1
linux/drivers/net/wireless/ath9k/main.c
Johannes Berg 4233df6b74 ath9k/mac80211: disallow fragmentation in ath9k, report to userspace
As I've reported, ath9k currently fails utterly when fragmentation
is enabled. This makes ath9k "support" hardware fragmentation by
not supporting fragmentation at all to avoid the double-free issue.
The patch also changes mac80211 to report errors from the driver
operation to userspace.

That hack in ath9k should be removed once the rate control algorithm
it has is fixed, and we can at that time consider removing the hw
fragmentation support entirely since it's not used by any driver.

Signed-off-by: Johannes Berg <johannes@sipsolutions.net>
Cc: stable@kernel.org
Acked-by: Luis R. Rodriguez <lrodriguez@atheros.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2008-10-14 21:12:37 -04:00

1918 lines
48 KiB
C

/*
* Copyright (c) 2008 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/* mac80211 and PCI callbacks */
#include <linux/nl80211.h>
#include "core.h"
#define ATH_PCI_VERSION "0.1"
#define IEEE80211_HTCAP_MAXRXAMPDU_FACTOR 13
static char *dev_info = "ath9k";
MODULE_AUTHOR("Atheros Communications");
MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
MODULE_LICENSE("Dual BSD/GPL");
static struct pci_device_id ath_pci_id_table[] __devinitdata = {
{ PCI_VDEVICE(ATHEROS, 0x0023) }, /* PCI */
{ PCI_VDEVICE(ATHEROS, 0x0024) }, /* PCI-E */
{ PCI_VDEVICE(ATHEROS, 0x0027) }, /* PCI */
{ PCI_VDEVICE(ATHEROS, 0x0029) }, /* PCI */
{ PCI_VDEVICE(ATHEROS, 0x002A) }, /* PCI-E */
{ 0 }
};
static int ath_get_channel(struct ath_softc *sc,
struct ieee80211_channel *chan)
{
int i;
for (i = 0; i < sc->sc_ah->ah_nchan; i++) {
if (sc->sc_ah->ah_channels[i].channel == chan->center_freq)
return i;
}
return -1;
}
static u32 ath_get_extchanmode(struct ath_softc *sc,
struct ieee80211_channel *chan)
{
u32 chanmode = 0;
u8 ext_chan_offset = sc->sc_ht_info.ext_chan_offset;
enum ath9k_ht_macmode tx_chan_width = sc->sc_ht_info.tx_chan_width;
switch (chan->band) {
case IEEE80211_BAND_2GHZ:
if ((ext_chan_offset == IEEE80211_HT_IE_CHA_SEC_NONE) &&
(tx_chan_width == ATH9K_HT_MACMODE_20))
chanmode = CHANNEL_G_HT20;
if ((ext_chan_offset == IEEE80211_HT_IE_CHA_SEC_ABOVE) &&
(tx_chan_width == ATH9K_HT_MACMODE_2040))
chanmode = CHANNEL_G_HT40PLUS;
if ((ext_chan_offset == IEEE80211_HT_IE_CHA_SEC_BELOW) &&
(tx_chan_width == ATH9K_HT_MACMODE_2040))
chanmode = CHANNEL_G_HT40MINUS;
break;
case IEEE80211_BAND_5GHZ:
if ((ext_chan_offset == IEEE80211_HT_IE_CHA_SEC_NONE) &&
(tx_chan_width == ATH9K_HT_MACMODE_20))
chanmode = CHANNEL_A_HT20;
if ((ext_chan_offset == IEEE80211_HT_IE_CHA_SEC_ABOVE) &&
(tx_chan_width == ATH9K_HT_MACMODE_2040))
chanmode = CHANNEL_A_HT40PLUS;
if ((ext_chan_offset == IEEE80211_HT_IE_CHA_SEC_BELOW) &&
(tx_chan_width == ATH9K_HT_MACMODE_2040))
chanmode = CHANNEL_A_HT40MINUS;
break;
default:
break;
}
return chanmode;
}
static int ath_setkey_tkip(struct ath_softc *sc,
struct ieee80211_key_conf *key,
struct ath9k_keyval *hk,
const u8 *addr)
{
u8 *key_rxmic = NULL;
u8 *key_txmic = NULL;
key_txmic = key->key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
key_rxmic = key->key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
if (addr == NULL) {
/* Group key installation */
memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
return ath_keyset(sc, key->keyidx, hk, addr);
}
if (!sc->sc_splitmic) {
/*
* data key goes at first index,
* the hal handles the MIC keys at index+64.
*/
memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
return ath_keyset(sc, key->keyidx, hk, addr);
}
/*
* TX key goes at first index, RX key at +32.
* The hal handles the MIC keys at index+64.
*/
memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
if (!ath_keyset(sc, key->keyidx, hk, NULL)) {
/* Txmic entry failed. No need to proceed further */
DPRINTF(sc, ATH_DBG_KEYCACHE,
"%s Setting TX MIC Key Failed\n", __func__);
return 0;
}
memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
/* XXX delete tx key on failure? */
return ath_keyset(sc, key->keyidx+32, hk, addr);
}
static int ath_key_config(struct ath_softc *sc,
const u8 *addr,
struct ieee80211_key_conf *key)
{
struct ieee80211_vif *vif;
struct ath9k_keyval hk;
const u8 *mac = NULL;
int ret = 0;
enum nl80211_iftype opmode;
memset(&hk, 0, sizeof(hk));
switch (key->alg) {
case ALG_WEP:
hk.kv_type = ATH9K_CIPHER_WEP;
break;
case ALG_TKIP:
hk.kv_type = ATH9K_CIPHER_TKIP;
break;
case ALG_CCMP:
hk.kv_type = ATH9K_CIPHER_AES_CCM;
break;
default:
return -EINVAL;
}
hk.kv_len = key->keylen;
memcpy(hk.kv_val, key->key, key->keylen);
if (!sc->sc_vaps[0])
return -EIO;
vif = sc->sc_vaps[0]->av_if_data;
opmode = vif->type;
/*
* Strategy:
* For _M_STA mc tx, we will not setup a key at all since we never
* tx mc.
* _M_STA mc rx, we will use the keyID.
* for _M_IBSS mc tx, we will use the keyID, and no macaddr.
* for _M_IBSS mc rx, we will alloc a slot and plumb the mac of the
* peer node. BUT we will plumb a cleartext key so that we can do
* perSta default key table lookup in software.
