e041c68341
The kernel's implementation of notifier chains is unsafe. There is no protection against entries being added to or removed from a chain while the chain is in use. The issues were discussed in this thread: http://marc.theaimsgroup.com/?l=linux-kernel&m=113018709002036&w=2 We noticed that notifier chains in the kernel fall into two basic usage classes: "Blocking" chains are always called from a process context and the callout routines are allowed to sleep; "Atomic" chains can be called from an atomic context and the callout routines are not allowed to sleep. We decided to codify this distinction and make it part of the API. Therefore this set of patches introduces three new, parallel APIs: one for blocking notifiers, one for atomic notifiers, and one for "raw" notifiers (which is really just the old API under a new name). New kinds of data structures are used for the heads of the chains, and new routines are defined for registration, unregistration, and calling a chain. The three APIs are explained in include/linux/notifier.h and their implementation is in kernel/sys.c. With atomic and blocking chains, the implementation guarantees that the chain links will not be corrupted and that chain callers will not get messed up by entries being added or removed. For raw chains the implementation provides no guarantees at all; users of this API must provide their own protections. (The idea was that situations may come up where the assumptions of the atomic and blocking APIs are not appropriate, so it should be possible for users to handle these things in their own way.) There are some limitations, which should not be too hard to live with. For atomic/blocking chains, registration and unregistration must always be done in a process context since the chain is protected by a mutex/rwsem. Also, a callout routine for a non-raw chain must not try to register or unregister entries on its own chain. (This did happen in a couple of places and the code had to be changed to avoid it.) Since atomic chains may be called from within an NMI handler, they cannot use spinlocks for synchronization. Instead we use RCU. The overhead falls almost entirely in the unregister routine, which is okay since unregistration is much less frequent that calling a chain. Here is the list of chains that we adjusted and their classifications. None of them use the raw API, so for the moment it is only a placeholder. ATOMIC CHAINS ------------- arch/i386/kernel/traps.c: i386die_chain arch/ia64/kernel/traps.c: ia64die_chain arch/powerpc/kernel/traps.c: powerpc_die_chain arch/sparc64/kernel/traps.c: sparc64die_chain arch/x86_64/kernel/traps.c: die_chain drivers/char/ipmi/ipmi_si_intf.c: xaction_notifier_list kernel/panic.c: panic_notifier_list kernel/profile.c: task_free_notifier net/bluetooth/hci_core.c: hci_notifier net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_chain net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_expect_chain net/ipv6/addrconf.c: inet6addr_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_expect_chain net/netlink/af_netlink.c: netlink_chain BLOCKING CHAINS --------------- arch/powerpc/platforms/pseries/reconfig.c: pSeries_reconfig_chain arch/s390/kernel/process.c: idle_chain arch/x86_64/kernel/process.c idle_notifier drivers/base/memory.c: memory_chain drivers/cpufreq/cpufreq.c cpufreq_policy_notifier_list drivers/cpufreq/cpufreq.c cpufreq_transition_notifier_list drivers/macintosh/adb.c: adb_client_list drivers/macintosh/via-pmu.c sleep_notifier_list drivers/macintosh/via-pmu68k.c sleep_notifier_list drivers/macintosh/windfarm_core.c wf_client_list drivers/usb/core/notify.c usb_notifier_list drivers/video/fbmem.c fb_notifier_list kernel/cpu.c cpu_chain kernel/module.c module_notify_list kernel/profile.c munmap_notifier kernel/profile.c task_exit_notifier kernel/sys.c reboot_notifier_list net/core/dev.c netdev_chain net/decnet/dn_dev.c: dnaddr_chain net/ipv4/devinet.c: inetaddr_chain It's possible that some of these classifications are wrong. If they are, please let us know or submit a patch to fix them. Note that any chain that gets called very frequently should be atomic, because the rwsem read-locking used for blocking chains is very likely to incur cache misses on SMP systems. (However, if the chain's callout routines may sleep then the chain cannot be atomic.) The patch set was written by Alan Stern and Chandra Seetharaman, incorporating material written by Keith Owens and suggestions from Paul McKenney and Andrew Morton. [jes@sgi.com: restructure the notifier chain initialization macros] Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com> Signed-off-by: Jes Sorensen <jes@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
1218 lines
30 KiB
C
1218 lines
30 KiB
C
/*
|
|
* ipmi_watchdog.c
|
|
*
|
|
* A watchdog timer based upon the IPMI interface.
|
|
*
|
|
* Author: MontaVista Software, Inc.
|
|
* Corey Minyard <minyard@mvista.com>
|
|
* source@mvista.com
|
|
*
|
|
* Copyright 2002 MontaVista Software Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation; either version 2 of the License, or (at your
|
|
* option) any later version.
|
|
*
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
|
|
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
|
* USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
#include <linux/config.h>
|
|
#include <linux/module.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/ipmi.h>
|
|
#include <linux/ipmi_smi.h>
|
|
#include <linux/watchdog.h>
|
|
#include <linux/miscdevice.h>
|
|
#include <linux/init.h>
|
|
#include <linux/rwsem.h>
|
|
#include <linux/errno.h>
|
|
#include <asm/uaccess.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/nmi.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/poll.h>
|
|
#include <linux/string.h>
|
|
#include <linux/ctype.h>
|
|
#include <asm/atomic.h>
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
|
#include <asm/apic.h>
|
|
#endif
|
|
|
|
#define PFX "IPMI Watchdog: "
|
|
|
|
/*
|
|
* The IPMI command/response information for the watchdog timer.
