);
#ifdef CONFIG_IA32_SUPPORT
extern void ia32_save_state (struct task_struct *task);
extern void ia32_load_state (struct task_struct *task);
#endif
#define ia64_fph_enable() do { ia64_rsm(IA64_PSR_DFH); ia64_srlz_d(); } while (0)
#define ia64_fph_disable() do { ia64_ssm(IA64_PSR_DFH); ia64_srlz_d(); } while (0)
/* load fp 0.0 into fph */
static inline void
ia64_init_fpu (void) {
ia64_fph_enable();
__ia64_init_fpu();
ia64_fph_disable();
}
/* save f32-f127 at FPH */
static inline void
ia64_save_fpu (struct ia64_fpreg *fph) {
ia64_fph_enable();
__ia64_save_fpu(fph);
ia64_fph_disable();
}
/* load f32-f127 from FPH */
static inline void
ia64_load_fpu (struct ia64_fpreg *fph) {
ia64_fph_enable();
__ia64_load_fpu(fph);
ia64_fph_disable();
}
static inline __u64
ia64_clear_ic (void)
{
__u64 psr;
psr = ia64_getreg(_IA64_REG_PSR);
ia64_stop();
ia64_rsm(IA64_PSR_I | IA64_PSR_IC);
ia64_srlz_i();
return psr;
}
/*
* Restore the psr.
*/
static inline void
ia64_set_psr (__u64 psr)
{
ia64_stop();
ia64_setreg(_IA64_REG_PSR_L, psr);
ia64_srlz_d();
}
/*
* Insert a translation into an instruction and/or data translation
* register.
*/
static inline void
ia64_itr (__u64 target_mask, __u64 tr_num,
__u64 vmaddr, __u64 pte,
__u64 log_page_size)
{
ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2));
ia64_setreg(_IA64_REG_CR_IFA, vmaddr);
ia64_stop();
if (target_mask & 0x1)
ia64_itri(tr_num, pte);
if (target_mask & 0x2)
ia64_itrd(tr_num, pte);
}
/*
* Insert a translation into the instruction and/or data translation
* cache.
*/
static inline void
ia64_itc (__u64 target_mask, __u64 vmaddr, __u64 pte,
__u64 log_page_size)
{
ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2));
ia64_setreg(_IA64_REG_CR_IFA, vmaddr);
ia64_stop();
/* as per EAS2.6, itc must be the last instruction in an instruction group */
if (target_mask & 0x1)
ia64_itci(pte);
if (target_mask & 0x2)
ia64_itcd(pte);
}
/*
* Purge a range of addresses from instruction and/or data translation
* register(s).
*/
static inline void
ia64_ptr (__u64 target_mask, __u64 vmaddr, __u64 log_size)
{
if (target_mask & 0x1)
ia64_ptri(vmaddr, (log_size << 2));
if (target_mask & 0x2)
ia64_ptrd(vmaddr, (log_size << 2));
}
/* Set the interrupt vector address. The address must be suitably aligned (32KB). */
static inline void
ia64_set_iva (void *ivt_addr)
{
ia64_setreg(_IA64_REG_CR_IVA, (__u64) ivt_addr);
ia64_srlz_i();
}
/* Set the page table address and control bits. */
static inline void
ia64_set_pta (__u64 pta)
{
/* Note: srlz.i implies srlz.d */
ia64_setreg(_IA64_REG_CR_PTA, pta);
ia64_srlz_i();
}
static inline void
ia64_eoi (void)
{
ia64_setreg(_IA64_REG_CR_EOI, 0);
ia64_srlz_d();
}
#define cpu_relax() ia64_hint(ia64_hint_pause)
static inline int
ia64_get_irr(unsigned int vector)
{
unsigned int reg = vector / 64;
unsigned int bit = vector % 64;
u64 irr;
switch (reg) {
case 0: irr = ia64_getreg(_IA64_REG_CR_IRR0); break;
case 1: irr = ia64_getreg(_IA64_REG_CR_IRR1); break;
case 2: irr = ia64_getreg(_IA64_REG_CR_IRR2); break;
case 3: irr = ia64_getreg(_IA64_REG_CR_IRR3); break;
}
return test_bit(bit, &irr);
}
static inline void
ia64_set_lrr0 (unsigned long val)
{
ia64_setreg(_IA64_REG_CR_LRR0, val);
ia64_srlz_d();
}
static inline void
ia64_set_lrr1 (unsigned long val)
{
ia64_setreg(_IA64_REG_CR_LRR1, val);
ia64_srlz_d();
}
/*
* Given the address to which a spill occurred, return the unat bit
* number that corresponds to this address.
*/
static inline __u64
ia64_unat_pos (void *spill_addr)
{
return ((__u64) spill_addr >> 3) & 0x3f;
}
/*
* Set the NaT bit of an integer register which was spilled at address
* SPILL_ADDR. UNAT is the mask to be updated.
*/
static inline void
ia64_set_unat (__u64 *unat, void *spill_addr, unsigned long nat)
{
__u64 bit = ia64_unat_pos(spill_addr);
__u64 mask = 1UL << bit;
*unat = (*unat & ~mask) | (nat << bit);
}
/*
* Return saved PC of a blocked thread.
* Note that the only way T can block is through a call to schedule() -> switch_to().
*/
static inline unsigned long
thread_saved_pc (struct task_struct *t)
{
struct unw_frame_info info;
unsigned long ip;
unw_init_from_blocked_task(&info, t);
if (unw_unwind(&info) < 0)
return 0;
unw_get_ip(&info, &ip);
return ip;
}
/*
* Get the current instruction/program counter value.
*/
#define current_text_addr() \
({ void *_pc; _pc = (void *)ia64_getreg(_IA64_REG_IP); _pc; })
static inline __u64
ia64_get_ivr (void)
{
__u64 r;
ia64_srlz_d();
r = ia64_getreg(_IA64_REG_CR_IVR);
ia64_srlz_d();
return r;
}
static inline void
ia64_set_dbr (__u64 regnum, __u64 value)
{
__ia64_set_dbr(regnum, value);
#ifdef CONFIG_ITANIUM
ia64_srlz_d();
#endif
}
static inline __u64
ia64_get_dbr (__u64 regnum)
{
__u64 retval;
retval = __ia64_get_dbr(regnum);
#ifdef CONFIG_ITANIUM
ia64_srlz_d();
#endif
return retval;
}
static inline __u64
ia64_rotr (__u64 w, __u64 n)
{
return (w >> n) | (w << (64 - n));
}
#define ia64_rotl(w,n) ia64_rotr((w), (64) - (n))
/*
* Take a mapped kernel address and return the equivalent address
* in the region 7 identity mapped virtual area.
*/
static inline void *
ia64_imva (void *addr)
{
void *result;
result = (void *) ia64_tpa(addr);
return __va(result);
}
#define ARCH_HAS_PREFETCH
#define ARCH_HAS_PREFETCHW
#define ARCH_HAS_SPINLOCK_PREFETCH
#define PREFETCH_STRIDE L1_CACHE_BYTES
static inline void
prefetch (const void *x)
{
ia64_lfetch(ia64_lfhint_none, x);
}
static inline void
prefetchw (const void *x)
{
ia64_lfetch_excl(ia64_lfhint_none, x);
}
#define spin_lock_prefetch(x) prefetchw(x)
extern unsigned long boot_option_idle_override;
#endif /* !__ASSEMBLY__ */
#endif /* _ASM_IA64_PROCESSOR_H */