1
linux/drivers/net/benet/be_main.c
Somnath Kotur f203af7088 be2net: Schedule/Destroy worker thread in probe()/remove() rather than open()/close()
When async mcc compls are rcvd on an i/f that is down (and so interrupts are disabled)
they just lie unprocessed in the compl queue.The compl queue can eventually get filled
up and cause the BE to lock up.The fix is to use be_worker to reap mcc compls when the
i/f is down.be_worker is now launched in be_probe() and canceled in be_remove().

Signed-off-by: Somnath Kotur <somnath.kotur@emulex.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2010-10-27 11:37:30 -07:00

3101 lines
75 KiB
C

/*
* Copyright (C) 2005 - 2010 ServerEngines
* All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation. The full GNU General
* Public License is included in this distribution in the file called COPYING.
*
* Contact Information:
* linux-drivers@serverengines.com
*
* ServerEngines
* 209 N. Fair Oaks Ave
* Sunnyvale, CA 94085
*/
#include "be.h"
#include "be_cmds.h"
#include <asm/div64.h>
MODULE_VERSION(DRV_VER);
MODULE_DEVICE_TABLE(pci, be_dev_ids);
MODULE_DESCRIPTION(DRV_DESC " " DRV_VER);
MODULE_AUTHOR("ServerEngines Corporation");
MODULE_LICENSE("GPL");
static unsigned int rx_frag_size = 2048;
static unsigned int num_vfs;
module_param(rx_frag_size, uint, S_IRUGO);
module_param(num_vfs, uint, S_IRUGO);
MODULE_PARM_DESC(rx_frag_size, "Size of a fragment that holds rcvd data.");
MODULE_PARM_DESC(num_vfs, "Number of PCI VFs to initialize");
static bool multi_rxq = true;
module_param(multi_rxq, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(multi_rxq, "Multi Rx Queue support. Enabled by default");
static DEFINE_PCI_DEVICE_TABLE(be_dev_ids) = {
{ PCI_DEVICE(BE_VENDOR_ID, BE_DEVICE_ID1) },
{ PCI_DEVICE(BE_VENDOR_ID, BE_DEVICE_ID2) },
{ PCI_DEVICE(BE_VENDOR_ID, OC_DEVICE_ID1) },
{ PCI_DEVICE(BE_VENDOR_ID, OC_DEVICE_ID2) },
{ 0 }
};
MODULE_DEVICE_TABLE(pci, be_dev_ids);
/* UE Status Low CSR */
static char *ue_status_low_desc[] = {
"CEV",
"CTX",
"DBUF",
"ERX",
"Host",
"MPU",
"NDMA",
"PTC ",
"RDMA ",
"RXF ",
"RXIPS ",
"RXULP0 ",
"RXULP1 ",
"RXULP2 ",
"TIM ",
"TPOST ",
"TPRE ",
"TXIPS ",
"TXULP0 ",
"TXULP1 ",
"UC ",
"WDMA ",
"TXULP2 ",
"HOST1 ",
"P0_OB_LINK ",
"P1_OB_LINK ",
"HOST_GPIO ",
"MBOX ",
"AXGMAC0",
"AXGMAC1",
"JTAG",
"MPU_INTPEND"
};
/* UE Status High CSR */
static char *ue_status_hi_desc[] = {
"LPCMEMHOST",
"MGMT_MAC",
"PCS0ONLINE",
"MPU_IRAM",
"PCS1ONLINE",
"PCTL0",
"PCTL1",
"PMEM",
"RR",
"TXPB",
"RXPP",
"XAUI",
"TXP",
"ARM",
"IPC",
"HOST2",
"HOST3",
"HOST4",
"HOST5",
"HOST6",
"HOST7",
"HOST8",
"HOST9",