|
|
*/
|
|
|
|
/* values for byte 1 of the set command, byte 2 of the get response. */
|
|
#define WDOG_DONT_LOG (1 << 7)
|
|
#define WDOG_DONT_STOP_ON_SET (1 << 6)
|
|
#define WDOG_SET_TIMER_USE(byte, use) \
|
|
byte = ((byte) & 0xf8) | ((use) & 0x7)
|
|
#define WDOG_GET_TIMER_USE(byte) ((byte) & 0x7)
|
|
#define WDOG_TIMER_USE_BIOS_FRB2 1
|
|
#define WDOG_TIMER_USE_BIOS_POST 2
|
|
#define WDOG_TIMER_USE_OS_LOAD 3
|
|
#define WDOG_TIMER_USE_SMS_OS 4
|
|
#define WDOG_TIMER_USE_OEM 5
|
|
|
|
/* values for byte 2 of the set command, byte 3 of the get response. */
|
|
#define WDOG_SET_PRETIMEOUT_ACT(byte, use) \
|
|
byte = ((byte) & 0x8f) | (((use) & 0x7) << 4)
|
|
#define WDOG_GET_PRETIMEOUT_ACT(byte) (((byte) >> 4) & 0x7)
|
|
#define WDOG_PRETIMEOUT_NONE 0
|
|
#define WDOG_PRETIMEOUT_SMI 1
|
|
#define WDOG_PRETIMEOUT_NMI 2
|
|
#define WDOG_PRETIMEOUT_MSG_INT 3
|
|
|
|
/* Operations that can be performed on a pretimout. */
|
|
#define WDOG_PREOP_NONE 0
|
|
#define WDOG_PREOP_PANIC 1
|
|
#define WDOG_PREOP_GIVE_DATA 2 /* Cause data to be available to
|
|
read. Doesn't work in NMI
|
|
mode. */
|
|
|
|
/* Actions to perform on a full timeout. */
|
|
#define WDOG_SET_TIMEOUT_ACT(byte, use) \
|
|
byte = ((byte) & 0xf8) | ((use) & 0x7)
|
|
#define WDOG_GET_TIMEOUT_ACT(byte) ((byte) & 0x7)
|
|
#define WDOG_TIMEOUT_NONE 0
|
|
#define WDOG_TIMEOUT_RESET 1
|
|
#define WDOG_TIMEOUT_POWER_DOWN 2
|
|
#define WDOG_TIMEOUT_POWER_CYCLE 3
|
|
|
|
/* Byte 3 of the get command, byte 4 of the get response is the
|
|
pre-timeout in seconds. */
|
|
|
|
/* Bits for setting byte 4 of the set command, byte 5 of the get response. */
|
|
#define WDOG_EXPIRE_CLEAR_BIOS_FRB2 (1 << 1)
|
|
#define WDOG_EXPIRE_CLEAR_BIOS_POST (1 << 2)
|
|
#define WDOG_EXPIRE_CLEAR_OS_LOAD (1 << 3)
|
|
#define WDOG_EXPIRE_CLEAR_SMS_OS (1 << 4)
|
|
#define WDOG_EXPIRE_CLEAR_OEM (1 << 5)
|
|
|
|
/* Setting/getting the watchdog timer value. This is for bytes 5 and
|
|
6 (the timeout time) of the set command, and bytes 6 and 7 (the
|
|
timeout time) and 8 and 9 (the current countdown value) of the
|
|
response. The timeout value is given in seconds (in the command it
|
|
is 100ms intervals). */
|
|
#define WDOG_SET_TIMEOUT(byte1, byte2, val) \
|
|
(byte1) = (((val) * 10) & 0xff), (byte2) = (((val) * 10) >> 8)
|
|
#define WDOG_GET_TIMEOUT(byte1, byte2) \
|
|
(((byte1) | ((byte2) << 8)) / 10)
|
|
|
|
#define IPMI_WDOG_RESET_TIMER 0x22
|
|
#define IPMI_WDOG_SET_TIMER 0x24
|
|
#define IPMI_WDOG_GET_TIMER 0x25
|
|
|
|
/* These are here until the real ones get into the watchdog.h interface. */
|
|
#ifndef WDIOC_GETTIMEOUT
|
|
#define WDIOC_GETTIMEOUT _IOW(WATCHDOG_IOCTL_BASE, 20, int)
|
|
#endif
|
|
#ifndef WDIOC_SET_PRETIMEOUT
|
|
#define WDIOC_SET_PRETIMEOUT _IOW(WATCHDOG_IOCTL_BASE, 21, int)
|
|
#endif
|
|
#ifndef WDIOC_GET_PRETIMEOUT
|
|
#define WDIOC_GET_PRETIMEOUT _IOW(WATCHDOG_IOCTL_BASE, 22, int)
|
|
#endif
|
|
|
|
static int nowayout = WATCHDOG_NOWAYOUT;
|
|
|
|
static ipmi_user_t watchdog_user = NULL;
|
|
|
|
/* Default the timeout to 10 seconds. */
|
|
static int timeout = 10;
|
|
|
|
/* The pre-timeout is disabled by default. */
|
|
static int pretimeout = 0;
|
|
|
|
/* Default action is to reset the board on a timeout. */
|
|
static unsigned char action_val = WDOG_TIMEOUT_RESET;
|
|
|
|
static char action[16] = "reset";
|
|
|
|
static unsigned char preaction_val = WDOG_PRETIMEOUT_NONE;
|
|
|
|
static char preaction[16] = "pre_none";
|
|
|
|
static unsigned char preop_val = WDOG_PREOP_NONE;
|
|
|
|
static char preop[16] = "preop_none";
|
|
static DEFINE_SPINLOCK(ipmi_read_lock);
|
|
static char data_to_read = 0;
|
|
static DECLARE_WAIT_QUEUE_HEAD(read_q);
|
|
static struct fasync_struct *fasync_q = NULL;
|
|
static char pretimeout_since_last_heartbeat = 0;
|
|
static char expect_close;
|
|
|
|
static DECLARE_RWSEM(register_sem);
|
|
|
|
/* Parameters to ipmi_set_timeout */
|
|
#define IPMI_SET_TIMEOUT_NO_HB 0
|
|
#define IPMI_SET_TIMEOUT_HB_IF_NECESSARY 1
|
|
#define IPMI_SET_TIMEOUT_FORCE_HB 2
|
|
|
|
static int ipmi_set_timeout(int do_heartbeat);
|
|
|
|
/* If true, the driver will start running as soon as it is configured
|
|
and ready. */
|
|
static int start_now = 0;
|
|
|
|
static int set_param_int(const char *val, struct kernel_param *kp)
|
|
{
|
|
char *endp;
|
|
int l;
|
|
int rv = 0;
|
|
|
|
if (!val)
|
|
return -EINVAL;
|
|
l = simple_strtoul(val, &endp, 0);
|
|
if (endp == val)
|
|
return -EINVAL;
|
|
|
|
down_read(®ister_sem);
|
|
*((int *)kp->arg) = l;
|
|
if (watchdog_user)
|
|
rv = ipmi_set_timeout(IPMI_SET_TIMEOUT_HB_IF_NECESSARY);
|
|
up_read(®ister_sem);