*/
if (is_broadcast_ether_addr(addr)) {
switch (opmode) {
case NL80211_IFTYPE_STATION:
/* default key: could be group WPA key
* or could be static WEP key */
mac = NULL;
break;
case NL80211_IFTYPE_ADHOC:
break;
case NL80211_IFTYPE_AP:
break;
default:
ASSERT(0);
break;
}
} else {
mac = addr;
}
if (key->alg == ALG_TKIP)
ret = ath_setkey_tkip(sc, key, &hk, mac);
else
ret = ath_keyset(sc, key->keyidx, &hk, mac);
if (!ret)
return -EIO;
return 0;
}
static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
{
int freeslot;
freeslot = (key->keyidx >= 4) ? 1 : 0;
ath_key_reset(sc, key->keyidx, freeslot);
}
static void setup_ht_cap(struct ieee80211_ht_info *ht_info)
{
#define ATH9K_HT_CAP_MAXRXAMPDU_65536 0x3 /* 2 ^ 16 */
#define ATH9K_HT_CAP_MPDUDENSITY_8 0x6 /* 8 usec */
ht_info->ht_supported = 1;
ht_info->cap = (u16)IEEE80211_HT_CAP_SUP_WIDTH
|(u16)IEEE80211_HT_CAP_SM_PS
|(u16)IEEE80211_HT_CAP_SGI_40
|(u16)IEEE80211_HT_CAP_DSSSCCK40;
ht_info->ampdu_factor = ATH9K_HT_CAP_MAXRXAMPDU_65536;
ht_info->ampdu_density = ATH9K_HT_CAP_MPDUDENSITY_8;
/* setup supported mcs set */
memset(ht_info->supp_mcs_set, 0, 16);
ht_info->supp_mcs_set[0] = 0xff;
ht_info->supp_mcs_set[1] = 0xff;
ht_info->supp_mcs_set[12] = IEEE80211_HT_CAP_MCS_TX_DEFINED;
}
static int ath_rate2idx(struct ath_softc *sc, int rate)
{
int i = 0, cur_band, n_rates;
struct ieee80211_hw *hw = sc->hw;
cur_band = hw->conf.channel->band;
n_rates = sc->sbands[cur_band].n_bitrates;
for (i = 0; i < n_rates; i++) {
if (sc->sbands[cur_band].bitrates[i].bitrate == rate)
break;
}
/*
* NB:mac80211 validates rx rate index against the supported legacy rate
* index only (should be done against ht rates also), return the highest
* legacy rate index for rx rate which does not match any one of the
* supported basic and extended rates to make mac80211 happy.
* The following hack will be cleaned up once the issue with
* the rx rate index validation in mac80211 is fixed.
*/
if (i == n_rates)
return n_rates - 1;
return i;
}
static void ath9k_rx_prepare(struct ath_softc *sc,
struct sk_buff *skb,
struct ath_recv_status *status,
struct ieee80211_rx_status *rx_status)
{
struct ieee80211_hw *hw = sc->hw;
struct ieee80211_channel *curchan = hw->conf.channel;
memset(rx_status, 0, sizeof(struct ieee80211_rx_status));
rx_status->mactime = status->tsf;
rx_status->band = curchan->band;
rx_status->freq = curchan->center_freq;
rx_status->noise = sc->sc_ani.sc_noise_floor;
rx_status->signal = rx_status->noise + status->rssi;
rx_status->rate_idx = ath_rate2idx(sc, (status->rateKbps / 100));
rx_status->antenna = status->antenna;
/* XXX Fix me, 64 cannot be the max rssi value, rigure it out */
rx_status->qual = status->rssi * 100 / 64;
if (status->flags & ATH_RX_MIC_ERROR)
rx_status->flag |= RX_FLAG_MMIC_ERROR;
if (status->flags & ATH_RX_FCS_ERROR)
rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
rx_status->flag |= RX_FLAG_TSFT;
}
static u8 parse_mpdudensity(u8 mpdudensity)
{
/*
* 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
* 0 for no restriction
* 1 for 1/4 us
* 2 for 1/2 us
* 3 for 1 us
* 4 for 2 us
* 5 for 4 us
* 6 for 8 us
* 7 for 16 us
*/
switch (mpdudensity) {
case 0:
return 0;
case 1:
case 2:
case 3:
/* Our lower layer calculations limit our precision to
1 microsecond */
return 1;
case 4:
return 2;
case 5:
return 4;
case 6:
return 8;
case 7:
return 16;
default:
return 0;
}
}
static void ath9k_ht_conf(struct ath_softc *sc,
struct ieee80211_bss_conf *bss_conf)
{
#define IEEE80211_HT_CAP_40MHZ_INTOLERANT BIT(14)
struct ath_ht_info *ht_info = &sc->sc_ht_info;
if (bss_conf->assoc_ht) {
ht_info->ext_chan_offset =
bss_conf->ht_bss_conf->bss_cap &
IEEE80211_HT_IE_CHA_SEC_OFFSET;
if (!(bss_conf->ht_conf->cap &
IEEE80211_HT_CAP_40MHZ_INTOLERANT) &&
(bss_conf->ht_bss_conf->bss_cap &
IEEE80211_HT_IE_CHA_WIDTH))
ht_info->tx_chan_width = ATH9K_HT_MACMODE_2040;
else
ht_info->tx_chan_width = ATH9K_HT_MACMODE_20;
ath9k_hw_set11nmac2040(sc->sc_ah, ht_info->tx_chan_width);
ht_info->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR +
bss_conf->ht_conf->ampdu_factor);
ht_info->mpdudensity =
parse_mpdudensity(bss_conf->ht_conf->ampdu_density);
}
#undef IEEE80211_HT_CAP_40MHZ_INTOLERANT
}
static void ath9k_bss_assoc_info(struct ath_softc *sc,
struct ieee80211_bss_conf *bss_conf)
{
struct ieee80211_hw *hw = sc->hw;
struct ieee80211_channel *curchan = hw->conf.channel;
struct ath_vap *avp;
int pos;
DECLARE_MAC_BUF(mac);
if (bss_conf->assoc) {
DPRINTF(sc, ATH_DBG_CONFIG, "%s: Bss Info ASSOC %d\n",
__func__,
bss_conf->aid);
avp = sc->sc_vaps[0];
if (avp == NULL) {
DPRINTF(sc, ATH_DBG_FATAL, "%s: Invalid interface\n",
__func__);
return;
}
/* New association, store aid */
if (avp->av_opmode == ATH9K_M_STA) {
sc->sc_curaid = bss_conf->aid;
ath9k_hw_write_associd(sc->sc_ah, sc->sc_curbssid,
sc->sc_curaid);
}
/* Configure the beacon */
ath_beacon_config(sc, 0);
sc->sc_flags |= SC_OP_BEACONS;
/* Reset rssi stats */
sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
sc->sc_halstats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER;
/* Update chainmask */
ath_update_chainmask(sc, bss_conf->assoc_ht);
DPRINTF(sc, ATH_DBG_CONFIG,
"%s: bssid %s aid 0x%x\n",
__func__,
print_mac(mac, sc->sc_curbssid), sc->sc_curaid);
DPRINTF(sc, ATH_DBG_CONFIG, "%s: Set channel: %d MHz\n",
__func__,
curchan->center_freq);
pos = ath_get_channel(sc, curchan);
if (pos == -1) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: Invalid channel\n", __func__);
return;
}
if (hw->conf.ht_conf.ht_supported)
sc->sc_ah->ah_channels[pos].chanmode =
ath_get_extchanmode(sc, curchan);
else
sc->sc_ah->ah_channels[pos].chanmode =
(curchan->band == IEEE80211_BAND_2GHZ) ?