"NETC"
"Unknown",
"Unknown",
"Unknown",
"Unknown",
"Unknown",
"Unknown",
"Unknown",
"Unknown"
};
static inline bool be_multi_rxq(struct be_adapter *adapter)
{
return (adapter->num_rx_qs > 1);
}
static void be_queue_free(struct be_adapter *adapter, struct be_queue_info *q)
{
struct be_dma_mem *mem = &q->dma_mem;
if (mem->va)
pci_free_consistent(adapter->pdev, mem->size,
mem->va, mem->dma);
}
static int be_queue_alloc(struct be_adapter *adapter, struct be_queue_info *q,
u16 len, u16 entry_size)
{
struct be_dma_mem *mem = &q->dma_mem;
memset(q, 0, sizeof(*q));
q->len = len;
q->entry_size = entry_size;
mem->size = len * entry_size;
mem->va = pci_alloc_consistent(adapter->pdev, mem->size, &mem->dma);
if (!mem->va)
return -1;
memset(mem->va, 0, mem->size);
return 0;
}
static void be_intr_set(struct be_adapter *adapter, bool enable)
{
u8 __iomem *addr = adapter->pcicfg + PCICFG_MEMBAR_CTRL_INT_CTRL_OFFSET;
u32 reg = ioread32(addr);
u32 enabled = reg & MEMBAR_CTRL_INT_CTRL_HOSTINTR_MASK;
if (adapter->eeh_err)
return;
if (!enabled && enable)
reg |= MEMBAR_CTRL_INT_CTRL_HOSTINTR_MASK;
else if (enabled && !enable)
reg &= ~MEMBAR_CTRL_INT_CTRL_HOSTINTR_MASK;
else
return;
iowrite32(reg, addr);
}
static void be_rxq_notify(struct be_adapter *adapter, u16 qid, u16 posted)
{
u32 val = 0;
val |= qid & DB_RQ_RING_ID_MASK;
val |= posted << DB_RQ_NUM_POSTED_SHIFT;
wmb();
iowrite32(val, adapter->db + DB_RQ_OFFSET);
}
static void be_txq_notify(struct be_adapter *adapter, u16 qid, u16 posted)
{
u32 val = 0;
val |= qid & DB_TXULP_RING_ID_MASK;
val |= (posted & DB_TXULP_NUM_POSTED_MASK) << DB_TXULP_NUM_POSTED_SHIFT;
wmb();
iowrite32(val, adapter->db + DB_TXULP1_OFFSET);
}
static void be_eq_notify(struct be_adapter *adapter, u16 qid,
bool arm, bool clear_int, u16 num_popped)
{
u32 val = 0;
val |= qid & DB_EQ_RING_ID_MASK;
if (adapter->eeh_err)
return;
if (arm)
val |= 1 << DB_EQ_REARM_SHIFT;
if (clear_int)
val |= 1 << DB_EQ_CLR_SHIFT;
val |= 1 << DB_EQ_EVNT_SHIFT;
val |= num_popped << DB_EQ_NUM_POPPED_SHIFT;
iowrite32(val, adapter->db + DB_EQ_OFFSET);
}
void be_cq_notify(struct be_adapter *adapter, u16 qid, bool arm, u16 num_popped)
{
u32 val = 0;
val |= qid & DB_CQ_RING_ID_MASK;
if (adapter->eeh_err)
return;
if (arm)
val |= 1 << DB_CQ_REARM_SHIFT;
val |= num_popped << DB_CQ_NUM_POPPED_SHIFT;
iowrite32(val, adapter->db + DB_CQ_OFFSET);
}
static int be_mac_addr_set(struct net_device *netdev, void *p)
{
struct be_adapter *adapter = netdev_priv(netdev);
struct sockaddr *addr = p;
int status = 0;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