|
|
|
|
return rv;
|
|
}
|
|
|
|
static int get_param_int(char *buffer, struct kernel_param *kp)
|
|
{
|
|
return sprintf(buffer, "%i", *((int *)kp->arg));
|
|
}
|
|
|
|
typedef int (*action_fn)(const char *intval, char *outval);
|
|
|
|
static int action_op(const char *inval, char *outval);
|
|
static int preaction_op(const char *inval, char *outval);
|
|
static int preop_op(const char *inval, char *outval);
|
|
static void check_parms(void);
|
|
|
|
static int set_param_str(const char *val, struct kernel_param *kp)
|
|
{
|
|
action_fn fn = (action_fn) kp->arg;
|
|
int rv = 0;
|
|
const char *end;
|
|
char valcp[16];
|
|
int len;
|
|
|
|
/* Truncate leading and trailing spaces. */
|
|
while (isspace(*val))
|
|
val++;
|
|
end = val + strlen(val) - 1;
|
|
while ((end >= val) && isspace(*end))
|
|
end--;
|
|
len = end - val + 1;
|
|
if (len > sizeof(valcp) - 1)
|
|
return -EINVAL;
|
|
memcpy(valcp, val, len);
|
|
valcp[len] = '\0';
|
|
|
|
down_read(®ister_sem);
|
|
rv = fn(valcp, NULL);
|
|
if (rv)
|
|
goto out_unlock;
|
|
|
|
check_parms();
|
|
if (watchdog_user)
|
|
rv = ipmi_set_timeout(IPMI_SET_TIMEOUT_HB_IF_NECESSARY);
|
|
|
|
out_unlock:
|
|
up_read(®ister_sem);
|
|
return rv;
|
|
}
|
|
|
|
static int get_param_str(char *buffer, struct kernel_param *kp)
|
|
{
|
|
action_fn fn = (action_fn) kp->arg;
|
|
int rv;
|
|
|
|
rv = fn(NULL, buffer);
|
|
if (rv)
|
|
return rv;
|
|
return strlen(buffer);
|
|
}
|
|
|
|
module_param_call(timeout, set_param_int, get_param_int, &timeout, 0644);
|
|
MODULE_PARM_DESC(timeout, "Timeout value in seconds.");
|
|
|
|
module_param_call(pretimeout, set_param_int, get_param_int, &pretimeout, 0644);
|
|
MODULE_PARM_DESC(pretimeout, "Pretimeout value in seconds.");
|
|
|
|
module_param_call(action, set_param_str, get_param_str, action_op, 0644);
|
|
MODULE_PARM_DESC(action, "Timeout action. One of: "
|
|
"reset, none, power_cycle, power_off.");
|
|
|
|
module_param_call(preaction, set_param_str, get_param_str, preaction_op, 0644);
|
|
MODULE_PARM_DESC(preaction, "Pretimeout action. One of: "
|
|
"pre_none, pre_smi, pre_nmi, pre_int.");
|
|
|
|
module_param_call(preop, set_param_str, get_param_str, preop_op, 0644);
|
|
MODULE_PARM_DESC(preop, "Pretimeout driver operation. One of: "
|
|
"preop_none, preop_panic, preop_give_data.");
|
|
|
|
module_param(start_now, int, 0);
|
|
MODULE_PARM_DESC(start_now, "Set to 1 to start the watchdog as"
|
|
"soon as the driver is loaded.");
|
|
|
|
module_param(nowayout, int, 0644);
|
|
MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started (default=CONFIG_WATCHDOG_NOWAYOUT)");
|
|
|
|
/* Default state of the timer. */
|
|
static unsigned char ipmi_watchdog_state = WDOG_TIMEOUT_NONE;
|
|
|
|
/* If shutting down via IPMI, we ignore the heartbeat. */
|
|
static int ipmi_ignore_heartbeat = 0;
|
|
|
|
/* Is someone using the watchdog? Only one user is allowed. */
|
|
static unsigned long ipmi_wdog_open = 0;
|
|
|
|
/* If set to 1, the heartbeat command will set the state to reset and
|
|
start the timer. The timer doesn't normally run when the driver is
|
|
first opened until the heartbeat is set the first time, this
|
|
variable is used to accomplish this. */
|
|
static int ipmi_start_timer_on_heartbeat = 0;
|
|
|
|
/* IPMI version of the BMC. */
|
|
static unsigned char ipmi_version_major;
|
|
static unsigned char ipmi_version_minor;
|
|
|
|
/* If a pretimeout occurs, this is used to allow only one panic to happen. */
|
|
static atomic_t preop_panic_excl = ATOMIC_INIT(-1);
|
|
|
|
static int ipmi_heartbeat(void);
|
|
static void panic_halt_ipmi_heartbeat(void);
|
|
|
|
|
|
/* We use a semaphore to make sure that only one thing can send a set
|
|
timeout at one time, because we only have one copy of the data.
|
|
The semaphore is claimed when the set_timeout is sent and freed
|
|
when both messages are free. */
|
|
static atomic_t set_timeout_tofree = ATOMIC_INIT(0);
|
|
static DECLARE_MUTEX(set_timeout_lock);
|
|
static void set_timeout_free_smi(struct ipmi_smi_msg *msg)
|
|
{
|
|
if (atomic_dec_and_test(&set_timeout_tofree))
|
|
up(&set_timeout_lock);
|
|
}
|
|
static void set_timeout_free_recv(struct ipmi_recv_msg *msg)
|
|
{
|
|
if (atomic_dec_and_test(&set_timeout_tofree))
|
|
up(&set_timeout_lock);
|
|
}
|
|
static struct ipmi_smi_msg set_timeout_smi_msg =
|
|
{
|
|
.done = set_timeout_free_smi
|
|
};
|
|
static struct ipmi_recv_msg set_timeout_recv_msg =
|
|
{
|
|
.done = set_timeout_free_recv
|
|
};
|
|
|
|
static int i_ipmi_set_timeout(struct ipmi_smi_msg *smi_msg,
|
|
struct ipmi_recv_msg *recv_msg,
|
|
int *send_heartbeat_now)
