1
linux/drivers/net/qlge/qlge_main.c
Ron Mercer bb0d215c8f qlge: Fix MSI/legacy single interrupt bug.
The chip can issue spurious interrupts for single interrupt
modes. We use disable to clear the condition and allow processing to
continue. Also got rid of legacy specific code since it now needs to
be done on MSI single irq also.

Signed-off-by: Ron Mercer <ron.mercer@qlogic.com>
Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
2008-10-22 07:00:49 -04:00

3960 lines
107 KiB
C

/*
* QLogic qlge NIC HBA Driver
* Copyright (c) 2003-2008 QLogic Corporation
* See LICENSE.qlge for copyright and licensing details.
* Author: Linux qlge network device driver by
* Ron Mercer <ron.mercer@qlogic.com>
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/module.h>
#include <linux/list.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/pagemap.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/dmapool.h>
#include <linux/mempool.h>
#include <linux/spinlock.h>
#include <linux/kthread.h>
#include <linux/interrupt.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <net/ipv6.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/if_arp.h>
#include <linux/if_ether.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/skbuff.h>
#include <linux/rtnetlink.h>
#include <linux/if_vlan.h>
#include <linux/delay.h>
#include <linux/mm.h>
#include <linux/vmalloc.h>
#include <net/ip6_checksum.h>
#include "qlge.h"
char qlge_driver_name[] = DRV_NAME;
const char qlge_driver_version[] = DRV_VERSION;
MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
MODULE_DESCRIPTION(DRV_STRING " ");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
static const u32 default_msg =
NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
/* NETIF_MSG_TIMER | */
NETIF_MSG_IFDOWN |
NETIF_MSG_IFUP |
NETIF_MSG_RX_ERR |
NETIF_MSG_TX_ERR |
NETIF_MSG_TX_QUEUED |
NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS |
/* NETIF_MSG_PKTDATA | */
NETIF_MSG_HW | NETIF_MSG_WOL | 0;
static int debug = 0x00007fff; /* defaults above */
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
#define MSIX_IRQ 0
#define MSI_IRQ 1
#define LEG_IRQ 2
static int irq_type = MSIX_IRQ;
module_param(irq_type, int, MSIX_IRQ);
MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
{PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID)},
{PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID1)},
/* required last entry */
{0,}
};
MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
/* This hardware semaphore causes exclusive access to
* resources shared between the NIC driver, MPI firmware,
* FCOE firmware and the FC driver.
*/
static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
{
u32 sem_bits = 0;
switch (sem_mask) {
case SEM_XGMAC0_MASK:
sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
break;
case SEM_XGMAC1_MASK:
sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
break;
case SEM_ICB_MASK:
sem_bits = SEM_SET << SEM_ICB_SHIFT;
break;
case SEM_MAC_ADDR_MASK:
sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
break;
case SEM_FLASH_MASK:
sem_bits = SEM_SET << SEM_FLASH_SHIFT;
break;
case SEM_PROBE_MASK:
sem_bits = SEM_SET << SEM_PROBE_SHIFT;
break;
case SEM_RT_IDX_MASK:
sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
break;
case SEM_PROC_REG_MASK:
sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
break;
default:
QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
return -EINVAL;
}
ql_write32(qdev, SEM, sem_bits | sem_mask);
return !(ql_read32(qdev, SEM) & sem_bits);
}
int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
{
unsigned int seconds = 3;
do {
if (!ql_sem_trylock(qdev, sem_mask))
return 0;
ssleep(1);
} while (--seconds);
return -ETIMEDOUT;
}
void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
{
ql_write32(qdev, SEM, sem_mask);
ql_read32(qdev, SEM); /* flush */
}
/* This function waits for a specific bit to come ready
* in a given register. It is used mostly by the initialize
* process, but is also used in kernel thread API such as
* netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
*/
int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
{
u32 temp;
int count = UDELAY_COUNT;
while (count) {
temp = ql_read32(qdev, reg);
/* check for errors */
if (temp & err_bit) {
QPRINTK(qdev, PROBE, ALERT,
"register 0x%.08x access error, value = 0x%.08x!.\n",
reg, temp);
return -EIO;
} else if (temp & bit)
return 0;
udelay(UDELAY_DELAY);
count--;
}
QPRINTK(qdev, PROBE, ALERT,
"Timed out waiting for reg %x to come ready.\n", reg);
return -ETIMEDOUT;
}
/* The CFG register is used to download TX and RX control blocks
* to the chip. This function waits for an operation to complete.
*/
static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
{
int count = UDELAY_COUNT;
u32 temp;
while (count) {
temp = ql_read32(qdev, CFG);
if (temp & CFG_LE)
return -EIO;
if (!(temp & bit))
return 0;
udelay(UDELAY_DELAY);
count--;
}
return -ETIMEDOUT;
}
/* Used to issue init control blocks to hw. Maps control block,
* sets address, triggers download, waits for completion.
*/
int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
u16 q_id)
{
u64 map;
int status = 0;
int direction;
u32 mask;
u32 value;
direction =
(bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
PCI_DMA_FROMDEVICE;
map = pci_map_single(qdev->pdev, ptr, size, direction);
if (pci_dma_mapping_error(qdev->pdev, map)) {
QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
return -ENOMEM;
}
status = ql_wait_cfg(qdev, bit);
if (status) {
QPRINTK(qdev, IFUP, ERR,
"Timed out waiting for CFG to come ready.\n");
goto exit;
}
status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
if (status)
goto exit;
ql_write32(qdev, ICB_L, (u32) map);
ql_write32(qdev, ICB_H, (u32) (map >> 32));
ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
mask = CFG_Q_MASK | (bit << 16);
value = bit | (q_id << CFG_Q_SHIFT);
ql_write32(qdev, CFG, (mask | value));
/*
* Wait for the bit to clear after signaling hw.
*/
status = ql_wait_cfg(qdev, bit);
exit:
pci_unmap_single(qdev->pdev, map, size, direction);
return status;
}
/* Get a specific MAC address from the CAM. Used for debug and reg dump. */
int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
u32 *value)
{
u32 offset = 0;
int status;
status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
if (status)
return status;
switch (type) {
case MAC_ADDR_TYPE_MULTI_MAC:
case MAC_ADDR_TYPE_CAM_MAC:
{
status =
ql_wait_reg_rdy(qdev,
MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
if (status)
goto exit;
ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
(index << MAC_ADDR_IDX_SHIFT) | /* index */
MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
status =
ql_wait_reg_rdy(qdev,
MAC_ADDR_IDX, MAC_ADDR_MR, MAC_ADDR_E);
if (status)
goto exit;
*value++ = ql_read32(qdev, MAC_ADDR_DATA);
status =
ql_wait_reg_rdy(qdev,
MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
if (status)
goto exit;
ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
(index << MAC_ADDR_IDX_SHIFT) | /* index */
MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
status =
ql_wait_reg_rdy(qdev,
MAC_ADDR_IDX, MAC_ADDR_MR, MAC_ADDR_E);
if (status)
goto exit;
*value++ = ql_read32(qdev, MAC_ADDR_DATA);
if (type == MAC_ADDR_TYPE_CAM_MAC) {
status =
ql_wait_reg_rdy(qdev,
MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
if (status)
goto exit;
ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
(index << MAC_ADDR_IDX_SHIFT) | /* index */
MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
status =
ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
MAC_ADDR_MR, MAC_ADDR_E);
if (status)
goto exit;
*value++ = ql_read32(qdev, MAC_ADDR_DATA);
}
break;
}
case MAC_ADDR_TYPE_VLAN:
case MAC_ADDR_TYPE_MULTI_FLTR:
default:
QPRINTK(qdev, IFUP, CRIT,
"Address type %d not yet supported.\n", type);
status = -EPERM;
}
exit:
ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
return status;
}
/* Set up a MAC, multicast or VLAN address for the
* inbound frame matching.
*/
static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
u16 index)
{
u32 offset = 0;
int status = 0;
status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
if (status)
return status;
switch (type) {
case MAC_ADDR_TYPE_MULTI_MAC:
case MAC_ADDR_TYPE_CAM_MAC:
{
u32 cam_output;
u32 upper = (addr[0] << 8) | addr[1];
u32 lower =
(addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
(addr[5]);
QPRINTK(qdev, IFUP, INFO,
"Adding %s address %02x:%02x:%02x:%02x:%02x:%02x"
" at index %d in the CAM.\n",
((type ==
MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
"UNICAST"), addr[0], addr[1], addr[2], addr[3],
addr[4], addr[5], index);
status =
ql_wait_reg_rdy(qdev,
MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
if (status)
goto exit;
ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
(index << MAC_ADDR_IDX_SHIFT) | /* index */
type); /* type */
ql_write32(qdev, MAC_ADDR_DATA, lower);
status =
ql_wait_reg_rdy(qdev,
MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
if (status)
goto exit;
ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
(index << MAC_ADDR_IDX_SHIFT) | /* index */
type); /* type */
ql_write32(qdev, MAC_ADDR_DATA, upper);
status =
ql_wait_reg_rdy(qdev,
MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
if (status)
goto exit;
ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
(index << MAC_ADDR_IDX_SHIFT) | /* index */
type); /* type */
/* This field should also include the queue id
and possibly the function id. Right now we hardcode
the route field to NIC core.
*/
if (type == MAC_ADDR_TYPE_CAM_MAC) {
cam_output = (CAM_OUT_ROUTE_NIC |
(qdev->
func << CAM_OUT_FUNC_SHIFT) |
(qdev->
rss_ring_first_cq_id <<
CAM_OUT_CQ_ID_SHIFT));
if (qdev->vlgrp)
cam_output |= CAM_OUT_RV;
/* route to NIC core */
ql_write32(qdev, MAC_ADDR_DATA, cam_output);
}
break;
}
case MAC_ADDR_TYPE_VLAN:
{
u32 enable_bit = *((u32 *) &addr[0]);
/* For VLAN, the addr actually holds a bit that
* either enables or disables the vlan id we are
* addressing. It's either MAC_ADDR_E on or off.
* That's bit-27 we're talking about.
*/
QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
(enable_bit ? "Adding" : "Removing"),
index, (enable_bit ? "to" : "from"));
status =
ql_wait_reg_rdy(qdev,
MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
if (status)
goto exit;
ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
(index << MAC_ADDR_IDX_SHIFT) | /* index */
type | /* type */
enable_bit); /* enable/disable */
break;
}
case MAC_ADDR_TYPE_MULTI_FLTR:
default:
QPRINTK(qdev, IFUP, CRIT,
"Address type %d not yet supported.\n", type);
status = -EPERM;
}
exit:
ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
return status;
}
/* Get a specific frame routing value from the CAM.
* Used for debug and reg dump.
*/
int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
{
int status = 0;
status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
if (status)
goto exit;
status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, RT_IDX_E);
if (status)
goto exit;
ql_write32(qdev, RT_IDX,
RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, RT_IDX_E);
if (status)
goto exit;
*value = ql_read32(qdev, RT_DATA);
exit:
ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
return status;
}
/* The NIC function for this chip has 16 routing indexes. Each one can be used
* to route different frame types to various inbound queues. We send broadcast/
* multicast/error frames to the default queue for slow handling,
* and CAM hit/RSS frames to the fast handling queues.
*/
static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
int enable)
{
int status;
u32 value = 0;
status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
if (status)
return status;
QPRINTK(qdev, IFUP, DEBUG,
"%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
(enable ? "Adding" : "Removing"),
((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
((index ==
RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
(enable ? "to" : "from"));
switch (mask) {
case RT_IDX_CAM_HIT:
{
value = RT_IDX_DST_CAM_Q | /* dest */
RT_IDX_TYPE_NICQ | /* type */
(RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
break;
}
case RT_IDX_VALID: /* Promiscuous Mode frames. */
{
value = RT_IDX_DST_DFLT_Q | /* dest */
RT_IDX_TYPE_NICQ | /* type */
(RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
break;
}
case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
{
value = RT_IDX_DST_DFLT_Q | /* dest */
RT_IDX_TYPE_NICQ | /* type */
(RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
break;
}
case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
{
value = RT_IDX_DST_DFLT_Q | /* dest */
RT_IDX_TYPE_NICQ | /* type */
(RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
break;
}
case RT_IDX_MCAST: /* Pass up All Multicast frames. */
{
value = RT_IDX_DST_CAM_Q | /* dest */
RT_IDX_TYPE_NICQ | /* type */
(RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
break;
}
case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
{
value = RT_IDX_DST_CAM_Q | /* dest */
RT_IDX_TYPE_NICQ | /* type */
(RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
break;
}
case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
{
value = RT_IDX_DST_RSS | /* dest */
RT_IDX_TYPE_NICQ | /* type */
(RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
break;
}
case 0: /* Clear the E-bit on an entry. */
{
value = RT_IDX_DST_DFLT_Q | /* dest */
RT_IDX_TYPE_NICQ | /* type */
(index << RT_IDX_IDX_SHIFT);/* index */
break;
}
default:
QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
mask);
status = -EPERM;
goto exit;
}
if (value) {
status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
if (status)
goto exit;
value |= (enable ? RT_IDX_E : 0);
ql_write32(qdev, RT_IDX, value);
ql_write32(qdev, RT_DATA, enable ? mask : 0);
}
exit:
ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
return status;
}
static void ql_enable_interrupts(struct ql_adapter *qdev)
{
ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
}
static void ql_disable_interrupts(struct ql_adapter *qdev)
{
ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
}
/* If we're running with multiple MSI-X vectors then we enable on the fly.
