1
linux/drivers/media/video/mt9v011.c
Mauro Carvalho Chehab 2ea472ff70 V4L/DVB (12242): mt9v011: implement core->s_config to allow adjusting xtal frequency
Since frames per second is a function of cristal frequency, and this is
device-specific, add a function that allows adjusting it, via
subdev->core->s_config callback.

Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
2009-07-24 14:03:25 -03:00

497 lines
12 KiB
C

/*
* mt9v011 -Micron 1/4-Inch VGA Digital Image Sensor
*
* Copyright (c) 2009 Mauro Carvalho Chehab (mchehab@redhat.com)
* This code is placed under the terms of the GNU General Public License v2
*/
#include <linux/i2c.h>
#include <linux/videodev2.h>
#include <linux/delay.h>
#include <asm/div64.h>
#include <media/v4l2-device.h>
#include "mt9v011.h"
#include <media/v4l2-i2c-drv.h>
#include <media/v4l2-chip-ident.h>
MODULE_DESCRIPTION("Micron mt9v011 sensor driver");
MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
MODULE_LICENSE("GPL");
static int debug;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0-2)");
/* supported controls */
static struct v4l2_queryctrl mt9v011_qctrl[] = {
{
.id = V4L2_CID_GAIN,
.type = V4L2_CTRL_TYPE_INTEGER,
.name = "Gain",
.minimum = 0,
.maximum = (1 << 10) - 1,
.step = 1,
.default_value = 0x0020,
.flags = 0,
}, {
.id = V4L2_CID_RED_BALANCE,
.type = V4L2_CTRL_TYPE_INTEGER,
.name = "Red Balance",
.minimum = -1 << 9,
.maximum = (1 << 9) - 1,
.step = 1,
.default_value = 0,
.flags = 0,
}, {
.id = V4L2_CID_BLUE_BALANCE,
.type = V4L2_CTRL_TYPE_INTEGER,
.name = "Blue Balance",
.minimum = -1 << 9,
.maximum = (1 << 9) - 1,
.step = 1,
.default_value = 0,
.flags = 0,
},
};
struct mt9v011 {
struct v4l2_subdev sd;
unsigned width, height;
unsigned xtal;
u16 global_gain, red_bal, blue_bal;
};
static inline struct mt9v011 *to_mt9v011(struct v4l2_subdev *sd)
{
return container_of(sd, struct mt9v011, sd);
}
static int mt9v011_read(struct v4l2_subdev *sd, unsigned char addr)
{
struct i2c_client *c = v4l2_get_subdevdata(sd);
__be16 buffer;
int rc, val;
rc = i2c_master_send(c, &addr, 1);
if (rc != 1)
v4l2_dbg(0, debug, sd,
"i2c i/o error: rc == %d (should be 1)\n", rc);
msleep(10);
rc = i2c_master_recv(c, (char *)&buffer, 2);
if (rc != 2)
v4l2_dbg(0, debug, sd,
"i2c i/o error: rc == %d (should be 2)\n", rc);
val = be16_to_cpu(buffer);
v4l2_dbg(2, debug, sd, "mt9v011: read 0x%02x = 0x%04x\n", addr, val);
return val;
}
static void mt9v011_write(struct v4l2_subdev *sd, unsigned char addr,
u16 value)
{
struct i2c_client *c = v4l2_get_subdevdata(sd);
unsigned char buffer[3];
int rc;
buffer[0] = addr;
buffer[1] = value >> 8;