|
|
{
|
|
struct kernel_ipmi_msg msg;
|
|
unsigned char data[6];
|
|
int rv;
|
|
struct ipmi_system_interface_addr addr;
|
|
int hbnow = 0;
|
|
|
|
|
|
data[0] = 0;
|
|
WDOG_SET_TIMER_USE(data[0], WDOG_TIMER_USE_SMS_OS);
|
|
|
|
if ((ipmi_version_major > 1)
|
|
|| ((ipmi_version_major == 1) && (ipmi_version_minor >= 5)))
|
|
{
|
|
/* This is an IPMI 1.5-only feature. */
|
|
data[0] |= WDOG_DONT_STOP_ON_SET;
|
|
} else if (ipmi_watchdog_state != WDOG_TIMEOUT_NONE) {
|
|
/* In ipmi 1.0, setting the timer stops the watchdog, we
|
|
need to start it back up again. */
|
|
hbnow = 1;
|
|
}
|
|
|
|
data[1] = 0;
|
|
WDOG_SET_TIMEOUT_ACT(data[1], ipmi_watchdog_state);
|
|
if ((pretimeout > 0) && (ipmi_watchdog_state != WDOG_TIMEOUT_NONE)) {
|
|
WDOG_SET_PRETIMEOUT_ACT(data[1], preaction_val);
|
|
data[2] = pretimeout;
|
|
} else {
|
|
WDOG_SET_PRETIMEOUT_ACT(data[1], WDOG_PRETIMEOUT_NONE);
|
|
data[2] = 0; /* No pretimeout. */
|
|
}
|
|
data[3] = 0;
|
|
WDOG_SET_TIMEOUT(data[4], data[5], timeout);
|
|
|
|
addr.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
|
|
addr.channel = IPMI_BMC_CHANNEL;
|
|
addr.lun = 0;
|
|
|
|
msg.netfn = 0x06;
|
|
msg.cmd = IPMI_WDOG_SET_TIMER;
|
|
msg.data = data;
|
|
msg.data_len = sizeof(data);
|
|
rv = ipmi_request_supply_msgs(watchdog_user,
|
|
(struct ipmi_addr *) &addr,
|
|
0,
|
|
&msg,
|
|
NULL,
|
|
smi_msg,
|
|
recv_msg,
|
|
1);
|
|
if (rv) {
|
|
printk(KERN_WARNING PFX "set timeout error: %d\n",
|
|
rv);
|
|
}
|
|
|
|
if (send_heartbeat_now)
|
|
*send_heartbeat_now = hbnow;
|
|
|
|
return rv;
|
|
}
|
|
|
|
static int ipmi_set_timeout(int do_heartbeat)
|
|
{
|
|
int send_heartbeat_now;
|
|
int rv;
|
|
|
|
|
|
/* We can only send one of these at a time. */
|
|
down(&set_timeout_lock);
|
|
|
|
atomic_set(&set_timeout_tofree, 2);
|
|
|
|
rv = i_ipmi_set_timeout(&set_timeout_smi_msg,
|
|
&set_timeout_recv_msg,
|
|
&send_heartbeat_now);
|
|
if (rv) {
|
|
up(&set_timeout_lock);
|
|
} else {
|
|
if ((do_heartbeat == IPMI_SET_TIMEOUT_FORCE_HB)
|
|
|| ((send_heartbeat_now)
|
|
&& (do_heartbeat == IPMI_SET_TIMEOUT_HB_IF_NECESSARY)))
|
|
{
|
|
rv = ipmi_heartbeat();
|
|
}
|
|
}
|
|
|
|
return rv;
|
|
}
|
|
|
|
static void dummy_smi_free(struct ipmi_smi_msg *msg)
|
|
{
|
|
}
|
|
static void dummy_recv_free(struct ipmi_recv_msg *msg)
|
|
{
|
|
}
|
|
static struct ipmi_smi_msg panic_halt_smi_msg =
|
|
{
|
|
.done = dummy_smi_free
|
|
};
|
|
static struct ipmi_recv_msg panic_halt_recv_msg =
|
|
{
|
|
.done = dummy_recv_free
|
|
};
|
|
|
|
/* Special call, doesn't claim any locks. This is only to be called
|
|
at panic or halt time, in run-to-completion mode, when the caller
|
|
is the only CPU and the only thing that will be going is these IPMI
|
|
calls. */
|
|
static void panic_halt_ipmi_set_timeout(void)
|
|
{
|
|
int send_heartbeat_now;
|
|
int rv;
|
|
|
|
rv = i_ipmi_set_timeout(&panic_halt_smi_msg,
|
|
&panic_halt_recv_msg,
|
|
&send_heartbeat_now);
|
|
if (!rv) {
|
|
if (send_heartbeat_now)
|
|
panic_halt_ipmi_heartbeat();
|
|
}
|
|
}
|
|
|
|
/* We use a semaphore to make sure that only one thing can send a
|
|
heartbeat at one time, because we only have one copy of the data.
|
|
The semaphore is claimed when the set_timeout is sent and freed
|
|
when both messages are free. */
|
|
static atomic_t heartbeat_tofree = ATOMIC_INIT(0);
|
|
static DECLARE_MUTEX(heartbeat_lock);
|
|
static DECLARE_MUTEX_LOCKED(heartbeat_wait_lock);
|
|
static void heartbeat_free_smi(struct ipmi_smi_msg *msg)
|
|
{
|
|
if (atomic_dec_and_test(&heartbeat_tofree))
|
|
up(&heartbeat_wait_lock);
|
|
}
|
|
static void heartbeat_free_recv(struct ipmi_recv_msg *msg)
|
|
{
|
|
if (atomic_dec_and_test(&heartbeat_tofree))
|
|
up(&heartbeat_wait_lock);
|
|
}
|
|
static struct ipmi_smi_msg heartbeat_smi_msg =
|
|
{
|
|
.done = heartbeat_free_smi
|
|
};
|
|
static struct ipmi_recv_msg heartbeat_recv_msg =
|
|
{
|
|
.done = heartbeat_free_recv
|
|
};
|
|
|
|
static struct ipmi_smi_msg panic_halt_heartbeat_smi_msg =
|
|
{
|
|
.done = dummy_smi_free
|
|
};
|
|
static struct ipmi_recv_msg panic_halt_heartbeat_recv_msg =
|
|
{
|
|
.done = dummy_recv_free
|
|
};
|
|
|
|
static int ipmi_heartbeat(void)
|
|
{
|
|
struct kernel_ipmi_msg msg;
|
|
int rv;
|
|
struct ipmi_system_interface_addr addr;
|
|
|
|
if (ipmi_ignore_heartbeat) {
|
|
return 0;
|
|
}
|
|
|
|
if (ipmi_start_timer_on_heartbeat) {
|
|
ipmi_start_timer_on_heartbeat = 0;
|
|
ipmi_watchdog_state = action_val;
|
|
return ipmi_set_timeout(IPMI_SET_TIMEOUT_FORCE_HB);
|
|
} else if (pretimeout_since_last_heartbeat) {
|
|
/* A pretimeout occurred, make sure we set the timeout.