* Otherwise, we may have multiple outstanding workers and don't want to
* enable until the last one finishes. In this case, the irq_cnt gets
* incremented everytime we queue a worker and decremented everytime
* a worker finishes. Once it hits zero we enable the interrupt.
*/
u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
{
u32 var = 0;
unsigned long hw_flags = 0;
struct intr_context *ctx = qdev->intr_context + intr;
if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
/* Always enable if we're MSIX multi interrupts and
* it's not the default (zeroeth) interrupt.
*/
ql_write32(qdev, INTR_EN,
ctx->intr_en_mask);
var = ql_read32(qdev, STS);
return var;
}
spin_lock_irqsave(&qdev->hw_lock, hw_flags);
if (atomic_dec_and_test(&ctx->irq_cnt)) {
ql_write32(qdev, INTR_EN,
ctx->intr_en_mask);
var = ql_read32(qdev, STS);
}
spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
return var;
}
static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
{
u32 var = 0;
unsigned long hw_flags;
struct intr_context *ctx;
/* HW disables for us if we're MSIX multi interrupts and
* it's not the default (zeroeth) interrupt.
*/
if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
return 0;
ctx = qdev->intr_context + intr;
spin_lock_irqsave(&qdev->hw_lock, hw_flags);
if (!atomic_read(&ctx->irq_cnt)) {
ql_write32(qdev, INTR_EN,
ctx->intr_dis_mask);
var = ql_read32(qdev, STS);
}
atomic_inc(&ctx->irq_cnt);
spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
return var;
}
static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
{
int i;
for (i = 0; i < qdev->intr_count; i++) {
/* The enable call does a atomic_dec_and_test
* and enables only if the result is zero.
* So we precharge it here.
*/
if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
i == 0))
atomic_set(&qdev->intr_context[i].irq_cnt, 1);
ql_enable_completion_interrupt(qdev, i);
}
}
int ql_read_flash_word(struct ql_adapter *qdev, int offset, u32 *data)
{
int status = 0;
/* wait for reg to come ready */
status = ql_wait_reg_rdy(qdev,
FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
if (status)
goto exit;
/* set up for reg read */
ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
/* wait for reg to come ready */
status = ql_wait_reg_rdy(qdev,
FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
if (status)
goto exit;
/* get the data */
*data = ql_read32(qdev, FLASH_DATA);
exit:
return status;
}
static int ql_get_flash_params(struct ql_adapter *qdev)
{
int i;
int status;
u32 *p = (u32 *)&qdev->flash;
if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
return -ETIMEDOUT;
for (i = 0; i < sizeof(qdev->flash) / sizeof(u32); i++, p++) {
status = ql_read_flash_word(qdev, i, p);
if (status) {
QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
goto exit;
}
}
exit:
ql_sem_unlock(qdev, SEM_FLASH_MASK);
return status;
}
/* xgmac register are located behind the xgmac_addr and xgmac_data
* register pair. Each read/write requires us to wait for the ready
* bit before reading/writing the data.
*/
static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
{
int status;
/* wait for reg to come ready */
status = ql_wait_reg_rdy(qdev,
XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
if (status)
return status;
/* write the data to the data reg */
ql_write32(qdev, XGMAC_DATA, data);
/* trigger the write */
ql_write32(qdev, XGMAC_ADDR, reg);
return status;
}
/* xgmac register are located behind the xgmac_addr and xgmac_data
* register pair. Each read/write requires us to wait for the ready
* bit before reading/writing the data.
*/
int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
{
int status = 0;
/* wait for reg to come ready */
status = ql_wait_reg_rdy(qdev,
XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
if (status)
goto exit;
/* set up for reg read */
ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
/* wait for reg to come ready */
status = ql_wait_reg_rdy(qdev,
XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
if (status)
goto exit;
/* get the data */
*data = ql_read32(qdev, XGMAC_DATA);
exit:
return status;
}
/* This is used for reading the 64-bit statistics regs. */
int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
{
int status = 0;
u32 hi = 0;
u32 lo = 0;
status = ql_read_xgmac_reg(qdev, reg, &lo);
if (status)
goto exit;
status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
if (status)
goto exit;
*data = (u64) lo | ((u64) hi << 32);
exit:
return status;
}
/* Take the MAC Core out of reset.
* Enable statistics counting.
* Take the transmitter/receiver out of reset.
* This functionality may be done in the MPI firmware at a
* later date.
*/
static int ql_port_initialize(struct ql_adapter *qdev)
{
int status = 0;
u32 data;
if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
/* Another function has the semaphore, so
* wait for the port init bit to come ready.
*/
QPRINTK(qdev, LINK, INFO,
"Another function has the semaphore, so wait for the port init bit to come ready.\n");
status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
if (status) {
QPRINTK(qdev, LINK, CRIT,
"Port initialize timed out.\n");
}
return status;
}
QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
/* Set the core reset. */
status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
if (status)
goto end;
data |= GLOBAL_CFG_RESET;
status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
if (status)
goto end;
/* Clear the core reset and turn on jumbo for receiver. */
data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
data |= GLOBAL_CFG_TX_STAT_EN;
data |= GLOBAL_CFG_RX_STAT_EN;
status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
if (status)
goto end;
/* Enable transmitter, and clear it's reset. */
status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
if (status)
goto end;
data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
data |= TX_CFG_EN; /* Enable the transmitter. */
status = ql_write_xgmac_reg(qdev, TX_CFG, data);
if (status)
goto end;
/* Enable receiver and clear it's reset. */
status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
if (status)
goto end;
data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
data |= RX_CFG_EN; /* Enable the receiver. */
status = ql_write_xgmac_reg(qdev, RX_CFG, data);
if (status)
goto end;
/* Turn on jumbo. */
status =
ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
if (status)
goto end;
status =
ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
if (status)
goto end;
/* Signal to the world that the port is enabled. */
ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
end:
ql_sem_unlock(qdev, qdev->xg_sem_mask);
return status;
}
/* Get the next large buffer. */
struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
{
struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
rx_ring->lbq_curr_idx++;
if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
rx_ring->lbq_curr_idx = 0;
rx_ring->lbq_free_cnt++;
return lbq_desc;
}
/* Get the next small buffer. */
struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
{
struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
rx_ring->sbq_curr_idx++;
if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
rx_ring->sbq_curr_idx = 0;
rx_ring->sbq_free_cnt++;
return sbq_desc;
}
/* Update an rx ring index. */
static void ql_update_cq(struct rx_ring *rx_ring)
{
rx_ring->cnsmr_idx++;
rx_ring->curr_entry++;
if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
rx_ring->cnsmr_idx = 0;
rx_ring->curr_entry = rx_ring->cq_base;
}
}
static void ql_write_cq_idx(struct rx_ring *rx_ring)
{
ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
}
/* Process (refill) a large buffer queue. */
static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
{
int clean_idx = rx_ring->lbq_clean_idx;
struct bq_desc *lbq_desc;
struct bq_element *bq;
u64 map;
int i;
while (rx_ring->lbq_free_cnt > 16) {
for (i = 0; i < 16; i++) {
QPRINTK(qdev, RX_STATUS, DEBUG,
"lbq: try cleaning clean_idx = %d.\n",
clean_idx);
lbq_desc = &rx_ring->lbq[clean_idx];
bq = lbq_desc->bq;
if (lbq_desc->p.lbq_page == NULL) {
QPRINTK(qdev, RX_STATUS, DEBUG,
"lbq: getting new page for index %d.\n",
lbq_desc->index);
lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
if (lbq_desc->p.lbq_page == NULL) {
QPRINTK(qdev, RX_STATUS, ERR,
"Couldn't get a page.\n");
return;
}
map = pci_map_page(qdev->pdev,
lbq_desc->p.lbq_page,
0, PAGE_SIZE,
PCI_DMA_FROMDEVICE);
if (pci_dma_mapping_error(qdev->pdev, map)) {
QPRINTK(qdev, RX_STATUS, ERR,
"PCI mapping failed.\n");
return;
}
pci_unmap_addr_set(lbq_desc, mapaddr, map);
pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
bq->addr_lo = /*lbq_desc->addr_lo = */
cpu_to_le32(map);
bq->addr_hi = /*lbq_desc->addr_hi = */
cpu_to_le32(map >> 32);
}
clean_idx++;
if (clean_idx == rx_ring->lbq_len)
clean_idx = 0;
}
rx_ring->lbq_clean_idx = clean_idx;
rx_ring->lbq_prod_idx += 16;
if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
rx_ring->lbq_prod_idx = 0;
QPRINTK(qdev, RX_STATUS, DEBUG,
"lbq: updating prod idx = %d.\n",
rx_ring->lbq_prod_idx);
ql_write_db_reg(rx_ring->lbq_prod_idx,
rx_ring->lbq_prod_idx_db_reg);
rx_ring->lbq_free_cnt -= 16;
}
}
/* Process (refill) a small buffer queue. */
static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
{
int clean_idx = rx_ring->sbq_clean_idx;
struct bq_desc *sbq_desc;
struct bq_element *bq;
u64 map;
int i;
while (rx_ring->sbq_free_cnt > 16) {
for (i = 0; i < 16; i++) {
sbq_desc = &rx_ring->sbq[clean_idx];
QPRINTK(qdev, RX_STATUS, DEBUG,
"sbq: try cleaning clean_idx = %d.\n",
clean_idx);
bq = sbq_desc->bq;
if (sbq_desc->p.skb == NULL) {
QPRINTK(qdev, RX_STATUS, DEBUG,
"sbq: getting new skb for index %d.\n",
sbq_desc->index);
sbq_desc->p.skb =
netdev_alloc_skb(qdev->ndev,
rx_ring->sbq_buf_size);
if (sbq_desc->p.skb == NULL) {
QPRINTK(qdev, PROBE, ERR,
"Couldn't get an skb.\n");
rx_ring->sbq_clean_idx = clean_idx;
return;
}
skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
map = pci_map_single(qdev->pdev,
sbq_desc->p.skb->data,
rx_ring->sbq_buf_size /
2, PCI_DMA_FROMDEVICE);
pci_unmap_addr_set(sbq_desc, mapaddr, map);
pci_unmap_len_set(sbq_desc, maplen,
rx_ring->sbq_buf_size / 2);
bq->addr_lo = cpu_to_le32(map);
bq->addr_hi = cpu_to_le32(map >> 32);
}
clean_idx++;
if (clean_idx == rx_ring->sbq_len)
clean_idx = 0;
}
rx_ring->sbq_clean_idx = clean_idx;
rx_ring->sbq_prod_idx += 16;
if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
rx_ring->sbq_prod_idx = 0;
QPRINTK(qdev, RX_STATUS, DEBUG,
"sbq: updating prod idx = %d.\n",
rx_ring->sbq_prod_idx);
ql_write_db_reg(rx_ring->sbq_prod_idx,
rx_ring->sbq_prod_idx_db_reg);
rx_ring->sbq_free_cnt -= 16;
}
}
static void ql_update_buffer_queues(struct ql_adapter *qdev,
struct rx_ring *rx_ring)
{
ql_update_sbq(qdev, rx_ring);
ql_update_lbq(qdev, rx_ring);
}
/* Unmaps tx buffers. Can be called from send() if a pci mapping
* fails at some stage, or from the interrupt when a tx completes.
*/
static void ql_unmap_send(struct ql_adapter *qdev,
struct tx_ring_desc *tx_ring_desc, int mapped)
{
int i;
for (i = 0; i < mapped; i++) {
if (i == 0 || (i == 7 && mapped > 7)) {
/*
* Unmap the skb->data area, or the
* external sglist (AKA the Outbound
* Address List (OAL)).
* If its the zeroeth element, then it's
* the skb->data area. If it's the 7th
* element and there is more than 6 frags,
* then its an OAL.
*/
if (i == 7) {
QPRINTK(qdev, TX_DONE, DEBUG,
"unmapping OAL area.\n");
}
pci_unmap_single(qdev->pdev,
pci_unmap_addr(&tx_ring_desc->map[i],
mapaddr),
pci_unmap_len(&tx_ring_desc->map[i],
maplen),
PCI_DMA_TODEVICE);
} else {
QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
i);
pci_unmap_page(qdev->pdev,
pci_unmap_addr(&tx_ring_desc->map[i],
mapaddr),
pci_unmap_len(&tx_ring_desc->map[i],
maplen), PCI_DMA_TODEVICE);
}
}
}
/* Map the buffers for this transmit. This will return
* NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
*/
static int ql_map_send(struct ql_adapter *qdev,
struct ob_mac_iocb_req *mac_iocb_ptr,
struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
{
int len = skb_headlen(skb);
dma_addr_t map;
int frag_idx, err, map_idx = 0;
struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
int frag_cnt = skb_shinfo(skb)->nr_frags;
if (frag_cnt) {
QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
}
/*
* Map the skb buffer first.
*/
map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
err = pci_dma_mapping_error(qdev->pdev, map);
if (err) {
QPRINTK(qdev, TX_QUEUED, ERR,
"PCI mapping failed with error: %d\n", err);
return NETDEV_TX_BUSY;
}
tbd->len = cpu_to_le32(len);
tbd->addr = cpu_to_le64(map);
pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
map_idx++;
/*
* This loop fills the remainder of the 8 address descriptors
* in the IOCB. If there are more than 7 fragments, then the
* eighth address desc will point to an external list (OAL).