/* MAC addr configuration will be done in hardware for VFs
* by their corresponding PFs. Just copy to netdev addr here
*/
if (!be_physfn(adapter))
goto netdev_addr;
status = be_cmd_pmac_del(adapter, adapter->if_handle, adapter->pmac_id);
if (status)
return status;
status = be_cmd_pmac_add(adapter, (u8 *)addr->sa_data,
adapter->if_handle, &adapter->pmac_id);
netdev_addr:
if (!status)
memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
return status;
}
void netdev_stats_update(struct be_adapter *adapter)
{
struct be_hw_stats *hw_stats = hw_stats_from_cmd(adapter->stats_cmd.va);
struct be_rxf_stats *rxf_stats = &hw_stats->rxf;
struct be_port_rxf_stats *port_stats =
&rxf_stats->port[adapter->port_num];
struct net_device_stats *dev_stats = &adapter->netdev->stats;
struct be_erx_stats *erx_stats = &hw_stats->erx;
struct be_rx_obj *rxo;
int i;
memset(dev_stats, 0, sizeof(*dev_stats));
for_all_rx_queues(adapter, rxo, i) {
dev_stats->rx_packets += rx_stats(rxo)->rx_pkts;
dev_stats->rx_bytes += rx_stats(rxo)->rx_bytes;
dev_stats->multicast += rx_stats(rxo)->rx_mcast_pkts;
/* no space in linux buffers: best possible approximation */
dev_stats->rx_dropped +=
erx_stats->rx_drops_no_fragments[rxo->q.id];
}
dev_stats->tx_packets = tx_stats(adapter)->be_tx_pkts;
dev_stats->tx_bytes = tx_stats(adapter)->be_tx_bytes;
/* bad pkts received */
dev_stats->rx_errors = port_stats->rx_crc_errors +
port_stats->rx_alignment_symbol_errors +
port_stats->rx_in_range_errors +
port_stats->rx_out_range_errors +
port_stats->rx_frame_too_long +
port_stats->rx_dropped_too_small +
port_stats->rx_dropped_too_short +
port_stats->rx_dropped_header_too_small +
port_stats->rx_dropped_tcp_length +
port_stats->rx_dropped_runt +
port_stats->rx_tcp_checksum_errs +
port_stats->rx_ip_checksum_errs +
port_stats->rx_udp_checksum_errs;
/* detailed rx errors */
dev_stats->rx_length_errors = port_stats->rx_in_range_errors +
port_stats->rx_out_range_errors +
port_stats->rx_frame_too_long;
dev_stats->rx_crc_errors = port_stats->rx_crc_errors;
/* frame alignment errors */
dev_stats->rx_frame_errors = port_stats->rx_alignment_symbol_errors;
/* receiver fifo overrun */
/* drops_no_pbuf is no per i/f, it's per BE card */
dev_stats->rx_fifo_errors = port_stats->rx_fifo_overflow +
port_stats->rx_input_fifo_overflow +
rxf_stats->rx_drops_no_pbuf;
}
void be_link_status_update(struct be_adapter *adapter, bool link_up)
{
struct net_device *netdev = adapter->netdev;
/* If link came up or went down */
if (adapter->link_up != link_up) {
adapter->link_speed = -1;
if (link_up) {
netif_start_queue(netdev);
netif_carrier_on(netdev);