|
|
We don't want to set the action, though, we want to
|
|
leave that alone (thus it can't be combined with the
|
|
above operation. */
|
|
pretimeout_since_last_heartbeat = 0;
|
|
return ipmi_set_timeout(IPMI_SET_TIMEOUT_HB_IF_NECESSARY);
|
|
}
|
|
|
|
down(&heartbeat_lock);
|
|
|
|
atomic_set(&heartbeat_tofree, 2);
|
|
|
|
/* Don't reset the timer if we have the timer turned off, that
|
|
re-enables the watchdog. */
|
|
if (ipmi_watchdog_state == WDOG_TIMEOUT_NONE) {
|
|
up(&heartbeat_lock);
|
|
return 0;
|
|
}
|
|
|
|
addr.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
|
|
addr.channel = IPMI_BMC_CHANNEL;
|
|
addr.lun = 0;
|
|
|
|
msg.netfn = 0x06;
|
|
msg.cmd = IPMI_WDOG_RESET_TIMER;
|
|
msg.data = NULL;
|
|
msg.data_len = 0;
|
|
rv = ipmi_request_supply_msgs(watchdog_user,
|
|
(struct ipmi_addr *) &addr,
|
|
0,
|
|
&msg,
|
|
NULL,
|
|
&heartbeat_smi_msg,
|
|
&heartbeat_recv_msg,
|
|
1);
|
|
if (rv) {
|
|
up(&heartbeat_lock);
|
|
printk(KERN_WARNING PFX "heartbeat failure: %d\n",
|
|
rv);
|
|
return rv;
|
|
}
|
|
|
|
/* Wait for the heartbeat to be sent. */
|
|
down(&heartbeat_wait_lock);
|
|
|
|
if (heartbeat_recv_msg.msg.data[0] != 0) {
|
|
/* Got an error in the heartbeat response. It was already
|
|
reported in ipmi_wdog_msg_handler, but we should return
|
|
an error here. */
|
|
rv = -EINVAL;
|
|
}
|
|
|
|
up(&heartbeat_lock);
|
|
|
|
return rv;
|
|
}
|
|
|
|
static void panic_halt_ipmi_heartbeat(void)
|
|
{
|
|
struct kernel_ipmi_msg msg;
|
|
struct ipmi_system_interface_addr addr;
|
|
|
|
|
|
/* Don't reset the timer if we have the timer turned off, that
|
|
re-enables the watchdog. */
|
|
if (ipmi_watchdog_state == WDOG_TIMEOUT_NONE)
|
|
return;
|
|
|
|
addr.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
|
|
addr.channel = IPMI_BMC_CHANNEL;
|
|
addr.lun = 0;
|
|
|
|
msg.netfn = 0x06;
|
|
msg.cmd = IPMI_WDOG_RESET_TIMER;
|
|
msg.data = NULL;
|
|
msg.data_len = 0;
|
|
ipmi_request_supply_msgs(watchdog_user,
|
|
(struct ipmi_addr *) &addr,
|
|
0,
|
|
&msg,
|
|
NULL,
|
|
&panic_halt_heartbeat_smi_msg,
|
|
&panic_halt_heartbeat_recv_msg,
|
|
1);
|
|
}
|
|
|
|
static struct watchdog_info ident=
|
|
{
|
|
.options = 0, /* WDIOF_SETTIMEOUT, */
|
|
.firmware_version = 1,
|
|
.identity = "IPMI"
|
|
};
|
|
|
|
static int ipmi_ioctl(struct inode *inode, struct file *file,
|
|
unsigned int cmd, unsigned long arg)
|
|
{
|
|
void __user *argp = (void __user *)arg;
|
|
int i;
|
|
int val;
|
|
|
|
switch(cmd) {
|
|
case WDIOC_GETSUPPORT:
|
|
i = copy_to_user(argp, &ident, sizeof(ident));
|
|
return i ? -EFAULT : 0;
|
|
|
|
case WDIOC_SETTIMEOUT:
|
|
i = copy_from_user(&val, argp, sizeof(int));
|
|
if (i)
|
|
return -EFAULT;
|
|
timeout = val;
|
|
return ipmi_set_timeout(IPMI_SET_TIMEOUT_HB_IF_NECESSARY);
|
|
|
|
case WDIOC_GETTIMEOUT:
|
|
i = copy_to_user(argp, &timeout, sizeof(timeout));
|
|
if (i)
|
|
return -EFAULT;
|
|
return 0;
|
|
|
|
case WDIOC_SET_PRETIMEOUT:
|
|
i = copy_from_user(&val, argp, sizeof(int));
|
|
if (i)
|
|
return -EFAULT;
|
|
pretimeout = val;
|
|
return ipmi_set_timeout(IPMI_SET_TIMEOUT_HB_IF_NECESSARY);
|
|
|
|
case WDIOC_GET_PRETIMEOUT:
|
|
i = copy_to_user(argp, &pretimeout, sizeof(pretimeout));
|
|
if (i)
|
|
return -EFAULT;
|
|
return 0;
|
|
|
|
case WDIOC_KEEPALIVE:
|
|
return ipmi_heartbeat();
|
|
|
|
case WDIOC_SETOPTIONS:
|
|
i = copy_from_user(&val, argp, sizeof(int));
|
|
if (i)
|
|
return -EFAULT;
|
|
if (val & WDIOS_DISABLECARD)
|
|
{
|
|
ipmi_watchdog_state = WDOG_TIMEOUT_NONE;
|
|
ipmi_set_timeout(IPMI_SET_TIMEOUT_NO_HB);
|
|
ipmi_start_timer_on_heartbeat = 0;
|
|
}
|
|
|
|
if (val & WDIOS_ENABLECARD)
|
|
{
|
|
ipmi_watchdog_state = action_val;
|
|
ipmi_set_timeout(IPMI_SET_TIMEOUT_FORCE_HB);
|
|
}
|
|
return 0;
|
|
|
|
case WDIOC_GETSTATUS:
|
|
val = 0;
|
|
i = copy_to_user(argp, &val, sizeof(val));
|
|
if (i)
|
|
return -EFAULT;
|
|
return 0;
|
|
|
|
default:
|
|
return -ENOIOCTLCMD;
|
|
}
|
|
}
|
|
|
|
static ssize_t ipmi_write(struct file *file,
|
|
const char __user *buf,
|
|
size_t len,
|
|
loff_t *ppos)
|
|
{
|
|
int rv;
|
|
|
|
if (len) {
|
|
if (!nowayout) {
|
|
size_t i;
|
|
|
|
/* In case it was set long ago */
|
|
expect_close = 0;
|
|
|
|
for (i = 0; i != len; i++) {
|
|
char c;
|
|
|
|
if (get_user(c, buf + i))
|
|
return -EFAULT;
|
|
if (c == 'V')
|
|
expect_close = 42;
|
|
}
|
|
}
|
|
rv = ipmi_heartbeat();
|
|
if (rv)
|
|