* When this happens, the remainder of the frags will be stored
* in this list.
*/
for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
tbd++;
if (frag_idx == 6 && frag_cnt > 7) {
/* Let's tack on an sglist.
* Our control block will now
* look like this:
* iocb->seg[0] = skb->data
* iocb->seg[1] = frag[0]
* iocb->seg[2] = frag[1]
* iocb->seg[3] = frag[2]
* iocb->seg[4] = frag[3]
* iocb->seg[5] = frag[4]
* iocb->seg[6] = frag[5]
* iocb->seg[7] = ptr to OAL (external sglist)
* oal->seg[0] = frag[6]
* oal->seg[1] = frag[7]
* oal->seg[2] = frag[8]
* oal->seg[3] = frag[9]
* oal->seg[4] = frag[10]
* etc...
*/
/* Tack on the OAL in the eighth segment of IOCB. */
map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
sizeof(struct oal),
PCI_DMA_TODEVICE);
err = pci_dma_mapping_error(qdev->pdev, map);
if (err) {
QPRINTK(qdev, TX_QUEUED, ERR,
"PCI mapping outbound address list with error: %d\n",
err);
goto map_error;
}
tbd->addr = cpu_to_le64(map);
/*
* The length is the number of fragments
* that remain to be mapped times the length
* of our sglist (OAL).
*/
tbd->len =
cpu_to_le32((sizeof(struct tx_buf_desc) *
(frag_cnt - frag_idx)) | TX_DESC_C);
pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
map);
pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
sizeof(struct oal));
tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
map_idx++;
}
map =
pci_map_page(qdev->pdev, frag->page,
frag->page_offset, frag->size,
PCI_DMA_TODEVICE);
err = pci_dma_mapping_error(qdev->pdev, map);
if (err) {
QPRINTK(qdev, TX_QUEUED, ERR,
"PCI mapping frags failed with error: %d.\n",
err);
goto map_error;
}
tbd->addr = cpu_to_le64(map);
tbd->len = cpu_to_le32(frag->size);
pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
frag->size);
}
/* Save the number of segments we've mapped. */
tx_ring_desc->map_cnt = map_idx;
/* Terminate the last segment. */
tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
return NETDEV_TX_OK;
map_error:
/*
* If the first frag mapping failed, then i will be zero.
* This causes the unmap of the skb->data area. Otherwise
* we pass in the number of frags that mapped successfully
* so they can be umapped.
*/
ql_unmap_send(qdev, tx_ring_desc, map_idx);
return NETDEV_TX_BUSY;
}
void ql_realign_skb(struct sk_buff *skb, int len)
{
void *temp_addr = skb->data;
/* Undo the skb_reserve(skb,32) we did before
* giving to hardware, and realign data on
* a 2-byte boundary.
*/
skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
skb_copy_to_linear_data(skb, temp_addr,
(unsigned int)len);
}
/*
* This function builds an skb for the given inbound
* completion. It will be rewritten for readability in the near
* future, but for not it works well.
*/
static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
struct rx_ring *rx_ring,
struct ib_mac_iocb_rsp *ib_mac_rsp)
{
struct bq_desc *lbq_desc;
struct bq_desc *sbq_desc;
struct sk_buff *skb = NULL;
u32 length = le32_to_cpu(ib_mac_rsp->data_len);
u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
/*
* Handle the header buffer if present.
*/
if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
/*
* Headers fit nicely into a small buffer.
*/
sbq_desc = ql_get_curr_sbuf(rx_ring);
pci_unmap_single(qdev->pdev,
pci_unmap_addr(sbq_desc, mapaddr),
pci_unmap_len(sbq_desc, maplen),
PCI_DMA_FROMDEVICE);
skb = sbq_desc->p.skb;
ql_realign_skb(skb, hdr_len);
skb_put(skb, hdr_len);
sbq_desc->p.skb = NULL;
}
/*
* Handle the data buffer(s).
*/
if (unlikely(!length)) { /* Is there data too? */
QPRINTK(qdev, RX_STATUS, DEBUG,
"No Data buffer in this packet.\n");
return skb;
}
if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
QPRINTK(qdev, RX_STATUS, DEBUG,
"Headers in small, data of %d bytes in small, combine them.\n", length);
/*
* Data is less than small buffer size so it's
* stuffed in a small buffer.
* For this case we append the data
* from the "data" small buffer to the "header" small
* buffer.
*/
sbq_desc = ql_get_curr_sbuf(rx_ring);
pci_dma_sync_single_for_cpu(qdev->pdev,
pci_unmap_addr
(sbq_desc, mapaddr),
pci_unmap_len
(sbq_desc, maplen),
PCI_DMA_FROMDEVICE);
memcpy(skb_put(skb, length),
sbq_desc->p.skb->data, length);
pci_dma_sync_single_for_device(qdev->pdev,
pci_unmap_addr
(sbq_desc,
mapaddr),
pci_unmap_len
(sbq_desc,
maplen),
PCI_DMA_FROMDEVICE);
} else {
QPRINTK(qdev, RX_STATUS, DEBUG,
"%d bytes in a single small buffer.\n", length);
sbq_desc = ql_get_curr_sbuf(rx_ring);
skb = sbq_desc->p.skb;
ql_realign_skb(skb, length);
skb_put(skb, length);
pci_unmap_single(qdev->pdev,
pci_unmap_addr(sbq_desc,
mapaddr),
pci_unmap_len(sbq_desc,
maplen),
PCI_DMA_FROMDEVICE);
sbq_desc->p.skb = NULL;
}
} else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
QPRINTK(qdev, RX_STATUS, DEBUG,
"Header in small, %d bytes in large. Chain large to small!\n", length);
/*
* The data is in a single large buffer. We
* chain it to the header buffer's skb and let
* it rip.
*/
lbq_desc = ql_get_curr_lbuf(rx_ring);
pci_unmap_page(qdev->pdev,
pci_unmap_addr(lbq_desc,
mapaddr),
pci_unmap_len(lbq_desc, maplen),
PCI_DMA_FROMDEVICE);
QPRINTK(qdev, RX_STATUS, DEBUG,
"Chaining page to skb.\n");
skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
0, length);
skb->len += length;
skb->data_len += length;
skb->truesize += length;
lbq_desc->p.lbq_page = NULL;
} else {
/*
* The headers and data are in a single large buffer. We
* copy it to a new skb and let it go. This can happen with
* jumbo mtu on a non-TCP/UDP frame.
*/
lbq_desc = ql_get_curr_lbuf(rx_ring);
skb = netdev_alloc_skb(qdev->ndev, length);
if (skb == NULL) {
QPRINTK(qdev, PROBE, DEBUG,
"No skb available, drop the packet.\n");
return NULL;
}
skb_reserve(skb, NET_IP_ALIGN);
QPRINTK(qdev, RX_STATUS, DEBUG,
"%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
0, length);
skb->len += length;
skb->data_len += length;
skb->truesize += length;
length -= length;
lbq_desc->p.lbq_page = NULL;
__pskb_pull_tail(skb,
(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
VLAN_ETH_HLEN : ETH_HLEN);
}
} else {
/*
* The data is in a chain of large buffers
* pointed to by a small buffer. We loop
* thru and chain them to the our small header
* buffer's skb.
* frags: There are 18 max frags and our small
* buffer will hold 32 of them. The thing is,
* we'll use 3 max for our 9000 byte jumbo
* frames. If the MTU goes up we could
* eventually be in trouble.
*/
int size, offset, i = 0;
struct bq_element *bq, bq_array[8];
sbq_desc = ql_get_curr_sbuf(rx_ring);
pci_unmap_single(qdev->pdev,
pci_unmap_addr(sbq_desc, mapaddr),
pci_unmap_len(sbq_desc, maplen),
PCI_DMA_FROMDEVICE);
if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
/*
* This is an non TCP/UDP IP frame, so
* the headers aren't split into a small
* buffer. We have to use the small buffer
* that contains our sg list as our skb to
* send upstairs. Copy the sg list here to
* a local buffer and use it to find the
* pages to chain.
*/
QPRINTK(qdev, RX_STATUS, DEBUG,
"%d bytes of headers & data in chain of large.\n", length);
skb = sbq_desc->p.skb;
bq = &bq_array[0];
memcpy(bq, skb->data, sizeof(bq_array));
sbq_desc->p.skb = NULL;
skb_reserve(skb, NET_IP_ALIGN);
} else {
QPRINTK(qdev, RX_STATUS, DEBUG,
"Headers in small, %d bytes of data in chain of large.\n", length);
bq = (struct bq_element *)sbq_desc->p.skb->data;
}
while (length > 0) {
lbq_desc = ql_get_curr_lbuf(rx_ring);
if ((bq->addr_lo & ~BQ_MASK) != lbq_desc->bq->addr_lo) {
QPRINTK(qdev, RX_STATUS, ERR,
"Panic!!! bad large buffer address, expected 0x%.08x, got 0x%.08x.\n",
lbq_desc->bq->addr_lo, bq->addr_lo);
return NULL;
}
pci_unmap_page(qdev->pdev,
pci_unmap_addr(lbq_desc,
mapaddr),
pci_unmap_len(lbq_desc,
maplen),
PCI_DMA_FROMDEVICE);
size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
offset = 0;
QPRINTK(qdev, RX_STATUS, DEBUG,
"Adding page %d to skb for %d bytes.\n",
i, size);
skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
offset, size);
skb->len += size;
skb->data_len += size;
skb->truesize += size;
length -= size;
lbq_desc->p.lbq_page = NULL;
bq++;
i++;
}
__pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
VLAN_ETH_HLEN : ETH_HLEN);
}
return skb;
}
/* Process an inbound completion from an rx ring. */
static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
struct rx_ring *rx_ring,
struct ib_mac_iocb_rsp *ib_mac_rsp)
{
struct net_device *ndev = qdev->ndev;
struct sk_buff *skb = NULL;
QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
if (unlikely(!skb)) {
QPRINTK(qdev, RX_STATUS, DEBUG,
"No skb available, drop packet.\n");
return;
}
prefetch(skb->data);
skb->dev = ndev;
if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
}
if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
}
if (ib_mac_rsp->flags1 & (IB_MAC_IOCB_RSP_IE | IB_MAC_IOCB_RSP_TE)) {
QPRINTK(qdev, RX_STATUS, ERR,
"Bad checksum for this %s packet.\n",
((ib_mac_rsp->
flags2 & IB_MAC_IOCB_RSP_T) ? "TCP" : "UDP"));
skb->ip_summed = CHECKSUM_NONE;
} else if (qdev->rx_csum &&
((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ||
((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
!(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU)))) {
QPRINTK(qdev, RX_STATUS, DEBUG, "RX checksum done!\n");
skb->ip_summed = CHECKSUM_UNNECESSARY;
}
qdev->stats.rx_packets++;
qdev->stats.rx_bytes += skb->len;
skb->protocol = eth_type_trans(skb, ndev);
if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)) {
QPRINTK(qdev, RX_STATUS, DEBUG,
"Passing a VLAN packet upstream.\n");
vlan_hwaccel_rx(skb, qdev->vlgrp,
le16_to_cpu(ib_mac_rsp->vlan_id));
} else {
QPRINTK(qdev, RX_STATUS, DEBUG,
"Passing a normal packet upstream.\n");
netif_rx(skb);
}
ndev->last_rx = jiffies;
}
/* Process an outbound completion from an rx ring. */
static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
struct ob_mac_iocb_rsp *mac_rsp)
{
struct tx_ring *tx_ring;
struct tx_ring_desc *tx_ring_desc;
QL_DUMP_OB_MAC_RSP(mac_rsp);
tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
tx_ring_desc = &tx_ring->q[mac_rsp->tid];
ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
qdev->stats.tx_packets++;
dev_kfree_skb(tx_ring_desc->skb);
tx_ring_desc->skb = NULL;
if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
OB_MAC_IOCB_RSP_S |
OB_MAC_IOCB_RSP_L |
OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
QPRINTK(qdev, TX_DONE, WARNING,
"Total descriptor length did not match transfer length.\n");
}
if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
QPRINTK(qdev, TX_DONE, WARNING,
"Frame too short to be legal, not sent.\n");
}
if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
QPRINTK(qdev, TX_DONE, WARNING,
"Frame too long, but sent anyway.\n");
}
if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
QPRINTK(qdev, TX_DONE, WARNING,
"PCI backplane error. Frame not sent.\n");
}
}
atomic_inc(&tx_ring->tx_count);
}
/* Fire up a handler to reset the MPI processor. */
void ql_queue_fw_error(struct ql_adapter *qdev)
{
netif_stop_queue(qdev->ndev);
netif_carrier_off(qdev->ndev);
queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
}
void ql_queue_asic_error(struct ql_adapter *qdev)
{
netif_stop_queue(qdev->ndev);
netif_carrier_off(qdev->ndev);
ql_disable_interrupts(qdev);
queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
}
static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
struct ib_ae_iocb_rsp *ib_ae_rsp)
{
switch (ib_ae_rsp->event) {
case MGMT_ERR_EVENT:
QPRINTK(qdev, RX_ERR, ERR,
"Management Processor Fatal Error.\n");
ql_queue_fw_error(qdev);
return;
case CAM_LOOKUP_ERR_EVENT:
QPRINTK(qdev, LINK, ERR,
"Multiple CAM hits lookup occurred.\n");
QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
ql_queue_asic_error(qdev);
return;
case SOFT_ECC_ERROR_EVENT:
QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
ql_queue_asic_error(qdev);
break;
case PCI_ERR_ANON_BUF_RD:
QPRINTK(qdev, RX_ERR, ERR,
"PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
ib_ae_rsp->q_id);
ql_queue_asic_error(qdev);
break;
default:
QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
ib_ae_rsp->event);
ql_queue_asic_error(qdev);
break;
}
}
static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
{
struct ql_adapter *qdev = rx_ring->qdev;
u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
struct ob_mac_iocb_rsp *net_rsp = NULL;
int count = 0;
/* While there are entries in the completion queue. */
while (prod != rx_ring->cnsmr_idx) {
QPRINTK(qdev, RX_STATUS, DEBUG,
"cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
prod, rx_ring->cnsmr_idx);
net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
rmb();
switch (net_rsp->opcode) {
case OPCODE_OB_MAC_TSO_IOCB:
case OPCODE_OB_MAC_IOCB:
ql_process_mac_tx_intr(qdev, net_rsp);
break;
default:
QPRINTK(qdev, RX_STATUS, DEBUG,
"Hit default case, not handled! dropping the packet, opcode = %x.\n",
net_rsp->opcode);
}
count++;
ql_update_cq(rx_ring);
prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
}
ql_write_cq_idx(rx_ring);
if (netif_queue_stopped(qdev->ndev) && net_rsp != NULL) {
struct tx_ring *tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
if (atomic_read(&tx_ring->queue_stopped) &&
(atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
/*
* The queue got stopped because the tx_ring was full.