printk(KERN_INFO "%s: Link up\n", netdev->name);
} else {
netif_stop_queue(netdev);
netif_carrier_off(netdev);
printk(KERN_INFO "%s: Link down\n", netdev->name);
}
adapter->link_up = link_up;
}
}
/* Update the EQ delay n BE based on the RX frags consumed / sec */
static void be_rx_eqd_update(struct be_adapter *adapter, struct be_rx_obj *rxo)
{
struct be_eq_obj *rx_eq = &rxo->rx_eq;
struct be_rx_stats *stats = &rxo->stats;
ulong now = jiffies;
u32 eqd;
if (!rx_eq->enable_aic)
return;
/* Wrapped around */
if (time_before(now, stats->rx_fps_jiffies)) {
stats->rx_fps_jiffies = now;
return;
}
/* Update once a second */
if ((now - stats->rx_fps_jiffies) < HZ)
return;
stats->rx_fps = (stats->rx_frags - stats->prev_rx_frags) /
((now - stats->rx_fps_jiffies) / HZ);
stats->rx_fps_jiffies = now;
stats->prev_rx_frags = stats->rx_frags;
eqd = stats->rx_fps / 110000;
eqd = eqd << 3;
if (eqd > rx_eq->max_eqd)
eqd = rx_eq->max_eqd;
if (eqd < rx_eq->min_eqd)
eqd = rx_eq->min_eqd;
if (eqd < 10)
eqd = 0;
if (eqd != rx_eq->cur_eqd)
be_cmd_modify_eqd(adapter, rx_eq->q.id, eqd);
rx_eq->cur_eqd = eqd;
}
static u32 be_calc_rate(u64 bytes, unsigned long ticks)
{
u64 rate = bytes;
do_div(rate, ticks / HZ);
rate <<= 3; /* bytes/sec -> bits/sec */
do_div(rate, 1000000ul); /* MB/Sec */
return rate;
}
static void be_tx_rate_update(struct be_adapter *adapter)
{
struct be_tx_stats *stats = tx_stats(adapter);
ulong now = jiffies;
/* Wrapped around? */
if (time_before(now, stats->be_tx_jiffies)) {
stats->be_tx_jiffies = now;
return;
}
/* Update tx rate once in two seconds */
if ((now - stats->be_tx_jiffies) > 2 * HZ) {
stats->be_tx_rate = be_calc_rate(stats->be_tx_bytes
- stats->be_tx_bytes_prev,
now - stats->be_tx_jiffies);
stats->be_tx_jiffies = now;
stats->be_tx_bytes_prev = stats->be_tx_bytes;
}
}
static void be_tx_stats_update(struct be_adapter *adapter,
u32 wrb_cnt, u32 copied, u32 gso_segs, bool stopped)
{
struct be_tx_stats *stats = tx_stats(adapter);
stats->be_tx_reqs++;
stats->be_tx_wrbs += wrb_cnt;
stats->be_tx_bytes += copied;
stats->be_tx_pkts += (gso_segs ? gso_segs : 1);
if (stopped)
stats->be_tx_stops++;
}
/* Determine number of WRB entries needed to xmit data in an skb */
static u32 wrb_cnt_for_skb(struct sk_buff *skb, bool *dummy)
{
int cnt = (skb->len > skb->data_len);
cnt += skb_shinfo(skb)->nr_frags;
/* to account for hdr wrb */
cnt++;
if (cnt & 1) {
/* add a dummy to make it an even num */
cnt++;
*dummy = true;
} else
*dummy = false;
BUG_ON(cnt > BE_MAX_TX_FRAG_COUNT);
return cnt;
}
static inline void wrb_fill(struct be_eth_wrb *wrb, u64 addr, int len)
{