return rv;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t ipmi_read(struct file *file,
|
|
char __user *buf,
|
|
size_t count,
|
|
loff_t *ppos)
|
|
{
|
|
int rv = 0;
|
|
wait_queue_t wait;
|
|
|
|
if (count <= 0)
|
|
return 0;
|
|
|
|
/* Reading returns if the pretimeout has gone off, and it only does
|
|
it once per pretimeout. */
|
|
spin_lock(&ipmi_read_lock);
|
|
if (!data_to_read) {
|
|
if (file->f_flags & O_NONBLOCK) {
|
|
rv = -EAGAIN;
|
|
goto out;
|
|
}
|
|
|
|
init_waitqueue_entry(&wait, current);
|
|
add_wait_queue(&read_q, &wait);
|
|
while (!data_to_read) {
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
spin_unlock(&ipmi_read_lock);
|
|
schedule();
|
|
spin_lock(&ipmi_read_lock);
|
|
}
|
|
remove_wait_queue(&read_q, &wait);
|
|
|
|
if (signal_pending(current)) {
|
|
rv = -ERESTARTSYS;
|
|
goto out;
|
|
}
|
|
}
|
|
data_to_read = 0;
|
|
|
|
out:
|
|
spin_unlock(&ipmi_read_lock);
|
|
|
|
if (rv == 0) {
|
|
if (copy_to_user(buf, &data_to_read, 1))
|
|
rv = -EFAULT;
|
|
else
|
|
rv = 1;
|
|
}
|
|
|
|
return rv;
|
|
}
|
|
|
|
static int ipmi_open(struct inode *ino, struct file *filep)
|
|
{
|
|
switch (iminor(ino)) {
|
|
case WATCHDOG_MINOR:
|
|
if (test_and_set_bit(0, &ipmi_wdog_open))
|
|
return -EBUSY;
|
|
|
|
/* Don't start the timer now, let it start on the
|
|
first heartbeat. */
|
|
ipmi_start_timer_on_heartbeat = 1;
|
|
return nonseekable_open(ino, filep);
|
|
|
|
default:
|
|
return (-ENODEV);
|
|
}
|
|
}
|
|
|
|
static unsigned int ipmi_poll(struct file *file, poll_table *wait)
|
|
{
|
|
unsigned int mask = 0;
|
|
|
|
poll_wait(file, &read_q, wait);
|
|
|
|
spin_lock(&ipmi_read_lock);
|
|
if (data_to_read)
|
|
mask |= (POLLIN | POLLRDNORM);
|
|
spin_unlock(&ipmi_read_lock);
|
|
|
|
return mask;
|
|
}
|
|
|
|
static int ipmi_fasync(int fd, struct file *file, int on)
|
|
{
|
|
int result;
|
|
|
|
result = fasync_helper(fd, file, on, &fasync_q);
|
|
|
|
return (result);
|
|
}
|
|
|
|
static int ipmi_close(struct inode *ino, struct file *filep)
|
|
{
|
|
if (iminor(ino)==WATCHDOG_MINOR)
|
|
{
|
|
if (expect_close == 42) {
|
|
ipmi_watchdog_state = WDOG_TIMEOUT_NONE;
|
|
ipmi_set_timeout(IPMI_SET_TIMEOUT_NO_HB);
|
|
} else {
|
|
printk(KERN_CRIT PFX "Unexpected close, not stopping watchdog!\n");
|
|
ipmi_heartbeat();
|
|
}
|
|
clear_bit(0, &ipmi_wdog_open);
|
|
}
|
|
|
|
ipmi_fasync (-1, filep, 0);
|
|
expect_close = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct file_operations ipmi_wdog_fops = {
|
|
.owner = THIS_MODULE,
|
|
.read = ipmi_read,
|
|
.poll = ipmi_poll,
|
|
.write = ipmi_write,
|
|
.ioctl = ipmi_ioctl,
|
|
.open = ipmi_open,
|
|
.release = ipmi_close,
|
|
.fasync = ipmi_fasync,
|
|
};
|
|
|
|
static struct miscdevice ipmi_wdog_miscdev = {
|
|
.minor = WATCHDOG_MINOR,
|
|
.name = "watchdog",
|
|
.fops = &ipmi_wdog_fops
|
|
};
|
|
|
|
static void ipmi_wdog_msg_handler(struct ipmi_recv_msg *msg,
|
|
void *handler_data)
|
|
{
|
|
if (msg->msg.data[0] != 0) {
|
|
printk(KERN_ERR PFX "response: Error %x on cmd %x\n",
|
|
msg->msg.data[0],
|
|
msg->msg.cmd);
|
|
}
|
|
|
|
ipmi_free_recv_msg(msg);
|
|
}
|
|
|
|
static void ipmi_wdog_pretimeout_handler(void *handler_data)
|
|
{
|
|
if (preaction_val != WDOG_PRETIMEOUT_NONE) {
|
|
if (preop_val == WDOG_PREOP_PANIC) {
|
|
if (atomic_inc_and_test(&preop_panic_excl))
|
|
panic("Watchdog pre-timeout");
|
|
} else if (preop_val == WDOG_PREOP_GIVE_DATA) {
|
|
spin_lock(&ipmi_read_lock);
|
|
data_to_read = 1;
|
|
wake_up_interruptible(&read_q);
|
|
kill_fasync(&fasync_q, SIGIO, POLL_IN);
|
|
|
|
spin_unlock(&ipmi_read_lock);
|
|
}
|
|
}
|
|
|
|
/* On some machines, the heartbeat will give
|
|
an error and not work unless we re-enable
|
|
the timer. So do so. */
|
|
pretimeout_since_last_heartbeat = 1;
|
|
}
|
|
|
|
static struct ipmi_user_hndl ipmi_hndlrs =
|
|
{
|
|
.ipmi_recv_hndl = ipmi_wdog_msg_handler,
|
|
.ipmi_watchdog_pretimeout = ipmi_wdog_pretimeout_handler
|
|
};
|
|
|
|
static void ipmi_register_watchdog(int ipmi_intf)
|
|
{
|
|
int rv = -EBUSY;
|
|
|
|
down_write(®ister_sem);
|
|
if (watchdog_user)
|
|
goto out;
|
|
|
|
rv = ipmi_create_user(ipmi_intf, &ipmi_hndlrs, NULL, &watchdog_user);
|
|
if (rv < 0) {
|
|
printk(KERN_CRIT PFX "Unable to register with ipmi\n");
|
|
goto out;
|
|
}
|
|
|
|
ipmi_get_version(watchdog_user,
|
|
&ipmi_version_major,
|
|
&ipmi_version_minor);
|
|
|
|
rv = misc_register(&ipmi_wdog_miscdev);
|
|
if (rv < 0) {
|
|