* Wake it up, because it's now at least 25% empty.
*/
netif_wake_queue(qdev->ndev);
}
return count;
}
static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
{
struct ql_adapter *qdev = rx_ring->qdev;
u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
struct ql_net_rsp_iocb *net_rsp;
int count = 0;
/* While there are entries in the completion queue. */
while (prod != rx_ring->cnsmr_idx) {
QPRINTK(qdev, RX_STATUS, DEBUG,
"cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
prod, rx_ring->cnsmr_idx);
net_rsp = rx_ring->curr_entry;
rmb();
switch (net_rsp->opcode) {
case OPCODE_IB_MAC_IOCB:
ql_process_mac_rx_intr(qdev, rx_ring,
(struct ib_mac_iocb_rsp *)
net_rsp);
break;
case OPCODE_IB_AE_IOCB:
ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
net_rsp);
break;
default:
{
QPRINTK(qdev, RX_STATUS, DEBUG,
"Hit default case, not handled! dropping the packet, opcode = %x.\n",
net_rsp->opcode);
}
}
count++;
ql_update_cq(rx_ring);
prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
if (count == budget)
break;
}
ql_update_buffer_queues(qdev, rx_ring);
ql_write_cq_idx(rx_ring);
return count;
}
static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
{
struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
struct ql_adapter *qdev = rx_ring->qdev;
int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
rx_ring->cq_id);
if (work_done < budget) {
__netif_rx_complete(qdev->ndev, napi);
ql_enable_completion_interrupt(qdev, rx_ring->irq);
}
return work_done;
}
static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
{
struct ql_adapter *qdev = netdev_priv(ndev);
qdev->vlgrp = grp;
if (grp) {
QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
NIC_RCV_CFG_VLAN_MATCH_AND_NON);
} else {
QPRINTK(qdev, IFUP, DEBUG,
"Turning off VLAN in NIC_RCV_CFG.\n");
ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
}
}
static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
{
struct ql_adapter *qdev = netdev_priv(ndev);
u32 enable_bit = MAC_ADDR_E;
spin_lock(&qdev->hw_lock);
if (ql_set_mac_addr_reg
(qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
}
spin_unlock(&qdev->hw_lock);
}
static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
{
struct ql_adapter *qdev = netdev_priv(ndev);
u32 enable_bit = 0;
spin_lock(&qdev->hw_lock);
if (ql_set_mac_addr_reg
(qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
}
spin_unlock(&qdev->hw_lock);
}
/* Worker thread to process a given rx_ring that is dedicated
* to outbound completions.
*/
static void ql_tx_clean(struct work_struct *work)
{
struct rx_ring *rx_ring =
container_of(work, struct rx_ring, rx_work.work);
ql_clean_outbound_rx_ring(rx_ring);
ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
}
/* Worker thread to process a given rx_ring that is dedicated
* to inbound completions.
*/
static void ql_rx_clean(struct work_struct *work)
{
struct rx_ring *rx_ring =
container_of(work, struct rx_ring, rx_work.work);
ql_clean_inbound_rx_ring(rx_ring, 64);
ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
}
/* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
{
struct rx_ring *rx_ring = dev_id;
queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
&rx_ring->rx_work, 0);
return IRQ_HANDLED;
}
/* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
{
struct rx_ring *rx_ring = dev_id;
struct ql_adapter *qdev = rx_ring->qdev;
netif_rx_schedule(qdev->ndev, &rx_ring->napi);
return IRQ_HANDLED;
}
/* This handles a fatal error, MPI activity, and the default
* rx_ring in an MSI-X multiple vector environment.
* In MSI/Legacy environment it also process the rest of
* the rx_rings.
*/
static irqreturn_t qlge_isr(int irq, void *dev_id)
{
struct rx_ring *rx_ring = dev_id;
struct ql_adapter *qdev = rx_ring->qdev;
struct intr_context *intr_context = &qdev->intr_context[0];
u32 var;
int i;
int work_done = 0;
spin_lock(&qdev->hw_lock);
if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
spin_unlock(&qdev->hw_lock);
return IRQ_NONE;
}
spin_unlock(&qdev->hw_lock);
var = ql_disable_completion_interrupt(qdev, intr_context->intr);
/*
* Check for fatal error.
*/
if (var & STS_FE) {
ql_queue_asic_error(qdev);
QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
var = ql_read32(qdev, ERR_STS);
QPRINTK(qdev, INTR, ERR,
"Resetting chip. Error Status Register = 0x%x\n", var);
return IRQ_HANDLED;
}
/*
* Check MPI processor activity.
*/
if (var & STS_PI) {
/*
* We've got an async event or mailbox completion.
* Handle it and clear the source of the interrupt.
*/
QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
ql_disable_completion_interrupt(qdev, intr_context->intr);
queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
&qdev->mpi_work, 0);
work_done++;
}
/*
* Check the default queue and wake handler if active.
*/
rx_ring = &qdev->rx_ring[0];
if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
ql_disable_completion_interrupt(qdev, intr_context->intr);
queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
&rx_ring->rx_work, 0);
work_done++;
}
if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
/*
* Start the DPC for each active queue.
*/
for (i = 1; i < qdev->rx_ring_count; i++) {
rx_ring = &qdev->rx_ring[i];
if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
rx_ring->cnsmr_idx) {
QPRINTK(qdev, INTR, INFO,
"Waking handler for rx_ring[%d].\n", i);
ql_disable_completion_interrupt(qdev,
intr_context->
intr);
if (i < qdev->rss_ring_first_cq_id)
queue_delayed_work_on(rx_ring->cpu,
qdev->q_workqueue,
&rx_ring->rx_work,
0);
else
netif_rx_schedule(qdev->ndev,
&rx_ring->napi);
work_done++;
}
}
}
ql_enable_completion_interrupt(qdev, intr_context->intr);
return work_done ? IRQ_HANDLED : IRQ_NONE;
}
static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
{
if (skb_is_gso(skb)) {
int err;
if (skb_header_cloned(skb)) {
err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
if (err)
return err;
}
mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
mac_iocb_ptr->total_hdrs_len =
cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
mac_iocb_ptr->net_trans_offset =
cpu_to_le16(skb_network_offset(skb) |
skb_transport_offset(skb)
<< OB_MAC_TRANSPORT_HDR_SHIFT);
mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
if (likely(skb->protocol == htons(ETH_P_IP))) {
struct iphdr *iph = ip_hdr(skb);
iph->check = 0;
mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
iph->daddr, 0,
IPPROTO_TCP,
0);
} else if (skb->protocol == htons(ETH_P_IPV6)) {
mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
tcp_hdr(skb)->check =
~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
&ipv6_hdr(skb)->daddr,
0, IPPROTO_TCP, 0);
}
return 1;
}
return 0;
}
static void ql_hw_csum_setup(struct sk_buff *skb,
struct ob_mac_tso_iocb_req *mac_iocb_ptr)
{
int len;
struct iphdr *iph = ip_hdr(skb);
u16 *check;
mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
mac_iocb_ptr->net_trans_offset =
cpu_to_le16(skb_network_offset(skb) |
skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
len = (ntohs(iph->tot_len) - (iph->ihl << 2));
if (likely(iph->protocol == IPPROTO_TCP)) {
check = &(tcp_hdr(skb)->check);
mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
mac_iocb_ptr->total_hdrs_len =
cpu_to_le16(skb_transport_offset(skb) +
(tcp_hdr(skb)->doff << 2));
} else {
check = &(udp_hdr(skb)->check);
mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
mac_iocb_ptr->total_hdrs_len =
cpu_to_le16(skb_transport_offset(skb) +
sizeof(struct udphdr));
}
*check = ~csum_tcpudp_magic(iph->saddr,
iph->daddr, len, iph->protocol, 0);
}
static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
{
struct tx_ring_desc *tx_ring_desc;
struct ob_mac_iocb_req *mac_iocb_ptr;
struct ql_adapter *qdev = netdev_priv(ndev);
int tso;
struct tx_ring *tx_ring;
u32 tx_ring_idx = (u32) QL_TXQ_IDX(qdev, skb);
tx_ring = &qdev->tx_ring[tx_ring_idx];
if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
QPRINTK(qdev, TX_QUEUED, INFO,
"%s: shutting down tx queue %d du to lack of resources.\n",
__func__, tx_ring_idx);
netif_stop_queue(ndev);
atomic_inc(&tx_ring->queue_stopped);
return NETDEV_TX_BUSY;
}
tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
mac_iocb_ptr = tx_ring_desc->queue_entry;
memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) != NETDEV_TX_OK) {
QPRINTK(qdev, TX_QUEUED, ERR, "Could not map the segments.\n");
return NETDEV_TX_BUSY;
}
mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
mac_iocb_ptr->tid = tx_ring_desc->index;
/* We use the upper 32-bits to store the tx queue for this IO.
* When we get the completion we can use it to establish the context.
*/
mac_iocb_ptr->txq_idx = tx_ring_idx;
tx_ring_desc->skb = skb;
mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
vlan_tx_tag_get(skb));
mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
}
tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
if (tso < 0) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
} else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
ql_hw_csum_setup(skb,
(struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
}
QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
tx_ring->prod_idx++;
if (tx_ring->prod_idx == tx_ring->wq_len)
tx_ring->prod_idx = 0;
wmb();
ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
ndev->trans_start = jiffies;
QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
tx_ring->prod_idx, skb->len);
atomic_dec(&tx_ring->tx_count);
return NETDEV_TX_OK;
}
static void ql_free_shadow_space(struct ql_adapter *qdev)
{
if (qdev->rx_ring_shadow_reg_area) {
pci_free_consistent(qdev->pdev,
PAGE_SIZE,
qdev->rx_ring_shadow_reg_area,
qdev->rx_ring_shadow_reg_dma);
qdev->rx_ring_shadow_reg_area = NULL;
}
if (qdev->tx_ring_shadow_reg_area) {
pci_free_consistent(qdev->pdev,
PAGE_SIZE,
qdev->tx_ring_shadow_reg_area,
qdev->tx_ring_shadow_reg_dma);
qdev->tx_ring_shadow_reg_area = NULL;
}
}
static int ql_alloc_shadow_space(struct ql_adapter *qdev)
{
qdev->rx_ring_shadow_reg_area =
pci_alloc_consistent(qdev->pdev,
PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
if (qdev->rx_ring_shadow_reg_area == NULL) {
QPRINTK(qdev, IFUP, ERR,
"Allocation of RX shadow space failed.\n");
return -ENOMEM;
}
qdev->tx_ring_shadow_reg_area =
pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
&qdev->tx_ring_shadow_reg_dma);
if (qdev->tx_ring_shadow_reg_area == NULL) {
QPRINTK(qdev, IFUP, ERR,
"Allocation of TX shadow space failed.\n");
goto err_wqp_sh_area;
}
return 0;
err_wqp_sh_area:
pci_free_consistent(qdev->pdev,
PAGE_SIZE,
qdev->rx_ring_shadow_reg_area,
qdev->rx_ring_shadow_reg_dma);
return -ENOMEM;
}
static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
{
struct tx_ring_desc *tx_ring_desc;
int i;
struct ob_mac_iocb_req *mac_iocb_ptr;
mac_iocb_ptr = tx_ring->wq_base;
tx_ring_desc = tx_ring->q;
for (i = 0; i < tx_ring->wq_len; i++) {
tx_ring_desc->index = i;
tx_ring_desc->skb = NULL;
tx_ring_desc->queue_entry = mac_iocb_ptr;
mac_iocb_ptr++;
tx_ring_desc++;
}
atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
atomic_set(&tx_ring->queue_stopped, 0);
}
static void ql_free_tx_resources(struct ql_adapter *qdev,
struct tx_ring *tx_ring)
{
if (tx_ring->wq_base) {
pci_free_consistent(qdev->pdev, tx_ring->wq_size,
tx_ring->wq_base, tx_ring->wq_base_dma);
tx_ring->wq_base = NULL;
}
kfree(tx_ring->q);
tx_ring->q = NULL;
}
static int ql_alloc_tx_resources(struct ql_adapter *qdev,
struct tx_ring *tx_ring)
{
tx_ring->wq_base =
pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
&tx_ring->wq_base_dma);
if ((tx_ring->wq_base == NULL)
|| tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
return -ENOMEM;
}
tx_ring->q =
kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
if (tx_ring->q == NULL)
goto err;
return 0;
err:
pci_free_consistent(qdev->pdev, tx_ring->wq_size,
tx_ring->wq_base, tx_ring->wq_base_dma);
return -ENOMEM;
}
void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
{
int i;
struct bq_desc *lbq_desc;
for (i = 0; i < rx_ring->lbq_len; i++) {
lbq_desc = &rx_ring->lbq[i];
if (lbq_desc->p.lbq_page) {
pci_unmap_page(qdev->pdev,
pci_unmap_addr(lbq_desc, mapaddr),
pci_unmap_len(lbq_desc, maplen),
PCI_DMA_FROMDEVICE);
put_page(lbq_desc->p.lbq_page);
lbq_desc->p.lbq_page = NULL;
}
lbq_desc->bq->addr_lo = 0;
lbq_desc->bq->addr_hi = 0;
}
}
/*
* Allocate and map a page for each element of the lbq.