CHANNEL_G : CHANNEL_A;
/* set h/w channel */
if (ath_set_channel(sc, &sc->sc_ah->ah_channels[pos]) < 0)
DPRINTF(sc, ATH_DBG_FATAL,
"%s: Unable to set channel\n",
__func__);
ath_rate_newstate(sc, avp);
/* Update ratectrl about the new state */
ath_rc_node_update(hw, avp->rc_node);
/* Start ANI */
mod_timer(&sc->sc_ani.timer,
jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
} else {
DPRINTF(sc, ATH_DBG_CONFIG,
"%s: Bss Info DISSOC\n", __func__);
sc->sc_curaid = 0;
}
}
void ath_get_beaconconfig(struct ath_softc *sc,
int if_id,
struct ath_beacon_config *conf)
{
struct ieee80211_hw *hw = sc->hw;
/* fill in beacon config data */
conf->beacon_interval = hw->conf.beacon_int;
conf->listen_interval = 100;
conf->dtim_count = 1;
conf->bmiss_timeout = ATH_DEFAULT_BMISS_LIMIT * conf->listen_interval;
}
void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
struct ath_xmit_status *tx_status, struct ath_node *an)
{
struct ieee80211_hw *hw = sc->hw;
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
DPRINTF(sc, ATH_DBG_XMIT,
"%s: TX complete: skb: %p\n", __func__, skb);
if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK ||
tx_info->flags & IEEE80211_TX_STAT_TX_FILTERED) {
/* free driver's private data area of tx_info */
if (tx_info->driver_data[0] != NULL)
kfree(tx_info->driver_data[0]);
tx_info->driver_data[0] = NULL;
}
if (tx_status->flags & ATH_TX_BAR) {
tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
tx_status->flags &= ~ATH_TX_BAR;
}
if (tx_status->flags & (ATH_TX_ERROR | ATH_TX_XRETRY)) {
if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
/* Frame was not ACKed, but an ACK was expected */
tx_info->status.excessive_retries = 1;
}
} else {
/* Frame was ACKed */
tx_info->flags |= IEEE80211_TX_STAT_ACK;
}
tx_info->status.retry_count = tx_status->retries;
ieee80211_tx_status(hw, skb);
if (an)
ath_node_put(sc, an, ATH9K_BH_STATUS_CHANGE);
}
int _ath_rx_indicate(struct ath_softc *sc,
struct sk_buff *skb,
struct ath_recv_status *status,
u16 keyix)
{
struct ieee80211_hw *hw = sc->hw;
struct ath_node *an = NULL;
struct ieee80211_rx_status rx_status;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
int hdrlen = ieee80211_get_hdrlen_from_skb(skb);
int padsize;
enum ATH_RX_TYPE st;
/* see if any padding is done by the hw and remove it */
if (hdrlen & 3) {
padsize = hdrlen % 4;
memmove(skb->data + padsize, skb->data, hdrlen);
skb_pull(skb, padsize);
}
/* Prepare rx status */
ath9k_rx_prepare(sc, skb, status, &rx_status);
if (!(keyix == ATH9K_RXKEYIX_INVALID) &&
!(status->flags & ATH_RX_DECRYPT_ERROR)) {
rx_status.flag |= RX_FLAG_DECRYPTED;
} else if ((le16_to_cpu(hdr->frame_control) & IEEE80211_FCTL_PROTECTED)
&& !(status->flags & ATH_RX_DECRYPT_ERROR)
&& skb->len >= hdrlen + 4) {
keyix = skb->data[hdrlen + 3] >> 6;
if (test_bit(keyix, sc->sc_keymap))
rx_status.flag |= RX_FLAG_DECRYPTED;
}
spin_lock_bh(&sc->node_lock);
an = ath_node_find(sc, hdr->addr2);
spin_unlock_bh(&sc->node_lock);
if (an) {
ath_rx_input(sc, an,
hw->conf.ht_conf.ht_supported,
skb, status, &st);
}
if (!an || (st != ATH_RX_CONSUMED))
__ieee80211_rx(hw, skb, &rx_status);
return 0;
}
int ath_rx_subframe(struct ath_node *an,
struct sk_buff *skb,
struct ath_recv_status *status)
{
struct ath_softc *sc = an->an_sc;
struct ieee80211_hw *hw = sc->hw;
struct ieee80211_rx_status rx_status;
/* Prepare rx status */
ath9k_rx_prepare(sc, skb, status, &rx_status);
if (!(status->flags & ATH_RX_DECRYPT_ERROR))
rx_status.flag |= RX_FLAG_DECRYPTED;
__ieee80211_rx(hw, skb, &rx_status);
return 0;
}
/********************************/
/* LED functions */
/********************************/
static void ath_led_brightness(struct led_classdev *led_cdev,
enum led_brightness brightness)
{
struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
struct ath_softc *sc = led->sc;
switch (brightness) {
case LED_OFF:
if (led->led_type == ATH_LED_ASSOC ||
led->led_type == ATH_LED_RADIO)
sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
(led->led_type == ATH_LED_RADIO) ? 1 :
!!(sc->sc_flags & SC_OP_LED_ASSOCIATED));
break;
case LED_FULL:
if (led->led_type == ATH_LED_ASSOC)
sc->sc_flags |= SC_OP_LED_ASSOCIATED;
ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
break;
default:
break;
}
}
static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
char *trigger)
{
int ret;
led->sc = sc;
led->led_cdev.name = led->name;
led->led_cdev.default_trigger = trigger;
led->led_cdev.brightness_set = ath_led_brightness;
ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
if (ret)
DPRINTF(sc, ATH_DBG_FATAL,
"Failed to register led:%s", led->name);
else
led->registered = 1;
return ret;
}
static void ath_unregister_led(struct ath_led *led)
{
if (led->registered) {
led_classdev_unregister(&led->led_cdev);
led->registered = 0;
}
}
static void ath_deinit_leds(struct ath_softc *sc)
{
ath_unregister_led(&sc->assoc_led);
sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
ath_unregister_led(&sc->tx_led);
ath_unregister_led(&sc->rx_led);
ath_unregister_led(&sc->radio_led);
ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
}
static void ath_init_leds(struct ath_softc *sc)
{
char *trigger;
int ret;
/* Configure gpio 1 for output */
ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
/* LED off, active low */
ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
trigger = ieee80211_get_radio_led_name(sc->hw);
snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
"ath9k-%s:radio", wiphy_name(sc->hw->wiphy));
ret = ath_register_led(sc, &sc->radio_led, trigger);
sc->radio_led.led_type = ATH_LED_RADIO;
if (ret)