buffer[2] = value & 0xff;
v4l2_dbg(2, debug, sd,
"mt9v011: writing 0x%02x 0x%04x\n", buffer[0], value);
rc = i2c_master_send(c, buffer, 3);
if (rc != 3)
v4l2_dbg(0, debug, sd,
"i2c i/o error: rc == %d (should be 3)\n", rc);
}
struct i2c_reg_value {
unsigned char reg;
u16 value;
};
/*
* Values used at the original driver
* Some values are marked as Reserved at the datasheet
*/
static const struct i2c_reg_value mt9v011_init_default[] = {
{ R0D_MT9V011_RESET, 0x0001 },
{ R0D_MT9V011_RESET, 0x0000 },
{ R0C_MT9V011_SHUTTER_DELAY, 0x0000 },
{ R09_MT9V011_SHUTTER_WIDTH, 0x1fc },
{ R0A_MT9V011_CLK_SPEED, 0x0000 },
{ R1E_MT9V011_DIGITAL_ZOOM, 0x0000 },
{ R20_MT9V011_READ_MODE, 0x1000 },
{ R07_MT9V011_OUT_CTRL, 0x0002 }, /* chip enable */
};
static void set_balance(struct v4l2_subdev *sd)
{
struct mt9v011 *core = to_mt9v011(sd);
u16 green1_gain, green2_gain, blue_gain, red_gain;
green1_gain = core->global_gain;
green2_gain = core->global_gain;
blue_gain = core->global_gain +
core->global_gain * core->blue_bal / (1 << 9);
red_gain = core->global_gain +
core->global_gain * core->blue_bal / (1 << 9);
mt9v011_write(sd, R2B_MT9V011_GREEN_1_GAIN, green1_gain);
mt9v011_write(sd, R2E_MT9V011_GREEN_2_GAIN, green1_gain);
mt9v011_write(sd, R2C_MT9V011_BLUE_GAIN, blue_gain);
mt9v011_write(sd, R2D_MT9V011_RED_GAIN, red_gain);
}
static void calc_fps(struct v4l2_subdev *sd)
{
struct mt9v011 *core = to_mt9v011(sd);
unsigned height, width, hblank, vblank, speed;
unsigned row_time, t_time;
u64 frames_per_ms;
unsigned tmp;
height = mt9v011_read(sd, R03_MT9V011_HEIGHT);
width = mt9v011_read(sd, R04_MT9V011_WIDTH);
hblank = mt9v011_read(sd, R05_MT9V011_HBLANK);
vblank = mt9v011_read(sd, R06_MT9V011_VBLANK);
speed = mt9v011_read(sd, R0A_MT9V011_CLK_SPEED);
row_time = (width + 113 + hblank) * (speed + 2);
t_time = row_time * (height + vblank + 1);
frames_per_ms = core->xtal * 1000l;
do_div(frames_per_ms, t_time);
tmp = frames_per_ms;
v4l2_dbg(1, debug, sd, "Programmed to %u.%03u fps (%d pixel clcks)\n",
tmp / 1000, tmp % 1000, t_time);
}
static void set_res(struct v4l2_subdev *sd)
{
struct mt9v011 *core = to_mt9v011(sd);
unsigned vstart, hstart;
/*
* The mt9v011 doesn't have scaling. So, in order to select the desired
* resolution, we're cropping at the middle of the sensor.
* hblank and vblank should be adjusted, in order to warrant that
* we'll preserve the line timings for 30 fps, no matter what resolution
* is selected.
* NOTE: datasheet says that width (and height) should be filled with
* width-1. However, this doesn't work, since one pixel per line will
* be missing.