ipmi_destroy_user(watchdog_user);
|
|
watchdog_user = NULL;
|
|
printk(KERN_CRIT PFX "Unable to register misc device\n");
|
|
}
|
|
|
|
out:
|
|
up_write(®ister_sem);
|
|
|
|
if ((start_now) && (rv == 0)) {
|
|
/* Run from startup, so start the timer now. */
|
|
start_now = 0; /* Disable this function after first startup. */
|
|
ipmi_watchdog_state = action_val;
|
|
ipmi_set_timeout(IPMI_SET_TIMEOUT_FORCE_HB);
|
|
printk(KERN_INFO PFX "Starting now!\n");
|
|
}
|
|
}
|
|
|
|
#ifdef HAVE_NMI_HANDLER
|
|
static int
|
|
ipmi_nmi(void *dev_id, struct pt_regs *regs, int cpu, int handled)
|
|
{
|
|
/* If we are not expecting a timeout, ignore it. */
|
|
if (ipmi_watchdog_state == WDOG_TIMEOUT_NONE)
|
|
return NOTIFY_DONE;
|
|
|
|
/* If no one else handled the NMI, we assume it was the IPMI
|
|
watchdog. */
|
|
if ((!handled) && (preop_val == WDOG_PREOP_PANIC)) {
|
|
/* On some machines, the heartbeat will give
|
|
an error and not work unless we re-enable
|
|
the timer. So do so. */
|
|
pretimeout_since_last_heartbeat = 1;
|
|
if (atomic_inc_and_test(&preop_panic_excl))
|
|
panic(PFX "pre-timeout");
|
|
}
|
|
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
static struct nmi_handler ipmi_nmi_handler =
|
|
{
|
|
.link = LIST_HEAD_INIT(ipmi_nmi_handler.link),
|
|
.dev_name = "ipmi_watchdog",
|
|
.dev_id = NULL,
|
|
.handler = ipmi_nmi,
|
|
.priority = 0, /* Call us last. */
|
|
};
|
|
int nmi_handler_registered;
|
|
#endif
|
|
|
|
static int wdog_reboot_handler(struct notifier_block *this,
|
|
unsigned long code,
|
|
void *unused)
|
|
{
|
|
static int reboot_event_handled = 0;
|
|
|
|
if ((watchdog_user) && (!reboot_event_handled)) {
|
|
/* Make sure we only do this once. */
|
|
reboot_event_handled = 1;
|
|
|
|
if (code == SYS_DOWN || code == SYS_HALT) {
|
|
/* Disable the WDT if we are shutting down. */
|
|
ipmi_watchdog_state = WDOG_TIMEOUT_NONE;
|
|
panic_halt_ipmi_set_timeout();
|
|
} else {
|
|
/* Set a long timer to let the reboot happens, but
|
|
reboot if it hangs. */
|
|
timeout = 120;
|
|
pretimeout = 0;
|
|
ipmi_watchdog_state = WDOG_TIMEOUT_RESET;
|
|
panic_halt_ipmi_set_timeout();
|
|
}
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block wdog_reboot_notifier = {
|
|
.notifier_call = wdog_reboot_handler,
|
|
.next = NULL,
|
|
.priority = 0
|
|
};
|
|
|
|
static int wdog_panic_handler(struct notifier_block *this,
|
|
unsigned long event,
|
|
void *unused)
|
|
{
|
|
static int panic_event_handled = 0;
|
|
|
|
/* On a panic, if we have a panic timeout, make sure that the thing
|
|
reboots, even if it hangs during that panic. */
|
|
if (watchdog_user && !panic_event_handled) {
|
|
/* Make sure the panic doesn't hang, and make sure we
|
|
do this only once. */
|
|
panic_event_handled = 1;
|
|
|
|
timeout = 255;
|
|
pretimeout = 0;
|
|
ipmi_watchdog_state = WDOG_TIMEOUT_RESET;
|
|
panic_halt_ipmi_set_timeout();
|
|
}
|
|
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block wdog_panic_notifier = {
|
|
.notifier_call = wdog_panic_handler,
|
|
.next = NULL,
|
|
.priority = 150 /* priority: INT_MAX >= x >= 0 */
|
|
};
|
|
|
|
|
|
static void ipmi_new_smi(int if_num, struct device *device)
|
|
{
|
|
ipmi_register_watchdog(if_num);
|
|
}
|
|
|
|
static void ipmi_smi_gone(int if_num)
|
|
{
|
|
/* This can never be called, because once the watchdog is
|
|
registered, the interface can't go away until the watchdog
|
|
is unregistered. */
|
|
}
|
|
|
|
static struct ipmi_smi_watcher smi_watcher =
|
|
{
|
|
.owner = THIS_MODULE,
|
|
.new_smi = ipmi_new_smi,
|
|
.smi_gone = ipmi_smi_gone
|
|
};
|
|
|
|
static int action_op(const char *inval, char *outval)
|
|
{
|
|
if (outval)
|
|
strcpy(outval, action);
|
|
|
|
if (!inval)
|
|
return 0;
|
|
|
|
if (strcmp(inval, "reset") == 0)
|
|
action_val = WDOG_TIMEOUT_RESET;
|
|
else if (strcmp(inval, "none") == 0)
|
|
action_val = WDOG_TIMEOUT_NONE;
|
|
else if (strcmp(inval, "power_cycle") == 0)
|
|
action_val = WDOG_TIMEOUT_POWER_CYCLE;
|
|
else if (strcmp(inval, "power_off") == 0)
|
|
action_val = WDOG_TIMEOUT_POWER_DOWN;
|
|
else
|
|
return -EINVAL;
|
|
strcpy(action, inval);
|
|
return 0;
|
|
}
|
|
|
|
static int preaction_op(const char *inval, char *outval)
|
|
{
|
|
if (outval)
|
|
strcpy(outval, preaction);
|
|
|
|
if (!inval)
|
|
return 0;
|
|
|
|
if (strcmp(inval, "pre_none") == 0)
|
|
preaction_val = WDOG_PRETIMEOUT_NONE;
|
|
else if (strcmp(inval, "pre_smi") == 0)
|
|