goto fail;
trigger = ieee80211_get_assoc_led_name(sc->hw);
snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
"ath9k-%s:assoc", wiphy_name(sc->hw->wiphy));
ret = ath_register_led(sc, &sc->assoc_led, trigger);
sc->assoc_led.led_type = ATH_LED_ASSOC;
if (ret)
goto fail;
trigger = ieee80211_get_tx_led_name(sc->hw);
snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
"ath9k-%s:tx", wiphy_name(sc->hw->wiphy));
ret = ath_register_led(sc, &sc->tx_led, trigger);
sc->tx_led.led_type = ATH_LED_TX;
if (ret)
goto fail;
trigger = ieee80211_get_rx_led_name(sc->hw);
snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
"ath9k-%s:rx", wiphy_name(sc->hw->wiphy));
ret = ath_register_led(sc, &sc->rx_led, trigger);
sc->rx_led.led_type = ATH_LED_RX;
if (ret)
goto fail;
return;
fail:
ath_deinit_leds(sc);
}
#ifdef CONFIG_RFKILL
/*******************/
/* Rfkill */
/*******************/
static void ath_radio_enable(struct ath_softc *sc)
{
struct ath_hal *ah = sc->sc_ah;
int status;
spin_lock_bh(&sc->sc_resetlock);
if (!ath9k_hw_reset(ah, ah->ah_curchan,
sc->sc_ht_info.tx_chan_width,
sc->sc_tx_chainmask,
sc->sc_rx_chainmask,
sc->sc_ht_extprotspacing,
false, &status)) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: unable to reset channel %u (%uMhz) "
"flags 0x%x hal status %u\n", __func__,
ath9k_hw_mhz2ieee(ah,
ah->ah_curchan->channel,
ah->ah_curchan->channelFlags),
ah->ah_curchan->channel,
ah->ah_curchan->channelFlags, status);
}
spin_unlock_bh(&sc->sc_resetlock);
ath_update_txpow(sc);
if (ath_startrecv(sc) != 0) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: unable to restart recv logic\n", __func__);
return;
}
if (sc->sc_flags & SC_OP_BEACONS)
ath_beacon_config(sc, ATH_IF_ID_ANY); /* restart beacons */
/* Re-Enable interrupts */
ath9k_hw_set_interrupts(ah, sc->sc_imask);
/* Enable LED */
ath9k_hw_cfg_output(ah, ATH_LED_PIN,
AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
ath9k_hw_set_gpio(ah, ATH_LED_PIN, 0);
ieee80211_wake_queues(sc->hw);
}
static void ath_radio_disable(struct ath_softc *sc)
{
struct ath_hal *ah = sc->sc_ah;
int status;
ieee80211_stop_queues(sc->hw);
/* Disable LED */
ath9k_hw_set_gpio(ah, ATH_LED_PIN, 1);
ath9k_hw_cfg_gpio_input(ah, ATH_LED_PIN);
/* Disable interrupts */
ath9k_hw_set_interrupts(ah, 0);
ath_draintxq(sc, false); /* clear pending tx frames */
ath_stoprecv(sc); /* turn off frame recv */
ath_flushrecv(sc); /* flush recv queue */
spin_lock_bh(&sc->sc_resetlock);
if (!ath9k_hw_reset(ah, ah->ah_curchan,
sc->sc_ht_info.tx_chan_width,
sc->sc_tx_chainmask,
sc->sc_rx_chainmask,
sc->sc_ht_extprotspacing,
false, &status)) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: unable to reset channel %u (%uMhz) "
"flags 0x%x hal status %u\n", __func__,
ath9k_hw_mhz2ieee(ah,
ah->ah_curchan->channel,
ah->ah_curchan->channelFlags),
ah->ah_curchan->channel,
ah->ah_curchan->channelFlags, status);
}
spin_unlock_bh(&sc->sc_resetlock);
ath9k_hw_phy_disable(ah);
ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
}
static bool ath_is_rfkill_set(struct ath_softc *sc)
{
struct ath_hal *ah = sc->sc_ah;
return ath9k_hw_gpio_get(ah, ah->ah_rfkill_gpio) ==
ah->ah_rfkill_polarity;
}
/* h/w rfkill poll function */
static void ath_rfkill_poll(struct work_struct *work)
{
struct ath_softc *sc = container_of(work, struct ath_softc,
rf_kill.rfkill_poll.work);
bool radio_on;
if (sc->sc_flags & SC_OP_INVALID)
return;
radio_on = !ath_is_rfkill_set(sc);
/*
* enable/disable radio only when there is a
* state change in RF switch
*/
if (radio_on == !!(sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED)) {
enum rfkill_state state;
if (sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED) {
state = radio_on ? RFKILL_STATE_SOFT_BLOCKED
: RFKILL_STATE_HARD_BLOCKED;
} else if (radio_on) {
ath_radio_enable(sc);
state = RFKILL_STATE_UNBLOCKED;
} else {
ath_radio_disable(sc);
state = RFKILL_STATE_HARD_BLOCKED;
}
if (state == RFKILL_STATE_HARD_BLOCKED)
sc->sc_flags |= SC_OP_RFKILL_HW_BLOCKED;
else
sc->sc_flags &= ~SC_OP_RFKILL_HW_BLOCKED;
rfkill_force_state(sc->rf_kill.rfkill, state);
}
queue_delayed_work(sc->hw->workqueue, &sc->rf_kill.rfkill_poll,
msecs_to_jiffies(ATH_RFKILL_POLL_INTERVAL));
}
/* s/w rfkill handler */
static int ath_sw_toggle_radio(void *data, enum rfkill_state state)
{
struct ath_softc *sc = data;
switch (state) {
case RFKILL_STATE_SOFT_BLOCKED:
if (!(sc->sc_flags & (SC_OP_RFKILL_HW_BLOCKED |
SC_OP_RFKILL_SW_BLOCKED)))
ath_radio_disable(sc);
sc->sc_flags |= SC_OP_RFKILL_SW_BLOCKED;
return 0;
case RFKILL_STATE_UNBLOCKED:
if ((sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED)) {
sc->sc_flags &= ~SC_OP_RFKILL_SW_BLOCKED;
if (sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED) {
DPRINTF(sc, ATH_DBG_FATAL, "Can't turn on the"
"radio as it is disabled by h/w \n");
return -EPERM;
}
ath_radio_enable(sc);
}
return 0;
default:
return -EINVAL;
}
}
/* Init s/w rfkill */
static int ath_init_sw_rfkill(struct ath_softc *sc)
{
sc->rf_kill.rfkill = rfkill_allocate(wiphy_dev(sc->hw->wiphy),
RFKILL_TYPE_WLAN);
if (!sc->rf_kill.rfkill) {
DPRINTF(sc, ATH_DBG_FATAL, "Failed to allocate rfkill\n");
return -ENOMEM;
}
snprintf(sc->rf_kill.rfkill_name, sizeof(sc->rf_kill.rfkill_name),
"ath9k-%s:rfkill", wiphy_name(sc->hw->wiphy));
sc->rf_kill.rfkill->name = sc->rf_kill.rfkill_name;
sc->rf_kill.rfkill->data = sc;
sc->rf_kill.rfkill->toggle_radio = ath_sw_toggle_radio;
sc->rf_kill.rfkill->state = RFKILL_STATE_UNBLOCKED;
sc->rf_kill.rfkill->user_claim_unsupported = 1;
return 0;
}
/* Deinitialize rfkill */
static void ath_deinit_rfkill(struct ath_softc *sc)