*/
static int ql_alloc_lbq_buffers(struct ql_adapter *qdev,
struct rx_ring *rx_ring)
{
int i;
struct bq_desc *lbq_desc;
u64 map;
struct bq_element *bq = rx_ring->lbq_base;
for (i = 0; i < rx_ring->lbq_len; i++) {
lbq_desc = &rx_ring->lbq[i];
memset(lbq_desc, 0, sizeof(lbq_desc));
lbq_desc->bq = bq;
lbq_desc->index = i;
lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
if (unlikely(!lbq_desc->p.lbq_page)) {
QPRINTK(qdev, IFUP, ERR, "failed alloc_page().\n");
goto mem_error;
} else {
map = pci_map_page(qdev->pdev,
lbq_desc->p.lbq_page,
0, PAGE_SIZE, PCI_DMA_FROMDEVICE);
if (pci_dma_mapping_error(qdev->pdev, map)) {
QPRINTK(qdev, IFUP, ERR,
"PCI mapping failed.\n");
goto mem_error;
}
pci_unmap_addr_set(lbq_desc, mapaddr, map);
pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
bq->addr_lo = cpu_to_le32(map);
bq->addr_hi = cpu_to_le32(map >> 32);
}
bq++;
}
return 0;
mem_error:
ql_free_lbq_buffers(qdev, rx_ring);
return -ENOMEM;
}
void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
{
int i;
struct bq_desc *sbq_desc;
for (i = 0; i < rx_ring->sbq_len; i++) {
sbq_desc = &rx_ring->sbq[i];
if (sbq_desc == NULL) {
QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
return;
}
if (sbq_desc->p.skb) {
pci_unmap_single(qdev->pdev,
pci_unmap_addr(sbq_desc, mapaddr),
pci_unmap_len(sbq_desc, maplen),
PCI_DMA_FROMDEVICE);
dev_kfree_skb(sbq_desc->p.skb);
sbq_desc->p.skb = NULL;
}
if (sbq_desc->bq == NULL) {
QPRINTK(qdev, IFUP, ERR, "sbq_desc->bq %d is NULL.\n",
i);
return;
}
sbq_desc->bq->addr_lo = 0;
sbq_desc->bq->addr_hi = 0;
}
}
/* Allocate and map an skb for each element of the sbq. */
static int ql_alloc_sbq_buffers(struct ql_adapter *qdev,
struct rx_ring *rx_ring)
{
int i;
struct bq_desc *sbq_desc;
struct sk_buff *skb;
u64 map;
struct bq_element *bq = rx_ring->sbq_base;
for (i = 0; i < rx_ring->sbq_len; i++) {
sbq_desc = &rx_ring->sbq[i];
memset(sbq_desc, 0, sizeof(sbq_desc));
sbq_desc->index = i;
sbq_desc->bq = bq;
skb = netdev_alloc_skb(qdev->ndev, rx_ring->sbq_buf_size);
if (unlikely(!skb)) {
/* Better luck next round */
QPRINTK(qdev, IFUP, ERR,
"small buff alloc failed for %d bytes at index %d.\n",
rx_ring->sbq_buf_size, i);
goto mem_err;
}
skb_reserve(skb, QLGE_SB_PAD);
sbq_desc->p.skb = skb;
/*
* Map only half the buffer. Because the
* other half may get some data copied to it
* when the completion arrives.
*/
map = pci_map_single(qdev->pdev,
skb->data,
rx_ring->sbq_buf_size / 2,
PCI_DMA_FROMDEVICE);
if (pci_dma_mapping_error(qdev->pdev, map)) {
QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
goto mem_err;
}
pci_unmap_addr_set(sbq_desc, mapaddr, map);
pci_unmap_len_set(sbq_desc, maplen, rx_ring->sbq_buf_size / 2);
bq->addr_lo = /*sbq_desc->addr_lo = */
cpu_to_le32(map);
bq->addr_hi = /*sbq_desc->addr_hi = */
cpu_to_le32(map >> 32);
bq++;
}
return 0;
mem_err:
ql_free_sbq_buffers(qdev, rx_ring);
return -ENOMEM;
}
static void ql_free_rx_resources(struct ql_adapter *qdev,
struct rx_ring *rx_ring)
{
if (rx_ring->sbq_len)
ql_free_sbq_buffers(qdev, rx_ring);
if (rx_ring->lbq_len)
ql_free_lbq_buffers(qdev, rx_ring);
/* Free the small buffer queue. */
if (rx_ring->sbq_base) {
pci_free_consistent(qdev->pdev,
rx_ring->sbq_size,
rx_ring->sbq_base, rx_ring->sbq_base_dma);
rx_ring->sbq_base = NULL;
}
/* Free the small buffer queue control blocks. */
kfree(rx_ring->sbq);
rx_ring->sbq = NULL;
/* Free the large buffer queue. */
if (rx_ring->lbq_base) {
pci_free_consistent(qdev->pdev,
rx_ring->lbq_size,
rx_ring->lbq_base, rx_ring->lbq_base_dma);
rx_ring->lbq_base = NULL;
}
/* Free the large buffer queue control blocks. */
kfree(rx_ring->lbq);
rx_ring->lbq = NULL;
/* Free the rx queue. */
if (rx_ring->cq_base) {
pci_free_consistent(qdev->pdev,
rx_ring->cq_size,
rx_ring->cq_base, rx_ring->cq_base_dma);
rx_ring->cq_base = NULL;
}
}
/* Allocate queues and buffers for this completions queue based
* on the values in the parameter structure. */
static int ql_alloc_rx_resources(struct ql_adapter *qdev,
struct rx_ring *rx_ring)
{
/*
* Allocate the completion queue for this rx_ring.
*/
rx_ring->cq_base =
pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
&rx_ring->cq_base_dma);
if (rx_ring->cq_base == NULL) {
QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
return -ENOMEM;
}
if (rx_ring->sbq_len) {
/*
* Allocate small buffer queue.
*/
rx_ring->sbq_base =
pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
&rx_ring->sbq_base_dma);
if (rx_ring->sbq_base == NULL) {
QPRINTK(qdev, IFUP, ERR,
"Small buffer queue allocation failed.\n");
goto err_mem;
}
/*
* Allocate small buffer queue control blocks.
*/
rx_ring->sbq =
kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
GFP_KERNEL);
if (rx_ring->sbq == NULL) {
QPRINTK(qdev, IFUP, ERR,
"Small buffer queue control block allocation failed.\n");
goto err_mem;
}
if (ql_alloc_sbq_buffers(qdev, rx_ring)) {
QPRINTK(qdev, IFUP, ERR,
"Small buffer allocation failed.\n");
goto err_mem;
}
}
if (rx_ring->lbq_len) {
/*
* Allocate large buffer queue.
*/
rx_ring->lbq_base =
pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
&rx_ring->lbq_base_dma);
if (rx_ring->lbq_base == NULL) {
QPRINTK(qdev, IFUP, ERR,
"Large buffer queue allocation failed.\n");
goto err_mem;
}
/*
* Allocate large buffer queue control blocks.
*/
rx_ring->lbq =
kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
GFP_KERNEL);
if (rx_ring->lbq == NULL) {
QPRINTK(qdev, IFUP, ERR,
"Large buffer queue control block allocation failed.\n");
goto err_mem;
}
/*
* Allocate the buffers.
*/
if (ql_alloc_lbq_buffers(qdev, rx_ring)) {
QPRINTK(qdev, IFUP, ERR,
"Large buffer allocation failed.\n");
goto err_mem;
}
}
return 0;
err_mem:
ql_free_rx_resources(qdev, rx_ring);
return -ENOMEM;
}
static void ql_tx_ring_clean(struct ql_adapter *qdev)
{
struct tx_ring *tx_ring;
struct tx_ring_desc *tx_ring_desc;
int i, j;
/*
* Loop through all queues and free
* any resources.
*/
for (j = 0; j < qdev->tx_ring_count; j++) {
tx_ring = &qdev->tx_ring[j];
for (i = 0; i < tx_ring->wq_len; i++) {
tx_ring_desc = &tx_ring->q[i];
if (tx_ring_desc && tx_ring_desc->skb) {
QPRINTK(qdev, IFDOWN, ERR,
"Freeing lost SKB %p, from queue %d, index %d.\n",
tx_ring_desc->skb, j,
tx_ring_desc->index);
ql_unmap_send(qdev, tx_ring_desc,
tx_ring_desc->map_cnt);
dev_kfree_skb(tx_ring_desc->skb);
tx_ring_desc->skb = NULL;
}
}
}
}
static void ql_free_ring_cb(struct ql_adapter *qdev)
{
kfree(qdev->ring_mem);
}
static int ql_alloc_ring_cb(struct ql_adapter *qdev)
{
/* Allocate space for tx/rx ring control blocks. */
qdev->ring_mem_size =
(qdev->tx_ring_count * sizeof(struct tx_ring)) +
(qdev->rx_ring_count * sizeof(struct rx_ring));
qdev->ring_mem = kmalloc(qdev->ring_mem_size, GFP_KERNEL);
if (qdev->ring_mem == NULL) {
return -ENOMEM;
} else {
qdev->rx_ring = qdev->ring_mem;
qdev->tx_ring = qdev->ring_mem +
(qdev->rx_ring_count * sizeof(struct rx_ring));
}
return 0;
}
static void ql_free_mem_resources(struct ql_adapter *qdev)
{
int i;
for (i = 0; i < qdev->tx_ring_count; i++)
ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
for (i = 0; i < qdev->rx_ring_count; i++)
ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
ql_free_shadow_space(qdev);
}
static int ql_alloc_mem_resources(struct ql_adapter *qdev)
{
int i;
/* Allocate space for our shadow registers and such. */
if (ql_alloc_shadow_space(qdev))
return -ENOMEM;
for (i = 0; i < qdev->rx_ring_count; i++) {
if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
QPRINTK(qdev, IFUP, ERR,
"RX resource allocation failed.\n");
goto err_mem;
}
}
/* Allocate tx queue resources */
for (i = 0; i < qdev->tx_ring_count; i++) {
if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
QPRINTK(qdev, IFUP, ERR,
"TX resource allocation failed.\n");
goto err_mem;
}
}
return 0;
err_mem:
ql_free_mem_resources(qdev);
return -ENOMEM;
}
/* Set up the rx ring control block and pass it to the chip.
* The control block is defined as
* "Completion Queue Initialization Control Block", or cqicb.
*/
static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
{
struct cqicb *cqicb = &rx_ring->cqicb;
void *shadow_reg = qdev->rx_ring_shadow_reg_area +
(rx_ring->cq_id * sizeof(u64) * 4);
u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
(rx_ring->cq_id * sizeof(u64) * 4);
void __iomem *doorbell_area =
qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
int err = 0;
u16 bq_len;
/* Set up the shadow registers for this ring. */
rx_ring->prod_idx_sh_reg = shadow_reg;
rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
shadow_reg += sizeof(u64);
shadow_reg_dma += sizeof(u64);
rx_ring->lbq_base_indirect = shadow_reg;
rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
shadow_reg += sizeof(u64);
shadow_reg_dma += sizeof(u64);
rx_ring->sbq_base_indirect = shadow_reg;
rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
/* PCI doorbell mem area + 0x00 for consumer index register */
rx_ring->cnsmr_idx_db_reg = (u32 *) doorbell_area;
rx_ring->cnsmr_idx = 0;
rx_ring->curr_entry = rx_ring->cq_base;
/* PCI doorbell mem area + 0x04 for valid register */
rx_ring->valid_db_reg = doorbell_area + 0x04;
/* PCI doorbell mem area + 0x18 for large buffer consumer */
rx_ring->lbq_prod_idx_db_reg = (u32 *) (doorbell_area + 0x18);
/* PCI doorbell mem area + 0x1c */
rx_ring->sbq_prod_idx_db_reg = (u32 *) (doorbell_area + 0x1c);
memset((void *)cqicb, 0, sizeof(struct cqicb));
cqicb->msix_vect = rx_ring->irq;
cqicb->len = cpu_to_le16(rx_ring->cq_len | LEN_V | LEN_CPP_CONT);
cqicb->addr_lo = cpu_to_le32(rx_ring->cq_base_dma);
cqicb->addr_hi = cpu_to_le32((u64) rx_ring->cq_base_dma >> 32);
cqicb->prod_idx_addr_lo = cpu_to_le32(rx_ring->prod_idx_sh_reg_dma);
cqicb->prod_idx_addr_hi =
cpu_to_le32((u64) rx_ring->prod_idx_sh_reg_dma >> 32);
/*
* Set up the control block load flags.