preaction_val = WDOG_PRETIMEOUT_SMI;
|
|
#ifdef HAVE_NMI_HANDLER
|
|
else if (strcmp(inval, "pre_nmi") == 0)
|
|
preaction_val = WDOG_PRETIMEOUT_NMI;
|
|
#endif
|
|
else if (strcmp(inval, "pre_int") == 0)
|
|
preaction_val = WDOG_PRETIMEOUT_MSG_INT;
|
|
else
|
|
return -EINVAL;
|
|
strcpy(preaction, inval);
|
|
return 0;
|
|
}
|
|
|
|
static int preop_op(const char *inval, char *outval)
|
|
{
|
|
if (outval)
|
|
strcpy(outval, preop);
|
|
|
|
if (!inval)
|
|
return 0;
|
|
|
|
if (strcmp(inval, "preop_none") == 0)
|
|
preop_val = WDOG_PREOP_NONE;
|
|
else if (strcmp(inval, "preop_panic") == 0)
|
|
preop_val = WDOG_PREOP_PANIC;
|
|
else if (strcmp(inval, "preop_give_data") == 0)
|
|
preop_val = WDOG_PREOP_GIVE_DATA;
|
|
else
|
|
return -EINVAL;
|
|
strcpy(preop, inval);
|
|
return 0;
|
|
}
|
|
|
|
static void check_parms(void)
|
|
{
|
|
#ifdef HAVE_NMI_HANDLER
|
|
int do_nmi = 0;
|
|
int rv;
|
|
|
|
if (preaction_val == WDOG_PRETIMEOUT_NMI) {
|
|
do_nmi = 1;
|
|
if (preop_val == WDOG_PREOP_GIVE_DATA) {
|
|
printk(KERN_WARNING PFX "Pretimeout op is to give data"
|
|
" but NMI pretimeout is enabled, setting"
|
|
" pretimeout op to none\n");
|
|
preop_op("preop_none", NULL);
|
|
do_nmi = 0;
|
|
}
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
|
if (nmi_watchdog == NMI_IO_APIC) {
|
|
printk(KERN_WARNING PFX "nmi_watchdog is set to IO APIC"
|
|
" mode (value is %d), that is incompatible"
|
|
" with using NMI in the IPMI watchdog."
|
|
" Disabling IPMI nmi pretimeout.\n",
|
|
nmi_watchdog);
|
|
preaction_val = WDOG_PRETIMEOUT_NONE;
|
|
do_nmi = 0;
|
|
}
|
|
#endif
|
|
}
|
|
if (do_nmi && !nmi_handler_registered) {
|
|
rv = request_nmi(&ipmi_nmi_handler);
|
|
if (rv) {
|
|
printk(KERN_WARNING PFX
|
|
"Can't register nmi handler\n");
|
|
return;
|
|
} else
|
|
nmi_handler_registered = 1;
|
|
} else if (!do_nmi && nmi_handler_registered) {
|
|
release_nmi(&ipmi_nmi_handler);
|
|
nmi_handler_registered = 0;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static int __init ipmi_wdog_init(void)
|
|
{
|
|
int rv;
|
|
|
|
if (action_op(action, NULL)) {
|
|
action_op("reset", NULL);
|
|
printk(KERN_INFO PFX "Unknown action '%s', defaulting to"
|
|
" reset\n", action);
|
|
}
|
|
|
|
if (preaction_op(preaction, NULL)) {
|
|
preaction_op("pre_none", NULL);
|
|
printk(KERN_INFO PFX "Unknown preaction '%s', defaulting to"
|
|
" none\n", preaction);
|
|
}
|
|
|
|
if (preop_op(preop, NULL)) {
|
|
preop_op("preop_none", NULL);
|
|
printk(KERN_INFO PFX "Unknown preop '%s', defaulting to"
|
|
" none\n", preop);
|
|
}
|
|
|
|
check_parms();
|
|
|
|
rv = ipmi_smi_watcher_register(&smi_watcher);
|
|
if (rv) {
|
|
#ifdef HAVE_NMI_HANDLER
|
|
if (preaction_val == WDOG_PRETIMEOUT_NMI)
|
|
release_nmi(&ipmi_nmi_handler);
|
|
#endif
|
|
printk(KERN_WARNING PFX "can't register smi watcher\n");
|
|
return rv;
|
|
}
|
|
|
|
register_reboot_notifier(&wdog_reboot_notifier);
|
|
atomic_notifier_chain_register(&panic_notifier_list,
|
|
&wdog_panic_notifier);
|
|
|
|
printk(KERN_INFO PFX "driver initialized\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __exit void ipmi_unregister_watchdog(void)
|
|
{
|
|
int rv;
|
|
|
|
down_write(®ister_sem);
|
|
|
|
#ifdef HAVE_NMI_HANDLER
|
|
if (nmi_handler_registered)
|
|
release_nmi(&ipmi_nmi_handler);
|
|
#endif
|
|
|
|
atomic_notifier_chain_unregister(&panic_notifier_list,
|
|
&wdog_panic_notifier);
|
|
unregister_reboot_notifier(&wdog_reboot_notifier);
|
|
|
|
if (! watchdog_user)
|
|
goto out;
|
|
|
|
/* Make sure no one can call us any more. */
|
|
misc_deregister(&ipmi_wdog_miscdev);
|
|
|
|
/* Wait to make sure the message makes it out. The lower layer has
|
|
pointers to our buffers, we want to make sure they are done before
|
|
we release our memory. */
|
|
while (atomic_read(&set_timeout_tofree))
|
|
schedule_timeout_uninterruptible(1);
|
|
|
|
/* Disconnect from IPMI. */
|
|
rv = ipmi_destroy_user(watchdog_user);
|
|
if (rv) {
|
|
printk(KERN_WARNING PFX "error unlinking from IPMI: %d\n",
|
|
rv);
|
|
}
|
|
watchdog_user = NULL;
|
|
|
|
out:
|
|
up_write(®ister_sem);
|
|
}
|
|
|
|
static void __exit ipmi_wdog_exit(void)
|
|
{
|
|
ipmi_smi_watcher_unregister(&smi_watcher);
|
|
ipmi_unregister_watchdog();
|
|
}
|
|
module_exit(ipmi_wdog_exit);
|
|
module_init(ipmi_wdog_init);
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
|
|
MODULE_DESCRIPTION("watchdog timer based upon the IPMI interface.");
|