{
if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
if (sc->sc_flags & SC_OP_RFKILL_REGISTERED) {
rfkill_unregister(sc->rf_kill.rfkill);
sc->sc_flags &= ~SC_OP_RFKILL_REGISTERED;
sc->rf_kill.rfkill = NULL;
}
}
#endif /* CONFIG_RFKILL */
static int ath_detach(struct ath_softc *sc)
{
struct ieee80211_hw *hw = sc->hw;
DPRINTF(sc, ATH_DBG_CONFIG, "%s: Detach ATH hw\n", __func__);
/* Deinit LED control */
ath_deinit_leds(sc);
#ifdef CONFIG_RFKILL
/* deinit rfkill */
ath_deinit_rfkill(sc);
#endif
/* Unregister hw */
ieee80211_unregister_hw(hw);
/* unregister Rate control */
ath_rate_control_unregister();
/* tx/rx cleanup */
ath_rx_cleanup(sc);
ath_tx_cleanup(sc);
/* Deinit */
ath_deinit(sc);
return 0;
}
static int ath_attach(u16 devid,
struct ath_softc *sc)
{
struct ieee80211_hw *hw = sc->hw;
int error = 0;
DPRINTF(sc, ATH_DBG_CONFIG, "%s: Attach ATH hw\n", __func__);
error = ath_init(devid, sc);
if (error != 0)
return error;
/* Init nodes */
INIT_LIST_HEAD(&sc->node_list);
spin_lock_init(&sc->node_lock);
/* get mac address from hardware and set in mac80211 */
SET_IEEE80211_PERM_ADDR(hw, sc->sc_myaddr);
/* setup channels and rates */
sc->sbands[IEEE80211_BAND_2GHZ].channels =
sc->channels[IEEE80211_BAND_2GHZ];
sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
sc->rates[IEEE80211_BAND_2GHZ];
sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT)
/* Setup HT capabilities for 2.4Ghz*/
setup_ht_cap(&sc->sbands[IEEE80211_BAND_2GHZ].ht_info);
hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
&sc->sbands[IEEE80211_BAND_2GHZ];
if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes)) {
sc->sbands[IEEE80211_BAND_5GHZ].channels =
sc->channels[IEEE80211_BAND_5GHZ];
sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
sc->rates[IEEE80211_BAND_5GHZ];
sc->sbands[IEEE80211_BAND_5GHZ].band =
IEEE80211_BAND_5GHZ;
if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT)
/* Setup HT capabilities for 5Ghz*/
setup_ht_cap(&sc->sbands[IEEE80211_BAND_5GHZ].ht_info);
hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
&sc->sbands[IEEE80211_BAND_5GHZ];
}
/* FIXME: Have to figure out proper hw init values later */
hw->queues = 4;
hw->ampdu_queues = 1;
/* Register rate control */
hw->rate_control_algorithm = "ath9k_rate_control";
error = ath_rate_control_register();
if (error != 0) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: Unable to register rate control "
"algorithm:%d\n", __func__, error);
ath_rate_control_unregister();
goto bad;
}
error = ieee80211_register_hw(hw);
if (error != 0) {
ath_rate_control_unregister();
goto bad;
}
/* Initialize LED control */
ath_init_leds(sc);
#ifdef CONFIG_RFKILL
/* Initialze h/w Rfkill */
if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
INIT_DELAYED_WORK(&sc->rf_kill.rfkill_poll, ath_rfkill_poll);
/* Initialize s/w rfkill */
if (ath_init_sw_rfkill(sc))
goto detach;
#endif
/* initialize tx/rx engine */
error = ath_tx_init(sc, ATH_TXBUF);
if (error != 0)
goto detach;
error = ath_rx_init(sc, ATH_RXBUF);
if (error != 0)
goto detach;
return 0;
detach:
ath_detach(sc);
bad:
return error;
}
static int ath9k_start(struct ieee80211_hw *hw)
{
struct ath_softc *sc = hw->priv;
struct ieee80211_channel *curchan = hw->conf.channel;
int error = 0, pos;
DPRINTF(sc, ATH_DBG_CONFIG, "%s: Starting driver with "
"initial channel: %d MHz\n", __func__, curchan->center_freq);
/* setup initial channel */
pos = ath_get_channel(sc, curchan);
if (pos == -1) {
DPRINTF(sc, ATH_DBG_FATAL, "%s: Invalid channel\n", __func__);
return -EINVAL;
}
sc->sc_ah->ah_channels[pos].chanmode =
(curchan->band == IEEE80211_BAND_2GHZ) ? CHANNEL_G : CHANNEL_A;
/* open ath_dev */
error = ath_open(sc, &sc->sc_ah->ah_channels[pos]);
if (error) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: Unable to complete ath_open\n", __func__);
return error;
}
#ifdef CONFIG_RFKILL
/* Start rfkill polling */
if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
queue_delayed_work(sc->hw->workqueue,
&sc->rf_kill.rfkill_poll, 0);
if (!(sc->sc_flags & SC_OP_RFKILL_REGISTERED)) {
if (rfkill_register(sc->rf_kill.rfkill)) {
DPRINTF(sc, ATH_DBG_FATAL,
"Unable to register rfkill\n");
rfkill_free(sc->rf_kill.rfkill);
/* Deinitialize the device */
if (sc->pdev->irq)
free_irq(sc->pdev->irq, sc);
ath_detach(sc);
pci_iounmap(sc->pdev, sc->mem);
pci_release_region(sc->pdev, 0);
pci_disable_device(sc->pdev);
ieee80211_free_hw(hw);
return -EIO;
} else {
sc->sc_flags |= SC_OP_RFKILL_REGISTERED;
}
}
#endif
ieee80211_wake_queues(hw);
return 0;
}
static int ath9k_tx(struct ieee80211_hw *hw,
struct sk_buff *skb)
{
struct ath_softc *sc = hw->priv;
int hdrlen, padsize;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
/*
* As a temporary workaround, assign seq# here; this will likely need
* to be cleaned up to work better with Beacon transmission and virtual
* BSSes.
*/
if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
sc->seq_no += 0x10;
hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
hdr->seq_ctrl |= cpu_to_le16(sc->seq_no);
}
/* Add the padding after the header if this is not already done */
hdrlen = ieee80211_get_hdrlen_from_skb(skb);
if (hdrlen & 3) {
padsize = hdrlen % 4;
if (skb_headroom(skb) < padsize)
return -1;
skb_push(skb, padsize);
memmove(skb->data, skb->data + padsize, hdrlen);
}
DPRINTF(sc, ATH_DBG_XMIT, "%s: transmitting packet, skb: %p\n",
__func__,
skb);
if (ath_tx_start(sc, skb) != 0) {
DPRINTF(sc, ATH_DBG_XMIT, "%s: TX failed\n", __func__);
dev_kfree_skb_any(skb);
/* FIXME: Check for proper return value from ATH_DEV */