*/
hstart = 14 + (640 - core->width) / 2;
mt9v011_write(sd, R02_MT9V011_COLSTART, hstart);
mt9v011_write(sd, R04_MT9V011_WIDTH, core->width);
mt9v011_write(sd, R05_MT9V011_HBLANK, 771 - core->width);
vstart = 8 + (480 - core->height) / 2;
mt9v011_write(sd, R01_MT9V011_ROWSTART, vstart);
mt9v011_write(sd, R03_MT9V011_HEIGHT, core->height);
mt9v011_write(sd, R06_MT9V011_VBLANK, 508 - core->height);
calc_fps(sd);
};
static int mt9v011_reset(struct v4l2_subdev *sd, u32 val)
{
int i;
for (i = 0; i < ARRAY_SIZE(mt9v011_init_default); i++)
mt9v011_write(sd, mt9v011_init_default[i].reg,
mt9v011_init_default[i].value);
set_balance(sd);
set_res(sd);
return 0;
};
static int mt9v011_g_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
{
struct mt9v011 *core = to_mt9v011(sd);
v4l2_dbg(1, debug, sd, "g_ctrl called\n");
switch (ctrl->id) {
case V4L2_CID_GAIN:
ctrl->value = core->global_gain;
return 0;
case V4L2_CID_RED_BALANCE:
ctrl->value = core->red_bal;
return 0;
case V4L2_CID_BLUE_BALANCE:
ctrl->value = core->blue_bal;
return 0;
}
return -EINVAL;
}
static int mt9v011_queryctrl(struct v4l2_subdev *sd, struct v4l2_queryctrl *qc)
{
int i;
v4l2_dbg(1, debug, sd, "queryctrl called\n");
for (i = 0; i < ARRAY_SIZE(mt9v011_qctrl); i++)
if (qc->id && qc->id == mt9v011_qctrl[i].id) {
memcpy(qc, &(mt9v011_qctrl[i]),
sizeof(*qc));
return 0;
}
return -EINVAL;
}
static int mt9v011_s_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
{
struct mt9v011 *core = to_mt9v011(sd);
u8 i, n;
n = ARRAY_SIZE(mt9v011_qctrl);
for (i = 0; i < n; i++) {
if (ctrl->id != mt9v011_qctrl[i].id)
continue;
if (ctrl->value < mt9v011_qctrl[i].minimum ||
ctrl->value > mt9v011_qctrl[i].maximum)
return -ERANGE;
v4l2_dbg(1, debug, sd, "s_ctrl: id=%d, value=%d\n",
ctrl->id, ctrl->value);
break;
}
switch (ctrl->id) {
case V4L2_CID_GAIN:
core->global_gain = ctrl->value;
break;
case V4L2_CID_RED_BALANCE:
core->red_bal = ctrl->value;
break;
case V4L2_CID_BLUE_BALANCE:
core->blue_bal = ctrl->value;
break;
default:
return -EINVAL;
}
set_balance(sd);
return 0;
}
static int mt9v011_enum_fmt(struct v4l2_subdev *sd, struct v4l2_fmtdesc *fmt)
{
if (fmt->index > 0)
return -EINVAL;
fmt->flags = 0;
strcpy(fmt->description, "8 bpp Bayer GRGR..BGBG");
fmt->pixelformat = V4L2_PIX_FMT_SGRBG8;
return 0;
}
static int mt9v011_try_fmt(struct v4l2_subdev *sd, struct v4l2_format *fmt)
{
struct v4l2_pix_format *pix = &fmt->fmt.pix;
if (pix->pixelformat != V4L2_PIX_FMT_SGRBG8)
return -EINVAL;
v4l_bound_align_image(&pix->width, 48, 639, 1,
&pix->height, 32, 480, 1, 0);
return 0;
}
static int mt9v011_s_fmt(struct v4l2_subdev *sd, struct v4l2_format *fmt)
{
struct v4l2_pix_format *pix = &fmt->fmt.pix;
struct mt9v011 *core = to_mt9v011(sd);
int rc;
rc = mt9v011_try_fmt(sd, fmt);
if (rc < 0)
return -EINVAL;
core->width = pix->width;
core->height = pix->height;
set_res(sd);
return 0;
}
static int mt9v011_s_config(struct v4l2_subdev *sd, int dumb, void *data)
{
struct mt9v011 *core = to_mt9v011(sd);
unsigned *xtal = data;
v4l2_dbg(1, debug, sd, "s_config called\n");
if (xtal) {
core->xtal = *xtal;
v4l2_dbg(1, debug, sd, "xtal set to %d.%03d MHz\n",
*xtal / 1000000, (*xtal / 1000) % 1000);
}
return 0;
}