wrb->frag_pa_hi = upper_32_bits(addr);
wrb->frag_pa_lo = addr & 0xFFFFFFFF;
wrb->frag_len = len & ETH_WRB_FRAG_LEN_MASK;
}
static void wrb_fill_hdr(struct be_adapter *adapter, struct be_eth_hdr_wrb *hdr,
struct sk_buff *skb, u32 wrb_cnt, u32 len)
{
u8 vlan_prio = 0;
u16 vlan_tag = 0;
memset(hdr, 0, sizeof(*hdr));
AMAP_SET_BITS(struct amap_eth_hdr_wrb, crc, hdr, 1);
if (skb_is_gso(skb)) {
AMAP_SET_BITS(struct amap_eth_hdr_wrb, lso, hdr, 1);
AMAP_SET_BITS(struct amap_eth_hdr_wrb, lso_mss,
hdr, skb_shinfo(skb)->gso_size);
if (skb_is_gso_v6(skb))
AMAP_SET_BITS(struct amap_eth_hdr_wrb, lso6, hdr, 1);
} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
if (is_tcp_pkt(skb))
AMAP_SET_BITS(struct amap_eth_hdr_wrb, tcpcs, hdr, 1);
else if (is_udp_pkt(skb))
AMAP_SET_BITS(struct amap_eth_hdr_wrb, udpcs, hdr, 1);
}
if (adapter->vlan_grp && vlan_tx_tag_present(skb)) {
AMAP_SET_BITS(struct amap_eth_hdr_wrb, vlan, hdr, 1);
vlan_tag = vlan_tx_tag_get(skb);
vlan_prio = (vlan_tag & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
/* If vlan priority provided by OS is NOT in available bmap */
if (!(adapter->vlan_prio_bmap & (1 << vlan_prio)))
vlan_tag = (vlan_tag & ~VLAN_PRIO_MASK) |
adapter->recommended_prio;
AMAP_SET_BITS(struct amap_eth_hdr_wrb, vlan_tag, hdr, vlan_tag);
}
AMAP_SET_BITS(struct amap_eth_hdr_wrb, event, hdr, 1);
AMAP_SET_BITS(struct amap_eth_hdr_wrb, complete, hdr, 1);
AMAP_SET_BITS(struct amap_eth_hdr_wrb, num_wrb, hdr, wrb_cnt);
AMAP_SET_BITS(struct amap_eth_hdr_wrb, len, hdr, len);
}
static void unmap_tx_frag(struct pci_dev *pdev, struct be_eth_wrb *wrb,
bool unmap_single)
{
dma_addr_t dma;
be_dws_le_to_cpu(wrb, sizeof(*wrb));
dma = (u64)wrb->frag_pa_hi << 32 | (u64)wrb->frag_pa_lo;
if (wrb->frag_len) {
if (unmap_single)
pci_unmap_single(pdev, dma, wrb->frag_len,
PCI_DMA_TODEVICE);
else
pci_unmap_page(pdev, dma, wrb->frag_len,
PCI_DMA_TODEVICE);
}
}
static int make_tx_wrbs(struct be_adapter *adapter,
struct sk_buff *skb, u32 wrb_cnt, bool dummy_wrb)
{
dma_addr_t busaddr;
int i, copied = 0;
struct pci_dev *pdev = adapter->pdev;
struct sk_buff *first_skb = skb;
struct be_queue_info *txq = &adapter->tx_obj.q;
struct be_eth_wrb *wrb;
struct be_eth_hdr_wrb *hdr;
bool map_single = false;
u16 map_head;
hdr = queue_head_node(txq);
queue_head_inc(txq);
map_head = txq->head;
if (skb->len > skb->data_len) {
int len = skb_headlen(skb);
busaddr = pci_map_single(pdev, skb->data, len,
PCI_DMA_TODEVICE);
if (pci_dma_mapping_error(pdev, busaddr))
goto dma_err;
map_single = true;
wrb = queue_head_node(txq);
wrb_fill(wrb, busaddr, len);
be_dws_cpu_to_le(wrb, sizeof(*wrb));