*/
cqicb->flags = FLAGS_LC | /* Load queue base address */
FLAGS_LV | /* Load MSI-X vector */
FLAGS_LI; /* Load irq delay values */
if (rx_ring->lbq_len) {
cqicb->flags |= FLAGS_LL; /* Load lbq values */
*((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma;
cqicb->lbq_addr_lo =
cpu_to_le32(rx_ring->lbq_base_indirect_dma);
cqicb->lbq_addr_hi =
cpu_to_le32((u64) rx_ring->lbq_base_indirect_dma >> 32);
cqicb->lbq_buf_size = cpu_to_le32(rx_ring->lbq_buf_size);
bq_len = (u16) rx_ring->lbq_len;
cqicb->lbq_len = cpu_to_le16(bq_len);
rx_ring->lbq_prod_idx = rx_ring->lbq_len - 16;
rx_ring->lbq_curr_idx = 0;
rx_ring->lbq_clean_idx = rx_ring->lbq_prod_idx;
rx_ring->lbq_free_cnt = 16;
}
if (rx_ring->sbq_len) {
cqicb->flags |= FLAGS_LS; /* Load sbq values */
*((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma;
cqicb->sbq_addr_lo =
cpu_to_le32(rx_ring->sbq_base_indirect_dma);
cqicb->sbq_addr_hi =
cpu_to_le32((u64) rx_ring->sbq_base_indirect_dma >> 32);
cqicb->sbq_buf_size =
cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8);
bq_len = (u16) rx_ring->sbq_len;
cqicb->sbq_len = cpu_to_le16(bq_len);
rx_ring->sbq_prod_idx = rx_ring->sbq_len - 16;
rx_ring->sbq_curr_idx = 0;
rx_ring->sbq_clean_idx = rx_ring->sbq_prod_idx;
rx_ring->sbq_free_cnt = 16;
}
switch (rx_ring->type) {
case TX_Q:
/* If there's only one interrupt, then we use
* worker threads to process the outbound
* completion handling rx_rings. We do this so
* they can be run on multiple CPUs. There is
* room to play with this more where we would only
* run in a worker if there are more than x number
* of outbound completions on the queue and more
* than one queue active. Some threshold that
* would indicate a benefit in spite of the cost
* of a context switch.
* If there's more than one interrupt, then the
* outbound completions are processed in the ISR.
*/
if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
else {
/* With all debug warnings on we see a WARN_ON message
* when we free the skb in the interrupt context.
*/
INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
}
cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
break;
case DEFAULT_Q:
INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
cqicb->irq_delay = 0;
cqicb->pkt_delay = 0;
break;
case RX_Q:
/* Inbound completion handling rx_rings run in
* separate NAPI contexts.
*/
netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
64);
cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
break;
default:
QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
rx_ring->type);
}
QPRINTK(qdev, IFUP, INFO, "Initializing rx work queue.\n");
err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
CFG_LCQ, rx_ring->cq_id);
if (err) {
QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
return err;
}
QPRINTK(qdev, IFUP, INFO, "Successfully loaded CQICB.\n");
/*
* Advance the producer index for the buffer queues.
*/
wmb();
if (rx_ring->lbq_len)
ql_write_db_reg(rx_ring->lbq_prod_idx,
rx_ring->lbq_prod_idx_db_reg);
if (rx_ring->sbq_len)
ql_write_db_reg(rx_ring->sbq_prod_idx,
rx_ring->sbq_prod_idx_db_reg);
return err;
}
static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
{
struct wqicb *wqicb = (struct wqicb *)tx_ring;
void __iomem *doorbell_area =
qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
void *shadow_reg = qdev->tx_ring_shadow_reg_area +
(tx_ring->wq_id * sizeof(u64));
u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
(tx_ring->wq_id * sizeof(u64));
int err = 0;
/*
* Assign doorbell registers for this tx_ring.
*/
/* TX PCI doorbell mem area for tx producer index */
tx_ring->prod_idx_db_reg = (u32 *) doorbell_area;
tx_ring->prod_idx = 0;
/* TX PCI doorbell mem area + 0x04 */
tx_ring->valid_db_reg = doorbell_area + 0x04;
/*
* Assign shadow registers for this tx_ring.
*/
tx_ring->cnsmr_idx_sh_reg = shadow_reg;
tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
wqicb->rid = 0;
wqicb->addr_lo = cpu_to_le32(tx_ring->wq_base_dma);
wqicb->addr_hi = cpu_to_le32((u64) tx_ring->wq_base_dma >> 32);
wqicb->cnsmr_idx_addr_lo = cpu_to_le32(tx_ring->cnsmr_idx_sh_reg_dma);
wqicb->cnsmr_idx_addr_hi =
cpu_to_le32((u64) tx_ring->cnsmr_idx_sh_reg_dma >> 32);
ql_init_tx_ring(qdev, tx_ring);
err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
(u16) tx_ring->wq_id);
if (err) {
QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
return err;
}
QPRINTK(qdev, IFUP, INFO, "Successfully loaded WQICB.\n");
return err;
}
static void ql_disable_msix(struct ql_adapter *qdev)
{
if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
pci_disable_msix(qdev->pdev);
clear_bit(QL_MSIX_ENABLED, &qdev->flags);
kfree(qdev->msi_x_entry);
qdev->msi_x_entry = NULL;
} else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
pci_disable_msi(qdev->pdev);
clear_bit(QL_MSI_ENABLED, &qdev->flags);
}
}
static void ql_enable_msix(struct ql_adapter *qdev)
{
int i;
qdev->intr_count = 1;
/* Get the MSIX vectors. */
if (irq_type == MSIX_IRQ) {
/* Try to alloc space for the msix struct,
* if it fails then go to MSI/legacy.
*/
qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
sizeof(struct msix_entry),
GFP_KERNEL);
if (!qdev->msi_x_entry) {
irq_type = MSI_IRQ;
goto msi;
}
for (i = 0; i < qdev->rx_ring_count; i++)
qdev->msi_x_entry[i].entry = i;
if (!pci_enable_msix
(qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
set_bit(QL_MSIX_ENABLED, &qdev->flags);
qdev->intr_count = qdev->rx_ring_count;
QPRINTK(qdev, IFUP, INFO,
"MSI-X Enabled, got %d vectors.\n",
qdev->intr_count);
return;
} else {
kfree(qdev->msi_x_entry);
qdev->msi_x_entry = NULL;
QPRINTK(qdev, IFUP, WARNING,
"MSI-X Enable failed, trying MSI.\n");
irq_type = MSI_IRQ;
}
}
msi:
if (irq_type == MSI_IRQ) {
if (!pci_enable_msi(qdev->pdev)) {
set_bit(QL_MSI_ENABLED, &qdev->flags);
QPRINTK(qdev, IFUP, INFO,
"Running with MSI interrupts.\n");
return;
}
}
irq_type = LEG_IRQ;
QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
}
/*
* Here we build the intr_context structures based on
* our rx_ring count and intr vector count.
* The intr_context structure is used to hook each vector
* to possibly different handlers.
*/
static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
{
int i = 0;
struct intr_context *intr_context = &qdev->intr_context[0];
ql_enable_msix(qdev);
if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
/* Each rx_ring has it's
* own intr_context since we have separate
* vectors for each queue.
* This only true when MSI-X is enabled.
*/
for (i = 0; i < qdev->intr_count; i++, intr_context++) {
qdev->rx_ring[i].irq = i;
intr_context->intr = i;
intr_context->qdev = qdev;
/*
* We set up each vectors enable/disable/read bits so
* there's no bit/mask calculations in the critical path.
*/
intr_context->intr_en_mask =
INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
| i;
intr_context->intr_dis_mask =
INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
INTR_EN_IHD | i;
intr_context->intr_read_mask =
INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
i;
if (i == 0) {
/*
* Default queue handles bcast/mcast plus
* async events. Needs buffers.
*/
intr_context->handler = qlge_isr;
sprintf(intr_context->name, "%s-default-queue",
qdev->ndev->name);
} else if (i < qdev->rss_ring_first_cq_id) {
/*
* Outbound queue is for outbound completions only.
*/
intr_context->handler = qlge_msix_tx_isr;
sprintf(intr_context->name, "%s-txq-%d",
qdev->ndev->name, i);
} else {
/*
* Inbound queues handle unicast frames only.
*/
intr_context->handler = qlge_msix_rx_isr;
sprintf(intr_context->name, "%s-rxq-%d",
qdev->ndev->name, i);
}
}
} else {
/*
* All rx_rings use the same intr_context since
* there is only one vector.
*/
intr_context->intr = 0;
intr_context->qdev = qdev;
/*
* We set up each vectors enable/disable/read bits so
* there's no bit/mask calculations in the critical path.
*/
intr_context->intr_en_mask =
INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
intr_context->intr_dis_mask =
INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
INTR_EN_TYPE_DISABLE;
intr_context->intr_read_mask =
INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
/*
* Single interrupt means one handler for all rings.
*/
intr_context->handler = qlge_isr;
sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
for (i = 0; i < qdev->rx_ring_count; i++)
qdev->rx_ring[i].irq = 0;
}
}
static void ql_free_irq(struct ql_adapter *qdev)
{
int i;
struct intr_context *intr_context = &qdev->intr_context[0];
for (i = 0; i < qdev->intr_count; i++, intr_context++) {
if (intr_context->hooked) {
if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
free_irq(qdev->msi_x_entry[i].vector,
&qdev->rx_ring[i]);
QPRINTK(qdev, IFDOWN, ERR,
"freeing msix interrupt %d.\n", i);
} else {
free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
QPRINTK(qdev, IFDOWN, ERR,
"freeing msi interrupt %d.\n", i);
}
}
}
ql_disable_msix(qdev);
}
static int ql_request_irq(struct ql_adapter *qdev)
{
int i;
int status = 0;
struct pci_dev *pdev = qdev->pdev;
struct intr_context *intr_context = &qdev->intr_context[0];
ql_resolve_queues_to_irqs(qdev);
for (i = 0; i < qdev->intr_count; i++, intr_context++) {
atomic_set(&intr_context->irq_cnt, 0);
if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
status = request_irq(qdev->msi_x_entry[i].vector,
intr_context->handler,
0,
intr_context->name,
&qdev->rx_ring[i]);
if (status) {
QPRINTK(qdev, IFUP, ERR,
"Failed request for MSIX interrupt %d.\n",
i);
goto err_irq;
} else {
QPRINTK(qdev, IFUP, INFO,
"Hooked intr %d, queue type %s%s%s, with name %s.\n",
i,
qdev->rx_ring[i].type ==
DEFAULT_Q ? "DEFAULT_Q" : "",
qdev->rx_ring[i].type ==
TX_Q ? "TX_Q" : "",
qdev->rx_ring[i].type ==
RX_Q ? "RX_Q" : "", intr_context->name);
}
} else {
QPRINTK(qdev, IFUP, DEBUG,
"trying msi or legacy interrupts.\n");
QPRINTK(qdev, IFUP, DEBUG,
"%s: irq = %d.\n", __func__, pdev->irq);
QPRINTK(qdev, IFUP, DEBUG,
"%s: context->name = %s.\n", __func__,
intr_context->name);
QPRINTK(qdev, IFUP, DEBUG,
"%s: dev_id = 0x%p.\n", __func__,
&qdev->rx_ring[0]);
status =
request_irq(pdev->irq, qlge_isr,
test_bit(QL_MSI_ENABLED,
&qdev->
flags) ? 0 : IRQF_SHARED,
intr_context->name, &qdev->rx_ring[0]);
if (status)
goto err_irq;
QPRINTK(qdev, IFUP, ERR,
"Hooked intr %d, queue type %s%s%s, with name %s.\n",
i,
qdev->rx_ring[0].type ==
DEFAULT_Q ? "DEFAULT_Q" : "",
qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
intr_context->name);
}
intr_context->hooked = 1;
}
return status;
err_irq:
QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
ql_free_irq(qdev);
return status;
}
static int ql_start_rss(struct ql_adapter *qdev)
{
struct ricb *ricb = &qdev->ricb;
int status = 0;
int i;
u8 *hash_id = (u8 *) ricb->hash_cq_id;
memset((void *)ricb, 0, sizeof(ricb));
ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
ricb->flags =
(RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
RSS_RT6);
ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
/*
* Fill out the Indirection Table.