#ifdef CONFIG_VIDEO_ADV_DEBUG
static int mt9v011_g_register(struct v4l2_subdev *sd,
struct v4l2_dbg_register *reg)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
if (!v4l2_chip_match_i2c_client(client, &reg->match))
return -EINVAL;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
reg->val = mt9v011_read(sd, reg->reg & 0xff);
reg->size = 2;
return 0;
}
static int mt9v011_s_register(struct v4l2_subdev *sd,
struct v4l2_dbg_register *reg)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
if (!v4l2_chip_match_i2c_client(client, &reg->match))
return -EINVAL;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
mt9v011_write(sd, reg->reg & 0xff, reg->val & 0xffff);
return 0;
}
#endif
static int mt9v011_g_chip_ident(struct v4l2_subdev *sd,
struct v4l2_dbg_chip_ident *chip)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
return v4l2_chip_ident_i2c_client(client, chip, V4L2_IDENT_MT9V011,
MT9V011_VERSION);
}
static const struct v4l2_subdev_core_ops mt9v011_core_ops = {
.queryctrl = mt9v011_queryctrl,
.g_ctrl = mt9v011_g_ctrl,
.s_ctrl = mt9v011_s_ctrl,
.reset = mt9v011_reset,
.s_config = mt9v011_s_config,
.g_chip_ident = mt9v011_g_chip_ident,
#ifdef CONFIG_VIDEO_ADV_DEBUG
.g_register = mt9v011_g_register,
.s_register = mt9v011_s_register,
#endif
};
static const struct v4l2_subdev_video_ops mt9v011_video_ops = {
.enum_fmt = mt9v011_enum_fmt,
.try_fmt = mt9v011_try_fmt,
.s_fmt = mt9v011_s_fmt,
};
static const struct v4l2_subdev_ops mt9v011_ops = {
.core = &mt9v011_core_ops,
.video = &mt9v011_video_ops,
};
/****************************************************************************
I2C Client & Driver
****************************************************************************/
static int mt9v011_probe(struct i2c_client *c,
const struct i2c_device_id *id)
{
u16 version;
struct mt9v011 *core;
struct v4l2_subdev *sd;
/* Check if the adapter supports the needed features */
if (!i2c_check_functionality(c->adapter,
I2C_FUNC_SMBUS_READ_BYTE | I2C_FUNC_SMBUS_WRITE_BYTE_DATA))
return -EIO;
core = kzalloc(sizeof(struct mt9v011), GFP_KERNEL);
if (!core)
return -ENOMEM;
sd = &core->sd;
v4l2_i2c_subdev_init(sd, c, &mt9v011_ops);
/* Check if the sensor is really a MT9V011 */
version = mt9v011_read(sd, R00_MT9V011_CHIP_VERSION);
if (version != MT9V011_VERSION) {
v4l2_info(sd, "*** unknown micron chip detected (0x%04x.\n",
version);
kfree(core);
return -EINVAL;
}
core->global_gain = 0x0024;
core->width = 640;
core->height = 480;
core->xtal = 27000000; /* Hz */
v4l_info(c, "chip found @ 0x%02x (%s)\n",
c->addr << 1, c->adapter->name);
return 0;
}
static int mt9v011_remove(struct i2c_client *c)
{
struct v4l2_subdev *sd = i2c_get_clientdata(c);
v4l2_dbg(1, debug, sd,
"mt9v011.c: removing mt9v011 adapter on address 0x%x\n",
c->addr << 1);
v4l2_device_unregister_subdev(sd);
kfree(to_mt9v011(sd));
return 0;
}
/* ----------------------------------------------------------------------- */
static const struct i2c_device_id mt9v011_id[] = {
{ "mt9v011", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, mt9v011_id);
static struct v4l2_i2c_driver_data v4l2_i2c_data = {
.name = "mt9v011",
.probe = mt9v011_probe,
.remove = mt9v011_remove,
.id_table = mt9v011_id,
};