return 0;
}
return 0;
}
static void ath9k_stop(struct ieee80211_hw *hw)
{
struct ath_softc *sc = hw->priv;
int error;
DPRINTF(sc, ATH_DBG_CONFIG, "%s: Driver halt\n", __func__);
error = ath_suspend(sc);
if (error)
DPRINTF(sc, ATH_DBG_CONFIG,
"%s: Device is no longer present\n", __func__);
ieee80211_stop_queues(hw);
#ifdef CONFIG_RFKILL
if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
#endif
}
static int ath9k_add_interface(struct ieee80211_hw *hw,
struct ieee80211_if_init_conf *conf)
{
struct ath_softc *sc = hw->priv;
int error, ic_opmode = 0;
/* Support only vap for now */
if (sc->sc_nvaps)
return -ENOBUFS;
switch (conf->type) {
case NL80211_IFTYPE_STATION:
ic_opmode = ATH9K_M_STA;
break;
case NL80211_IFTYPE_ADHOC:
ic_opmode = ATH9K_M_IBSS;
break;
case NL80211_IFTYPE_AP:
ic_opmode = ATH9K_M_HOSTAP;
break;
default:
DPRINTF(sc, ATH_DBG_FATAL,
"%s: Interface type %d not yet supported\n",
__func__, conf->type);
return -EOPNOTSUPP;
}
DPRINTF(sc, ATH_DBG_CONFIG, "%s: Attach a VAP of type: %d\n",
__func__,
ic_opmode);
error = ath_vap_attach(sc, 0, conf->vif, ic_opmode);
if (error) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: Unable to attach vap, error: %d\n",
__func__, error);
return error;
}
if (conf->type == NL80211_IFTYPE_AP) {
/* TODO: is this a suitable place to start ANI for AP mode? */
/* Start ANI */
mod_timer(&sc->sc_ani.timer,
jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
}
return 0;
}
static void ath9k_remove_interface(struct ieee80211_hw *hw,
struct ieee80211_if_init_conf *conf)
{
struct ath_softc *sc = hw->priv;
struct ath_vap *avp;
int error;
DPRINTF(sc, ATH_DBG_CONFIG, "%s: Detach VAP\n", __func__);
avp = sc->sc_vaps[0];
if (avp == NULL) {
DPRINTF(sc, ATH_DBG_FATAL, "%s: Invalid interface\n",
__func__);
return;
}
#ifdef CONFIG_SLOW_ANT_DIV
ath_slow_ant_div_stop(&sc->sc_antdiv);
#endif
/* Stop ANI */
del_timer_sync(&sc->sc_ani.timer);
/* Update ratectrl */
ath_rate_newstate(sc, avp);
/* Reclaim beacon resources */
if (sc->sc_ah->ah_opmode == ATH9K_M_HOSTAP ||
sc->sc_ah->ah_opmode == ATH9K_M_IBSS) {
ath9k_hw_stoptxdma(sc->sc_ah, sc->sc_bhalq);
ath_beacon_return(sc, avp);
}
/* Set interrupt mask */
sc->sc_imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask & ~ATH9K_INT_GLOBAL);
sc->sc_flags &= ~SC_OP_BEACONS;
error = ath_vap_detach(sc, 0);
if (error)
DPRINTF(sc, ATH_DBG_FATAL,
"%s: Unable to detach vap, error: %d\n",
__func__, error);
}
static int ath9k_config(struct ieee80211_hw *hw,
struct ieee80211_conf *conf)
{
struct ath_softc *sc = hw->priv;
struct ieee80211_channel *curchan = hw->conf.channel;
int pos;
DPRINTF(sc, ATH_DBG_CONFIG, "%s: Set channel: %d MHz\n",
__func__,
curchan->center_freq);
pos = ath_get_channel(sc, curchan);
if (pos == -1) {
DPRINTF(sc, ATH_DBG_FATAL, "%s: Invalid channel\n", __func__);
return -EINVAL;
}
sc->sc_ah->ah_channels[pos].chanmode =
(curchan->band == IEEE80211_BAND_2GHZ) ?
CHANNEL_G : CHANNEL_A;
if (sc->sc_curaid && hw->conf.ht_conf.ht_supported)
sc->sc_ah->ah_channels[pos].chanmode =
ath_get_extchanmode(sc, curchan);
sc->sc_config.txpowlimit = 2 * conf->power_level;
/* set h/w channel */
if (ath_set_channel(sc, &sc->sc_ah->ah_channels[pos]) < 0)
DPRINTF(sc, ATH_DBG_FATAL, "%s: Unable to set channel\n",
__func__);
return 0;
}
static int ath9k_config_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_if_conf *conf)
{
struct ath_softc *sc = hw->priv;
struct ath_hal *ah = sc->sc_ah;
struct ath_vap *avp;
u32 rfilt = 0;
int error, i;
DECLARE_MAC_BUF(mac);
avp = sc->sc_vaps[0];
if (avp == NULL) {
DPRINTF(sc, ATH_DBG_FATAL, "%s: Invalid interface\n",
__func__);
return -EINVAL;
}
/* TODO: Need to decide which hw opmode to use for multi-interface
* cases */
if (vif->type == NL80211_IFTYPE_AP &&
ah->ah_opmode != ATH9K_M_HOSTAP) {
ah->ah_opmode = ATH9K_M_HOSTAP;
ath9k_hw_setopmode(ah);
ath9k_hw_write_associd(ah, sc->sc_myaddr, 0);
/* Request full reset to get hw opmode changed properly */
sc->sc_flags |= SC_OP_FULL_RESET;
}
if ((conf->changed & IEEE80211_IFCC_BSSID) &&
!is_zero_ether_addr(conf->bssid)) {
switch (vif->type) {
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_ADHOC:
/* Update ratectrl about the new state */
ath_rate_newstate(sc, avp);
/* Set BSSID */
memcpy(sc->sc_curbssid, conf->bssid, ETH_ALEN);
sc->sc_curaid = 0;
ath9k_hw_write_associd(sc->sc_ah, sc->sc_curbssid,
sc->sc_curaid);
/* Set aggregation protection mode parameters */
sc->sc_config.ath_aggr_prot = 0;
/*
* Reset our TSF so that its value is lower than the
* beacon that we are trying to catch.
* Only then hw will update its TSF register with the
* new beacon. Reset the TSF before setting the BSSID
* to avoid allowing in any frames that would update
* our TSF only to have us clear it
* immediately thereafter.
*/
ath9k_hw_reset_tsf(sc->sc_ah);
/* Disable BMISS interrupt when we're not associated */
ath9k_hw_set_interrupts(sc->sc_ah,
sc->sc_imask &
~(ATH9K_INT_SWBA | ATH9K_INT_BMISS));
sc->sc_imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
DPRINTF(sc, ATH_DBG_CONFIG,
"%s: RX filter 0x%x bssid %s aid 0x%x\n",
__func__, rfilt,
print_mac(mac, sc->sc_curbssid), sc->sc_curaid);
/* need to reconfigure the beacon */
sc->sc_flags &= ~SC_OP_BEACONS ;
break;
default:
break;
}
}
if ((conf->changed & IEEE80211_IFCC_BEACON) &&
((vif->type == NL80211_IFTYPE_ADHOC) ||
(vif->type == NL80211_IFTYPE_AP))) {
/*
* Allocate and setup the beacon frame.
*
* Stop any previous beacon DMA. This may be
* necessary, for example, when an ibss merge
* causes reconfiguration; we may be called
* with beacon transmission active.