*/
for (i = 0; i < 32; i++)
hash_id[i] = i & 1;
/*
* Random values for the IPv6 and IPv4 Hash Keys.
*/
get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
QPRINTK(qdev, IFUP, INFO, "Initializing RSS.\n");
status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
if (status) {
QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
return status;
}
QPRINTK(qdev, IFUP, INFO, "Successfully loaded RICB.\n");
return status;
}
/* Initialize the frame-to-queue routing. */
static int ql_route_initialize(struct ql_adapter *qdev)
{
int status = 0;
int i;
/* Clear all the entries in the routing table. */
for (i = 0; i < 16; i++) {
status = ql_set_routing_reg(qdev, i, 0, 0);
if (status) {
QPRINTK(qdev, IFUP, ERR,
"Failed to init routing register for CAM packets.\n");
return status;
}
}
status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
if (status) {
QPRINTK(qdev, IFUP, ERR,
"Failed to init routing register for error packets.\n");
return status;
}
status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
if (status) {
QPRINTK(qdev, IFUP, ERR,
"Failed to init routing register for broadcast packets.\n");
return status;
}
/* If we have more than one inbound queue, then turn on RSS in the
* routing block.
*/
if (qdev->rss_ring_count > 1) {
status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
RT_IDX_RSS_MATCH, 1);
if (status) {
QPRINTK(qdev, IFUP, ERR,
"Failed to init routing register for MATCH RSS packets.\n");
return status;
}
}
status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
RT_IDX_CAM_HIT, 1);
if (status) {
QPRINTK(qdev, IFUP, ERR,
"Failed to init routing register for CAM packets.\n");
return status;
}
return status;
}
static int ql_adapter_initialize(struct ql_adapter *qdev)
{
u32 value, mask;
int i;
int status = 0;
/*
* Set up the System register to halt on errors.
*/
value = SYS_EFE | SYS_FAE;
mask = value << 16;
ql_write32(qdev, SYS, mask | value);
/* Set the default queue. */
value = NIC_RCV_CFG_DFQ;
mask = NIC_RCV_CFG_DFQ_MASK;
ql_write32(qdev, NIC_RCV_CFG, (mask | value));
/* Set the MPI interrupt to enabled. */
ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
/* Enable the function, set pagesize, enable error checking. */
value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
/* Set/clear header splitting. */
mask = FSC_VM_PAGESIZE_MASK |
FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
ql_write32(qdev, FSC, mask | value);
ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
/* Start up the rx queues. */
for (i = 0; i < qdev->rx_ring_count; i++) {
status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
if (status) {
QPRINTK(qdev, IFUP, ERR,
"Failed to start rx ring[%d].\n", i);
return status;
}
}
/* If there is more than one inbound completion queue
* then download a RICB to configure RSS.
*/
if (qdev->rss_ring_count > 1) {
status = ql_start_rss(qdev);
if (status) {
QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
return status;
}
}
/* Start up the tx queues. */
for (i = 0; i < qdev->tx_ring_count; i++) {
status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
if (status) {
QPRINTK(qdev, IFUP, ERR,
"Failed to start tx ring[%d].\n", i);
return status;
}
}
status = ql_port_initialize(qdev);
if (status) {
QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
return status;
}
status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
MAC_ADDR_TYPE_CAM_MAC, qdev->func);
if (status) {
QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
return status;
}
status = ql_route_initialize(qdev);
if (status) {
QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
return status;
}
/* Start NAPI for the RSS queues. */
for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
QPRINTK(qdev, IFUP, INFO, "Enabling NAPI for rx_ring[%d].\n",
i);
napi_enable(&qdev->rx_ring[i].napi);
}
return status;
}
/* Issue soft reset to chip. */
static int ql_adapter_reset(struct ql_adapter *qdev)
{
u32 value;
int max_wait_time;
int status = 0;
int resetCnt = 0;
#define MAX_RESET_CNT 1
issueReset:
resetCnt++;
QPRINTK(qdev, IFDOWN, DEBUG, "Issue soft reset to chip.\n");
ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
/* Wait for reset to complete. */
max_wait_time = 3;
QPRINTK(qdev, IFDOWN, DEBUG, "Wait %d seconds for reset to complete.\n",
max_wait_time);
do {
value = ql_read32(qdev, RST_FO);
if ((value & RST_FO_FR) == 0)
break;
ssleep(1);
} while ((--max_wait_time));
if (value & RST_FO_FR) {
QPRINTK(qdev, IFDOWN, ERR,
"Stuck in SoftReset: FSC_SR:0x%08x\n", value);
if (resetCnt < MAX_RESET_CNT)
goto issueReset;
}
if (max_wait_time == 0) {
status = -ETIMEDOUT;
QPRINTK(qdev, IFDOWN, ERR,
"ETIMEOUT!!! errored out of resetting the chip!\n");
}
return status;
}
static void ql_display_dev_info(struct net_device *ndev)
{
struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
QPRINTK(qdev, PROBE, INFO,
"Function #%d, NIC Roll %d, NIC Rev = %d, "
"XG Roll = %d, XG Rev = %d.\n",
qdev->func,
qdev->chip_rev_id & 0x0000000f,
qdev->chip_rev_id >> 4 & 0x0000000f,
qdev->chip_rev_id >> 8 & 0x0000000f,
qdev->chip_rev_id >> 12 & 0x0000000f);
QPRINTK(qdev, PROBE, INFO,
"MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
ndev->dev_addr[0], ndev->dev_addr[1],
ndev->dev_addr[2], ndev->dev_addr[3], ndev->dev_addr[4],
ndev->dev_addr[5]);
}
static int ql_adapter_down(struct ql_adapter *qdev)
{
struct net_device *ndev = qdev->ndev;
int i, status = 0;
struct rx_ring *rx_ring;
netif_stop_queue(ndev);
netif_carrier_off(ndev);
cancel_delayed_work_sync(&qdev->asic_reset_work);
cancel_delayed_work_sync(&qdev->mpi_reset_work);
cancel_delayed_work_sync(&qdev->mpi_work);
/* The default queue at index 0 is always processed in
* a workqueue.
*/
cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
/* The rest of the rx_rings are processed in
* a workqueue only if it's a single interrupt
* environment (MSI/Legacy).
*/
for (i = 1; i > qdev->rx_ring_count; i++) {
rx_ring = &qdev->rx_ring[i];
/* Only the RSS rings use NAPI on multi irq
* environment. Outbound completion processing
* is done in interrupt context.
*/
if (i >= qdev->rss_ring_first_cq_id) {
napi_disable(&rx_ring->napi);
} else {
cancel_delayed_work_sync(&rx_ring->rx_work);
}
}
clear_bit(QL_ADAPTER_UP, &qdev->flags);
ql_disable_interrupts(qdev);
ql_tx_ring_clean(qdev);
spin_lock(&qdev->hw_lock);
status = ql_adapter_reset(qdev);
if (status)
QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
qdev->func);
spin_unlock(&qdev->hw_lock);
return status;
}
static int ql_adapter_up(struct ql_adapter *qdev)
{
int err = 0;
spin_lock(&qdev->hw_lock);
err = ql_adapter_initialize(qdev);
if (err) {
QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
spin_unlock(&qdev->hw_lock);
goto err_init;
}
spin_unlock(&qdev->hw_lock);
set_bit(QL_ADAPTER_UP, &qdev->flags);
ql_enable_interrupts(qdev);
ql_enable_all_completion_interrupts(qdev);
if ((ql_read32(qdev, STS) & qdev->port_init)) {
netif_carrier_on(qdev->ndev);
netif_start_queue(qdev->ndev);
}
return 0;
err_init:
ql_adapter_reset(qdev);
return err;
}
static int ql_cycle_adapter(struct ql_adapter *qdev)
{
int status;
status = ql_adapter_down(qdev);
if (status)
goto error;
status = ql_adapter_up(qdev);
if (status)
goto error;
return status;
error:
QPRINTK(qdev, IFUP, ALERT,
"Driver up/down cycle failed, closing device\n");
rtnl_lock();
dev_close(qdev->ndev);
rtnl_unlock();
return status;
}
static void ql_release_adapter_resources(struct ql_adapter *qdev)
{
ql_free_mem_resources(qdev);
ql_free_irq(qdev);
}
static int ql_get_adapter_resources(struct ql_adapter *qdev)
{
int status = 0;
if (ql_alloc_mem_resources(qdev)) {
QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
return -ENOMEM;
}
status = ql_request_irq(qdev);
if (status)
goto err_irq;
return status;
err_irq:
ql_free_mem_resources(qdev);
return status;
}
static int qlge_close(struct net_device *ndev)
{
struct ql_adapter *qdev = netdev_priv(ndev);
/*
* Wait for device to recover from a reset.
* (Rarely happens, but possible.)
*/
while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
msleep(1);
ql_adapter_down(qdev);
ql_release_adapter_resources(qdev);
ql_free_ring_cb(qdev);
return 0;
}
static int ql_configure_rings(struct ql_adapter *qdev)
{
int i;
struct rx_ring *rx_ring;
struct tx_ring *tx_ring;
int cpu_cnt = num_online_cpus();
/*
* For each processor present we allocate one
* rx_ring for outbound completions, and one
* rx_ring for inbound completions. Plus there is
* always the one default queue. For the CPU
* counts we end up with the following rx_rings:
* rx_ring count =
* one default queue +
* (CPU count * outbound completion rx_ring) +
* (CPU count * inbound (RSS) completion rx_ring)
* To keep it simple we limit the total number of
* queues to < 32, so we truncate CPU to 8.
* This limitation can be removed when requested.
*/
if (cpu_cnt > 8)
cpu_cnt = 8;
/*
* rx_ring[0] is always the default queue.
*/
/* Allocate outbound completion ring for each CPU. */
qdev->tx_ring_count = cpu_cnt;
/* Allocate inbound completion (RSS) ring for each CPU. */
qdev->rss_ring_count = cpu_cnt;
/* cq_id for the first inbound ring handler. */
qdev->rss_ring_first_cq_id = cpu_cnt + 1;
/*
* qdev->rx_ring_count:
* Total number of rx_rings. This includes the one
* default queue, a number of outbound completion
* handler rx_rings, and the number of inbound
* completion handler rx_rings.
*/
qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
if (ql_alloc_ring_cb(qdev))
return -ENOMEM;
for (i = 0; i < qdev->tx_ring_count; i++) {
tx_ring = &qdev->tx_ring[i];
memset((void *)tx_ring, 0, sizeof(tx_ring));
tx_ring->qdev = qdev;
tx_ring->wq_id = i;
tx_ring->wq_len = qdev->tx_ring_size;
tx_ring->wq_size =
tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
/*
* The completion queue ID for the tx rings start
* immediately after the default Q ID, which is zero.
*/
tx_ring->cq_id = i + 1;
}
for (i = 0; i < qdev->rx_ring_count; i++) {
rx_ring = &qdev->rx_ring[i];
memset((void *)rx_ring, 0, sizeof(rx_ring));
rx_ring->qdev = qdev;
rx_ring->cq_id = i;
rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
if (i == 0) { /* Default queue at index 0. */
/*
* Default queue handles bcast/mcast plus
* async events. Needs buffers.
*/
rx_ring->cq_len = qdev->rx_ring_size;
rx_ring->cq_size =
rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
rx_ring->lbq_len = NUM_LARGE_BUFFERS;
rx_ring->lbq_size =
rx_ring->lbq_len * sizeof(struct bq_element);
rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
rx_ring->sbq_len = NUM_SMALL_BUFFERS;
rx_ring->sbq_size =
rx_ring->sbq_len * sizeof(struct bq_element);
rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
rx_ring->type = DEFAULT_Q;
} else if (i < qdev->rss_ring_first_cq_id) {
/*
* Outbound queue handles outbound completions only.
*/
/* outbound cq is same size as tx_ring it services. */
rx_ring->cq_len = qdev->tx_ring_size;
rx_ring->cq_size =
rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
rx_ring->lbq_len = 0;
rx_ring->lbq_size = 0;
rx_ring->lbq_buf_size = 0;
rx_ring->sbq_len = 0;
rx_ring->sbq_size = 0;
rx_ring->sbq_buf_size = 0;
rx_ring->type = TX_Q;
} else { /* Inbound completions (RSS) queues */
/*
* Inbound queues handle unicast frames only.
*/
rx_ring->cq_len = qdev->rx_ring_size;
rx_ring->cq_size =
rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
rx_ring->lbq_len = NUM_LARGE_BUFFERS;
rx_ring->lbq_size =
rx_ring->lbq_len * sizeof(struct bq_element);
rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
rx_ring->sbq_len = NUM_SMALL_BUFFERS;
rx_ring->sbq_size =
rx_ring->sbq_len * sizeof(struct bq_element);
rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
rx_ring->type = RX_Q;
}
}
return 0;
}
static int qlge_open(struct net_device *ndev)
{
int err = 0;
struct ql_adapter *qdev = netdev_priv(ndev);
err = ql_configure_rings(qdev);
if (err)
return err;
err = ql_get_adapter_resources(qdev);
if (err)
goto error_up;
err = ql_adapter_up(qdev);
if (err)
goto error_up;
return err;
error_up:
ql_release_adapter_resources(qdev);
ql_free_ring_cb(qdev);
return err;
}
static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
{
struct ql_adapter *qdev = netdev_priv(ndev);
if (ndev->mtu == 1500 && new_mtu == 9000) {
QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
} else if (ndev->mtu == 9000 && new_mtu == 1500) {
QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
} else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
(ndev->mtu == 9000 && new_mtu == 9000)) {
return 0;
} else
return -EINVAL;
ndev->mtu = new_mtu;
return 0;
}
static struct net_device_stats *qlge_get_stats(struct net_device
*ndev)
{
struct ql_adapter *qdev = netdev_priv(ndev);
return &qdev->stats;
}
static void qlge_set_multicast_list(struct net_device *ndev)
{
struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
struct dev_mc_list *mc_ptr;
int i;
spin_lock(&qdev->hw_lock);
/*
* Set or clear promiscuous mode if a
* transition is taking place.