queue_head_inc(txq);
copied += len;
}
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
struct skb_frag_struct *frag =
&skb_shinfo(skb)->frags[i];
busaddr = pci_map_page(pdev, frag->page,
frag->page_offset,
frag->size, PCI_DMA_TODEVICE);
if (pci_dma_mapping_error(pdev, busaddr))
goto dma_err;
wrb = queue_head_node(txq);
wrb_fill(wrb, busaddr, frag->size);
be_dws_cpu_to_le(wrb, sizeof(*wrb));
queue_head_inc(txq);
copied += frag->size;
}
if (dummy_wrb) {
wrb = queue_head_node(txq);
wrb_fill(wrb, 0, 0);
be_dws_cpu_to_le(wrb, sizeof(*wrb));
queue_head_inc(txq);
}
wrb_fill_hdr(adapter, hdr, first_skb, wrb_cnt, copied);
be_dws_cpu_to_le(hdr, sizeof(*hdr));
return copied;
dma_err:
txq->head = map_head;
while (copied) {
wrb = queue_head_node(txq);
unmap_tx_frag(pdev, wrb, map_single);
map_single = false;
copied -= wrb->frag_len;
queue_head_inc(txq);
}
return 0;
}
static netdev_tx_t be_xmit(struct sk_buff *skb,
struct net_device *netdev)
{
struct be_adapter *adapter = netdev_priv(netdev);
struct be_tx_obj *tx_obj = &adapter->tx_obj;
struct be_queue_info *txq = &tx_obj->q;
u32 wrb_cnt = 0, copied = 0;
u32 start = txq->head;
bool dummy_wrb, stopped = false;
wrb_cnt = wrb_cnt_for_skb(skb, &dummy_wrb);
copied = make_tx_wrbs(adapter, skb, wrb_cnt, dummy_wrb);
if (copied) {
/* record the sent skb in the sent_skb table */
BUG_ON(tx_obj->sent_skb_list[start]);
tx_obj->sent_skb_list[start] = skb;
/* Ensure txq has space for the next skb; Else stop the queue
* *BEFORE* ringing the tx doorbell, so that we serialze the
* tx compls of the current transmit which'll wake up the queue
*/
atomic_add(wrb_cnt, &txq->used);
if ((BE_MAX_TX_FRAG_COUNT + atomic_read(&txq->used)) >=
txq->len) {
netif_stop_queue(netdev);
stopped = true;
}
be_txq_notify(adapter, txq->id, wrb_cnt);
be_tx_stats_update(adapter, wrb_cnt, copied,
skb_shinfo(skb)->gso_segs, stopped);
} else {
txq->head = start;
dev_kfree_skb_any(skb);
}
return NETDEV_TX_OK;
}
static int be_change_mtu(struct net_device *netdev, int new_mtu)
{
struct be_adapter *adapter = netdev_priv(netdev);
if (new_mtu < BE_MIN_MTU ||
new_mtu > (BE_MAX_JUMBO_FRAME_SIZE -
(ETH_HLEN + ETH_FCS_LEN))) {
dev_info(&adapter->pdev->dev,
"MTU must be between %d and %d bytes\n",
BE_MIN_MTU,
(BE_MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN)));
return -EINVAL;
}
dev_info(&adapter->pdev->dev, "MTU changed from %d to %d bytes\n",
netdev->mtu, new_mtu);
netdev->mtu = new_mtu;
return 0;
}
/*
* A max of 64 (BE_NUM_VLANS_SUPPORTED) vlans can be configured in BE.
* If the user configures more, place BE in vlan promiscuous mode.