*/
ath9k_hw_stoptxdma(sc->sc_ah, sc->sc_bhalq);
error = ath_beacon_alloc(sc, 0);
if (error != 0)
return error;
ath_beacon_sync(sc, 0);
}
/* Check for WLAN_CAPABILITY_PRIVACY ? */
if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
for (i = 0; i < IEEE80211_WEP_NKID; i++)
if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
ath9k_hw_keysetmac(sc->sc_ah,
(u16)i,
sc->sc_curbssid);
}
/* Only legacy IBSS for now */
if (vif->type == NL80211_IFTYPE_ADHOC)
ath_update_chainmask(sc, 0);
return 0;
}
#define SUPPORTED_FILTERS \
(FIF_PROMISC_IN_BSS | \
FIF_ALLMULTI | \
FIF_CONTROL | \
FIF_OTHER_BSS | \
FIF_BCN_PRBRESP_PROMISC | \
FIF_FCSFAIL)
/* FIXME: sc->sc_full_reset ? */
static void ath9k_configure_filter(struct ieee80211_hw *hw,
unsigned int changed_flags,
unsigned int *total_flags,
int mc_count,
struct dev_mc_list *mclist)
{
struct ath_softc *sc = hw->priv;
u32 rfilt;
changed_flags &= SUPPORTED_FILTERS;
*total_flags &= SUPPORTED_FILTERS;
sc->rx_filter = *total_flags;
rfilt = ath_calcrxfilter(sc);
ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
if (changed_flags & FIF_BCN_PRBRESP_PROMISC) {
if (*total_flags & FIF_BCN_PRBRESP_PROMISC)
ath9k_hw_write_associd(sc->sc_ah, ath_bcast_mac, 0);
}
DPRINTF(sc, ATH_DBG_CONFIG, "%s: Set HW RX filter: 0x%x\n",
__func__, sc->rx_filter);
}
static void ath9k_sta_notify(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
enum sta_notify_cmd cmd,
struct ieee80211_sta *sta)
{
struct ath_softc *sc = hw->priv;
struct ath_node *an;
unsigned long flags;
DECLARE_MAC_BUF(mac);
spin_lock_irqsave(&sc->node_lock, flags);
an = ath_node_find(sc, sta->addr);
spin_unlock_irqrestore(&sc->node_lock, flags);
switch (cmd) {
case STA_NOTIFY_ADD:
spin_lock_irqsave(&sc->node_lock, flags);
if (!an) {
ath_node_attach(sc, sta->addr, 0);
DPRINTF(sc, ATH_DBG_CONFIG, "%s: Attach a node: %s\n",
__func__, print_mac(mac, sta->addr));
} else {
ath_node_get(sc, sta->addr);
}
spin_unlock_irqrestore(&sc->node_lock, flags);
break;
case STA_NOTIFY_REMOVE:
if (!an)
DPRINTF(sc, ATH_DBG_FATAL,
"%s: Removal of a non-existent node\n",
__func__);
else {
ath_node_put(sc, an, ATH9K_BH_STATUS_INTACT);
DPRINTF(sc, ATH_DBG_CONFIG, "%s: Put a node: %s\n",
__func__,
print_mac(mac, sta->addr));
}
break;
default:
break;
}
}
static int ath9k_conf_tx(struct ieee80211_hw *hw,
u16 queue,
const struct ieee80211_tx_queue_params *params)
{
struct ath_softc *sc = hw->priv;
struct ath9k_tx_queue_info qi;
int ret = 0, qnum;
if (queue >= WME_NUM_AC)
return 0;
qi.tqi_aifs = params->aifs;
qi.tqi_cwmin = params->cw_min;
qi.tqi_cwmax = params->cw_max;
qi.tqi_burstTime = params->txop;
qnum = ath_get_hal_qnum(queue, sc);
DPRINTF(sc, ATH_DBG_CONFIG,
"%s: Configure tx [queue/halq] [%d/%d], "
"aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
__func__,
queue,
qnum,
params->aifs,
params->cw_min,
params->cw_max,
params->txop);
ret = ath_txq_update(sc, qnum, &qi);
if (ret)
DPRINTF(sc, ATH_DBG_FATAL,
"%s: TXQ Update failed\n", __func__);
return ret;
}
static int ath9k_set_key(struct ieee80211_hw *hw,
enum set_key_cmd cmd,
const u8 *local_addr,
const u8 *addr,
struct ieee80211_key_conf *key)
{
struct ath_softc *sc = hw->priv;
int ret = 0;
DPRINTF(sc, ATH_DBG_KEYCACHE, " %s: Set HW Key\n", __func__);
switch (cmd) {
case SET_KEY:
ret = ath_key_config(sc, addr, key);
if (!ret) {
set_bit(key->keyidx, sc->sc_keymap);
key->hw_key_idx = key->keyidx;
/* push IV and Michael MIC generation to stack */
key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
if (key->alg == ALG_TKIP)
key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
}
break;
case DISABLE_KEY:
ath_key_delete(sc, key);
clear_bit(key->keyidx, sc->sc_keymap);
break;
default:
ret = -EINVAL;
}
return ret;
}
static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *bss_conf,
u32 changed)
{
struct ath_softc *sc = hw->priv;
if (changed & BSS_CHANGED_ERP_PREAMBLE) {
DPRINTF(sc, ATH_DBG_CONFIG, "%s: BSS Changed PREAMBLE %d\n",
__func__,
bss_conf->use_short_preamble);
if (bss_conf->use_short_preamble)
sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
else
sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
}
if (changed & BSS_CHANGED_ERP_CTS_PROT) {
DPRINTF(sc, ATH_DBG_CONFIG, "%s: BSS Changed CTS PROT %d\n",
__func__,
bss_conf->use_cts_prot);
if (bss_conf->use_cts_prot &&
hw->conf.channel->band != IEEE80211_BAND_5GHZ)
sc->sc_flags |= SC_OP_PROTECT_ENABLE;
else
sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
}
if (changed & BSS_CHANGED_HT) {
DPRINTF(sc, ATH_DBG_CONFIG, "%s: BSS Changed HT %d\n",
__func__,
bss_conf->assoc_ht);
ath9k_ht_conf(sc, bss_conf);
}
if (changed & BSS_CHANGED_ASSOC) {
DPRINTF(sc, ATH_DBG_CONFIG, "%s: BSS Changed ASSOC %d\n",
__func__,
bss_conf->assoc);
ath9k_bss_assoc_info(sc, bss_conf);
}
}
static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
{
u64 tsf;
struct ath_softc *sc = hw->priv;
struct ath_hal *ah = sc->sc_ah;
tsf = ath9k_hw_gettsf64(ah);
return tsf;
}
static void ath9k_reset_tsf(struct ieee80211_hw *hw)
{
struct ath_softc *sc = hw->priv;
struct ath_hal *ah = sc->sc_ah;
ath9k_hw_reset_tsf(ah);
}
static int ath9k_ampdu_action(struct ieee80211_hw *hw,
enum ieee80211_ampdu_mlme_action action,
struct ieee80211_sta *sta,
u16 tid, u16 *ssn)
{
struct ath_softc *sc = hw->priv;
int ret = 0;
switch (action) {
case IEEE80211_AMPDU_RX_START:
ret = ath_rx_aggr_start(sc, sta->addr, tid, ssn);
if (ret < 0)
DPRINTF(sc, ATH_DBG_FATAL,
"%s: Unable to start RX aggregation\n",
__func__);
break;
case IEEE80211_AMPDU_RX_STOP:
ret = ath_rx_aggr_stop(sc, sta->addr, tid);
if (ret < 0)
DPRINTF(sc, ATH_DBG_FATAL,
"%s: Unable to stop RX aggregation\n",
__func__);
break;
case IEEE80211_AMPDU_TX_START:
ret = ath_tx_aggr_start(sc, sta->addr, tid, ssn);
if (ret < 0)
DPRINTF(sc, ATH_DBG_FATAL,
"%s: Unable to start TX aggregation\n",
__func__);
else
ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
break;
case IEEE80211_AMPDU_TX_STOP:
ret = ath_tx_aggr_stop(sc, sta->addr, tid);
if (ret < 0)
DPRINTF(sc, ATH_DBG_FATAL,
"%s: Unable to stop TX aggregation\n",
__func__);
ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
break;
default:
DPRINTF(sc, ATH_DBG_FATAL,
"%s: Unknown AMPDU action\n", __func__);
}
return ret;
}
static int ath9k_no_fragmentation(struct ieee80211_hw *hw, u32 value)
{
return -EOPNOTSUPP;
}
static struct ieee80211_ops ath9k_ops = {
.tx = ath9k_tx,
.start = ath9k_start,
.stop = ath9k_stop,
.add_interface = ath9k_add_interface,
.remove_interface = ath9k_remove_interface,
.config = ath9k_config,
.config_interface = ath9k_config_interface,
.configure_filter = ath9k_configure_filter,
.get_stats = NULL,
.sta_notify = ath9k_sta_notify,
.conf_tx = ath9k_conf_tx,
.get_tx_stats = NULL,
.bss_info_changed = ath9k_bss_info_changed,
.set_tim = NULL,
.set_key = ath9k_set_key,
.hw_scan = NULL,
.get_tkip_seq = NULL,
.set_rts_threshold = NULL,
.set_frag_threshold = NULL,
.set_retry_limit = NULL,
.get_tsf = ath9k_get_tsf,
.reset_tsf = ath9k_reset_tsf,
.tx_last_beacon = NULL,
.ampdu_action = ath9k_ampdu_action,
.set_frag_threshold = ath9k_no_fragmentation,
};
static int ath_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
void __iomem *mem;
struct ath_softc *sc;
struct ieee80211_hw *hw;
const char *athname;
u8 csz;
u32 val;
int ret = 0;
if (pci_enable_device(pdev))
return -EIO;
/* XXX 32-bit addressing only */
if (pci_set_dma_mask(pdev, 0xffffffff)) {
printk(KERN_ERR "ath_pci: 32-bit DMA not available\n");
ret = -ENODEV;
goto bad;
}
/*
* Cache line size is used to size and align various
* structures used to communicate with the hardware.