*/
if (ndev->flags & IFF_PROMISC) {
if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
if (ql_set_routing_reg
(qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
QPRINTK(qdev, HW, ERR,
"Failed to set promiscous mode.\n");
} else {
set_bit(QL_PROMISCUOUS, &qdev->flags);
}
}
} else {
if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
if (ql_set_routing_reg
(qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
QPRINTK(qdev, HW, ERR,
"Failed to clear promiscous mode.\n");
} else {
clear_bit(QL_PROMISCUOUS, &qdev->flags);
}
}
}
/*
* Set or clear all multicast mode if a
* transition is taking place.
*/
if ((ndev->flags & IFF_ALLMULTI) ||
(ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
if (ql_set_routing_reg
(qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
QPRINTK(qdev, HW, ERR,
"Failed to set all-multi mode.\n");
} else {
set_bit(QL_ALLMULTI, &qdev->flags);
}
}
} else {
if (test_bit(QL_ALLMULTI, &qdev->flags)) {
if (ql_set_routing_reg
(qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
QPRINTK(qdev, HW, ERR,
"Failed to clear all-multi mode.\n");
} else {
clear_bit(QL_ALLMULTI, &qdev->flags);
}
}
}
if (ndev->mc_count) {
for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
i++, mc_ptr = mc_ptr->next)
if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
MAC_ADDR_TYPE_MULTI_MAC, i)) {
QPRINTK(qdev, HW, ERR,
"Failed to loadmulticast address.\n");
goto exit;
}
if (ql_set_routing_reg
(qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
QPRINTK(qdev, HW, ERR,
"Failed to set multicast match mode.\n");
} else {
set_bit(QL_ALLMULTI, &qdev->flags);
}
}
exit:
spin_unlock(&qdev->hw_lock);
}
static int qlge_set_mac_address(struct net_device *ndev, void *p)
{
struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
struct sockaddr *addr = p;
if (netif_running(ndev))
return -EBUSY;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
spin_lock(&qdev->hw_lock);
if (ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
MAC_ADDR_TYPE_CAM_MAC, qdev->func)) {/* Unicast */
QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
return -1;
}
spin_unlock(&qdev->hw_lock);
return 0;
}
static void qlge_tx_timeout(struct net_device *ndev)
{
struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
}
static void ql_asic_reset_work(struct work_struct *work)
{
struct ql_adapter *qdev =
container_of(work, struct ql_adapter, asic_reset_work.work);
ql_cycle_adapter(qdev);
}
static void ql_get_board_info(struct ql_adapter *qdev)
{
qdev->func =
(ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
if (qdev->func) {
qdev->xg_sem_mask = SEM_XGMAC1_MASK;
qdev->port_link_up = STS_PL1;
qdev->port_init = STS_PI1;
qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
} else {
qdev->xg_sem_mask = SEM_XGMAC0_MASK;
qdev->port_link_up = STS_PL0;
qdev->port_init = STS_PI0;
qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
}
qdev->chip_rev_id = ql_read32(qdev, REV_ID);
}
static void ql_release_all(struct pci_dev *pdev)
{
struct net_device *ndev = pci_get_drvdata(pdev);
struct ql_adapter *qdev = netdev_priv(ndev);
if (qdev->workqueue) {
destroy_workqueue(qdev->workqueue);
qdev->workqueue = NULL;
}
if (qdev->q_workqueue) {
destroy_workqueue(qdev->q_workqueue);
qdev->q_workqueue = NULL;
}
if (qdev->reg_base)
iounmap((void *)qdev->reg_base);
if (qdev->doorbell_area)
iounmap(qdev->doorbell_area);
pci_release_regions(pdev);
pci_set_drvdata(pdev, NULL);
}
static int __devinit ql_init_device(struct pci_dev *pdev,
struct net_device *ndev, int cards_found)
{
struct ql_adapter *qdev = netdev_priv(ndev);
int pos, err = 0;
u16 val16;
memset((void *)qdev, 0, sizeof(qdev));
err = pci_enable_device(pdev);
if (err) {
dev_err(&pdev->dev, "PCI device enable failed.\n");
return err;
}
pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
if (pos <= 0) {
dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
"aborting.\n");
goto err_out;
} else {
pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
val16 |= (PCI_EXP_DEVCTL_CERE |
PCI_EXP_DEVCTL_NFERE |
PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
}
err = pci_request_regions(pdev, DRV_NAME);
if (err) {
dev_err(&pdev->dev, "PCI region request failed.\n");
goto err_out;
}
pci_set_master(pdev);
if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
set_bit(QL_DMA64, &qdev->flags);
err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
} else {
err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
if (!err)
err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
}
if (err) {
dev_err(&pdev->dev, "No usable DMA configuration.\n");
goto err_out;
}
pci_set_drvdata(pdev, ndev);
qdev->reg_base =
ioremap_nocache(pci_resource_start(pdev, 1),
pci_resource_len(pdev, 1));
if (!qdev->reg_base) {
dev_err(&pdev->dev, "Register mapping failed.\n");
err = -ENOMEM;
goto err_out;
}
qdev->doorbell_area_size = pci_resource_len(pdev, 3);
qdev->doorbell_area =
ioremap_nocache(pci_resource_start(pdev, 3),
pci_resource_len(pdev, 3));
if (!qdev->doorbell_area) {
dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
err = -ENOMEM;
goto err_out;
}
ql_get_board_info(qdev);
qdev->ndev = ndev;
qdev->pdev = pdev;
qdev->msg_enable = netif_msg_init(debug, default_msg);
spin_lock_init(&qdev->hw_lock);
spin_lock_init(&qdev->stats_lock);
/* make sure the EEPROM is good */
err = ql_get_flash_params(qdev);
if (err) {
dev_err(&pdev->dev, "Invalid FLASH.\n");
goto err_out;
}
if (!is_valid_ether_addr(qdev->flash.mac_addr))
goto err_out;
memcpy(ndev->dev_addr, qdev->flash.mac_addr, ndev->addr_len);
memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
/* Set up the default ring sizes. */
qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
/* Set up the coalescing parameters. */
qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
/*
* Set up the operating parameters.
*/
qdev->rx_csum = 1;
qdev->q_workqueue = create_workqueue(ndev->name);
qdev->workqueue = create_singlethread_workqueue(ndev->name);
INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
if (!cards_found) {
dev_info(&pdev->dev, "%s\n", DRV_STRING);
dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
DRV_NAME, DRV_VERSION);
}
return 0;
err_out:
ql_release_all(pdev);
pci_disable_device(pdev);
return err;
}
static int __devinit qlge_probe(struct pci_dev *pdev,
const struct pci_device_id *pci_entry)
{
struct net_device *ndev = NULL;
struct ql_adapter *qdev = NULL;
static int cards_found = 0;
int err = 0;
ndev = alloc_etherdev(sizeof(struct ql_adapter));
if (!ndev)
return -ENOMEM;
err = ql_init_device(pdev, ndev, cards_found);
if (err < 0) {
free_netdev(ndev);
return err;
}
qdev = netdev_priv(ndev);
SET_NETDEV_DEV(ndev, &pdev->dev);
ndev->features = (0
| NETIF_F_IP_CSUM
| NETIF_F_SG
| NETIF_F_TSO
| NETIF_F_TSO6
| NETIF_F_TSO_ECN
| NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
if (test_bit(QL_DMA64, &qdev->flags))
ndev->features |= NETIF_F_HIGHDMA;
/*
* Set up net_device structure.
*/
ndev->tx_queue_len = qdev->tx_ring_size;
ndev->irq = pdev->irq;
ndev->open = qlge_open;
ndev->stop = qlge_close;
ndev->hard_start_xmit = qlge_send;
SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
ndev->change_mtu = qlge_change_mtu;
ndev->get_stats = qlge_get_stats;
ndev->set_multicast_list = qlge_set_multicast_list;
ndev->set_mac_address = qlge_set_mac_address;
ndev->tx_timeout = qlge_tx_timeout;
ndev->watchdog_timeo = 10 * HZ;
ndev->vlan_rx_register = ql_vlan_rx_register;
ndev->vlan_rx_add_vid = ql_vlan_rx_add_vid;
ndev->vlan_rx_kill_vid = ql_vlan_rx_kill_vid;
err = register_netdev(ndev);
if (err) {
dev_err(&pdev->dev, "net device registration failed.\n");
ql_release_all(pdev);
pci_disable_device(pdev);
return err;
}
netif_carrier_off(ndev);
netif_stop_queue(ndev);
ql_display_dev_info(ndev);
cards_found++;
return 0;
}
static void __devexit qlge_remove(struct pci_dev *pdev)
{
struct net_device *ndev = pci_get_drvdata(pdev);
unregister_netdev(ndev);
ql_release_all(pdev);
pci_disable_device(pdev);
free_netdev(ndev);
}
/*
* This callback is called by the PCI subsystem whenever
* a PCI bus error is detected.
*/
static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
enum pci_channel_state state)
{
struct net_device *ndev = pci_get_drvdata(pdev);
struct ql_adapter *qdev = netdev_priv(ndev);
if (netif_running(ndev))
ql_adapter_down(qdev);
pci_disable_device(pdev);
/* Request a slot reset. */
return PCI_ERS_RESULT_NEED_RESET;
}
/*
* This callback is called after the PCI buss has been reset.
* Basically, this tries to restart the card from scratch.
* This is a shortened version of the device probe/discovery code,
* it resembles the first-half of the () routine.
*/
static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
{
struct net_device *ndev = pci_get_drvdata(pdev);
struct ql_adapter *qdev = netdev_priv(ndev);
if (pci_enable_device(pdev)) {
QPRINTK(qdev, IFUP, ERR,
"Cannot re-enable PCI device after reset.\n");
return PCI_ERS_RESULT_DISCONNECT;
}
pci_set_master(pdev);
netif_carrier_off(ndev);
netif_stop_queue(ndev);
ql_adapter_reset(qdev);
/* Make sure the EEPROM is good */
memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
if (!is_valid_ether_addr(ndev->perm_addr)) {
QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
return PCI_ERS_RESULT_DISCONNECT;
}
return PCI_ERS_RESULT_RECOVERED;
}
static void qlge_io_resume(struct pci_dev *pdev)
{
struct net_device *ndev = pci_get_drvdata(pdev);
struct ql_adapter *qdev = netdev_priv(ndev);
pci_set_master(pdev);
if (netif_running(ndev)) {
if (ql_adapter_up(qdev)) {
QPRINTK(qdev, IFUP, ERR,
"Device initialization failed after reset.\n");
return;
}
}
netif_device_attach(ndev);
}
static struct pci_error_handlers qlge_err_handler = {
.error_detected = qlge_io_error_detected,
.slot_reset = qlge_io_slot_reset,
.resume = qlge_io_resume,
};
static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct net_device *ndev = pci_get_drvdata(pdev);
struct ql_adapter *qdev = netdev_priv(ndev);
int err;
netif_device_detach(ndev);
if (netif_running(ndev)) {
err = ql_adapter_down(qdev);
if (!err)
return err;
}
err = pci_save_state(pdev);
if (err)
return err;
pci_disable_device(pdev);
pci_set_power_state(pdev, pci_choose_state(pdev, state));
return 0;
}
#ifdef CONFIG_PM
static int qlge_resume(struct pci_dev *pdev)
{
struct net_device *ndev = pci_get_drvdata(pdev);
struct ql_adapter *qdev = netdev_priv(ndev);
int err;
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
err = pci_enable_device(pdev);
if (err) {
QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
return err;
}
pci_set_master(pdev);
pci_enable_wake(pdev, PCI_D3hot, 0);
pci_enable_wake(pdev, PCI_D3cold, 0);
if (netif_running(ndev)) {
err = ql_adapter_up(qdev);
if (err)
return err;
}
netif_device_attach(ndev);
return 0;
}
#endif /* CONFIG_PM */
static void qlge_shutdown(struct pci_dev *pdev)
{
qlge_suspend(pdev, PMSG_SUSPEND);
}
static struct pci_driver qlge_driver = {
.name = DRV_NAME,
.id_table = qlge_pci_tbl,
.probe = qlge_probe,
.remove = __devexit_p(qlge_remove),
#ifdef CONFIG_PM
.suspend = qlge_suspend,
.resume = qlge_resume,
#endif
.shutdown = qlge_shutdown,
.err_handler = &qlge_err_handler
};
static int __init qlge_init_module(void)
{
return pci_register_driver(&qlge_driver);
}
static void __exit qlge_exit(void)
{
pci_unregister_driver(&qlge_driver);
}
module_init(qlge_init_module);
module_exit(qlge_exit);