*/
pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &csz);
if (csz == 0) {
/*
* Linux 2.4.18 (at least) writes the cache line size
* register as a 16-bit wide register which is wrong.
* We must have this setup properly for rx buffer
* DMA to work so force a reasonable value here if it
* comes up zero.
*/
csz = L1_CACHE_BYTES / sizeof(u32);
pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, csz);
}
/*
* The default setting of latency timer yields poor results,
* set it to the value used by other systems. It may be worth
* tweaking this setting more.
*/
pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xa8);
pci_set_master(pdev);
/*
* Disable the RETRY_TIMEOUT register (0x41) to keep
* PCI Tx retries from interfering with C3 CPU state.
*/
pci_read_config_dword(pdev, 0x40, &val);
if ((val & 0x0000ff00) != 0)
pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
ret = pci_request_region(pdev, 0, "ath9k");
if (ret) {
dev_err(&pdev->dev, "PCI memory region reserve error\n");
ret = -ENODEV;
goto bad;
}
mem = pci_iomap(pdev, 0, 0);
if (!mem) {
printk(KERN_ERR "PCI memory map error\n") ;
ret = -EIO;
goto bad1;
}
hw = ieee80211_alloc_hw(sizeof(struct ath_softc), &ath9k_ops);
if (hw == NULL) {
printk(KERN_ERR "ath_pci: no memory for ieee80211_hw\n");
goto bad2;
}
hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
IEEE80211_HW_SIGNAL_DBM |
IEEE80211_HW_NOISE_DBM;
hw->wiphy->interface_modes =
BIT(NL80211_IFTYPE_AP) |
BIT(NL80211_IFTYPE_STATION) |
BIT(NL80211_IFTYPE_ADHOC);
SET_IEEE80211_DEV(hw, &pdev->dev);
pci_set_drvdata(pdev, hw);
sc = hw->priv;
sc->hw = hw;
sc->pdev = pdev;
sc->mem = mem;
if (ath_attach(id->device, sc) != 0) {
ret = -ENODEV;
goto bad3;
}
/* setup interrupt service routine */
if (request_irq(pdev->irq, ath_isr, IRQF_SHARED, "ath", sc)) {
printk(KERN_ERR "%s: request_irq failed\n",
wiphy_name(hw->wiphy));
ret = -EIO;
goto bad4;
}
athname = ath9k_hw_probe(id->vendor, id->device);
printk(KERN_INFO "%s: %s: mem=0x%lx, irq=%d\n",
wiphy_name(hw->wiphy),
athname ? athname : "Atheros ???",
(unsigned long)mem, pdev->irq);
return 0;
bad4:
ath_detach(sc);
bad3:
ieee80211_free_hw(hw);
bad2:
pci_iounmap(pdev, mem);
bad1:
pci_release_region(pdev, 0);
bad:
pci_disable_device(pdev);
return ret;
}
static void ath_pci_remove(struct pci_dev *pdev)
{
struct ieee80211_hw *hw = pci_get_drvdata(pdev);
struct ath_softc *sc = hw->priv;
enum ath9k_int status;
if (pdev->irq) {
ath9k_hw_set_interrupts(sc->sc_ah, 0);
/* clear the ISR */
ath9k_hw_getisr(sc->sc_ah, &status);
sc->sc_flags |= SC_OP_INVALID;
free_irq(pdev->irq, sc);
}
ath_detach(sc);
pci_iounmap(pdev, sc->mem);
pci_release_region(pdev, 0);
pci_disable_device(pdev);
ieee80211_free_hw(hw);
}
#ifdef CONFIG_PM
static int ath_pci_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct ieee80211_hw *hw = pci_get_drvdata(pdev);
struct ath_softc *sc = hw->priv;
ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
#ifdef CONFIG_RFKILL
if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
#endif
pci_save_state(pdev);
pci_disable_device(pdev);
pci_set_power_state(pdev, 3);
return 0;
}
static int ath_pci_resume(struct pci_dev *pdev)
{
struct ieee80211_hw *hw = pci_get_drvdata(pdev);
struct ath_softc *sc = hw->priv;
u32 val;
int err;
err = pci_enable_device(pdev);
if (err)
return err;
pci_restore_state(pdev);
/*
* Suspend/Resume resets the PCI configuration space, so we have to
* re-disable the RETRY_TIMEOUT register (0x41) to keep
* PCI Tx retries from interfering with C3 CPU state
*/
pci_read_config_dword(pdev, 0x40, &val);
if ((val & 0x0000ff00) != 0)
pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
/* Enable LED */
ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
#ifdef CONFIG_RFKILL
/*
* check the h/w rfkill state on resume
* and start the rfkill poll timer
*/
if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
queue_delayed_work(sc->hw->workqueue,
&sc->rf_kill.rfkill_poll, 0);
#endif
return 0;
}
#endif /* CONFIG_PM */
MODULE_DEVICE_TABLE(pci, ath_pci_id_table);
static struct pci_driver ath_pci_driver = {
.name = "ath9k",
.id_table = ath_pci_id_table,
.probe = ath_pci_probe,
.remove = ath_pci_remove,
#ifdef CONFIG_PM
.suspend = ath_pci_suspend,
.resume = ath_pci_resume,
#endif /* CONFIG_PM */
};
static int __init init_ath_pci(void)
{
printk(KERN_INFO "%s: %s\n", dev_info, ATH_PCI_VERSION);
if (pci_register_driver(&ath_pci_driver) < 0) {
printk(KERN_ERR
"ath_pci: No devices found, driver not installed.\n");
pci_unregister_driver(&ath_pci_driver);
return -ENODEV;
}
return 0;
}
module_init(init_ath_pci);
static void __exit exit_ath_pci(void)
{
pci_unregister_driver(&ath_pci_driver);
printk(KERN_INFO "%s: driver unloaded\n", dev_info);
}
module_exit(exit_ath_pci);