*/
static int be_vid_config(struct be_adapter *adapter, bool vf, u32 vf_num)
{
u16 vtag[BE_NUM_VLANS_SUPPORTED];
u16 ntags = 0, i;
int status = 0;
u32 if_handle;
if (vf) {
if_handle = adapter->vf_cfg[vf_num].vf_if_handle;
vtag[0] = cpu_to_le16(adapter->vf_cfg[vf_num].vf_vlan_tag);
status = be_cmd_vlan_config(adapter, if_handle, vtag, 1, 1, 0);
}
if (adapter->vlans_added <= adapter->max_vlans) {
/* Construct VLAN Table to give to HW */
for (i = 0; i < VLAN_N_VID; i++) {
if (adapter->vlan_tag[i]) {
vtag[ntags] = cpu_to_le16(i);
ntags++;
}
}
status = be_cmd_vlan_config(adapter, adapter->if_handle,
vtag, ntags, 1, 0);
} else {
status = be_cmd_vlan_config(adapter, adapter->if_handle,
NULL, 0, 1, 1);
}
return status;
}
static void be_vlan_register(struct net_device *netdev, struct vlan_group *grp)
{
struct be_adapter *adapter = netdev_priv(netdev);
adapter->vlan_grp = grp;
}
static void be_vlan_add_vid(struct net_device *netdev, u16 vid)
{
struct be_adapter *adapter = netdev_priv(netdev);
adapter->vlans_added++;
if (!be_physfn(adapter))
return;
adapter->vlan_tag[vid] = 1;
if (adapter->vlans_added <= (adapter->max_vlans + 1))
be_vid_config(adapter, false, 0);
}
static void be_vlan_rem_vid(struct net_device *netdev, u16 vid)
{
struct be_adapter *adapter = netdev_priv(netdev);
adapter->vlans_added--;
vlan_group_set_device(adapter->vlan_grp, vid, NULL);
if (!be_physfn(adapter))
return;
adapter->vlan_tag[vid] = 0;
if (adapter->vlans_added <= adapter->max_vlans)
be_vid_config(adapter, false, 0);
}
static void be_set_multicast_list(struct net_device *netdev)
{
struct be_adapter *adapter = netdev_priv(netdev);
if (netdev->flags & IFF_PROMISC) {
be_cmd_promiscuous_config(adapter, adapter->port_num, 1);
adapter->promiscuous = true;
goto done;
}
/* BE was previously in promiscous mode; disable it */
if (adapter->promiscuous) {
adapter->promiscuous = false;
be_cmd_promiscuous_config(adapter, adapter->port_num, 0);
}
/* Enable multicast promisc if num configured exceeds what we support */
if (netdev->flags & IFF_ALLMULTI ||
netdev_mc_count(netdev) > BE_MAX_MC) {
be_cmd_multicast_set(adapter, adapter->if_handle, NULL,
&adapter->mc_cmd_mem);
goto done;
}
be_cmd_multicast_set(adapter, adapter->if_handle, netdev,
&adapter->mc_cmd_mem);
done:
return;
}
static int be_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
{
struct be_adapter *adapter = netdev_priv(netdev);
int status;
if (!adapter->sriov_enabled)
return -EPERM;
if (!is_valid_ether_addr(mac) || (vf >= num_vfs))
return -EINVAL;
if (adapter->vf_cfg[vf].vf_pmac_id != BE_INVALID_PMAC_ID)
status = be_cmd_pmac_del(adapter,
adapter->vf_cfg[vf].vf_if_handle,
adapter->vf_cfg[vf].vf_pmac_id);
status = be_cmd_pmac_add(adapter, mac,
adapter->vf_cfg[vf].vf_if_handle,
&adapter->vf_cfg[vf].vf_pmac_id);
if (status)
dev_err(&adapter->pdev->dev, "MAC %pM set on VF %d Failed\n",
mac, vf);
else
memcpy(adapter->vf_cfg[vf].vf_mac_addr, mac, ETH_ALEN);
return status;
}
static int be_get_vf_config(struct net_device *netdev, int vf,
struct ifla_vf_info *vi)
{
struct be_adapter *adapter = netdev_priv(netdev);
if (!adapter->sriov_enabled)
return -EPERM;
if (vf >= num_vfs)
return -EINVAL;
vi->vf = vf;
vi->tx_rate = adapter->vf_cfg[vf].vf_tx_rate;
vi->vlan = adapter->vf_cfg[vf].vf_vlan_tag;
vi->qos = 0;
memcpy(&vi->mac, adapter->vf_cfg[vf].vf_mac_addr, ETH_ALEN);
return 0;
}
static int be_set_vf_vlan(struct net_device *netdev,
int vf, u16 vlan, u8 qos)
{
struct be_adapter *adapter = netdev_priv(netdev);
int status = 0;
if (!adapter->sriov_enabled)
return -EPERM;
if ((vf >= num_vfs) || (vlan > 4095))
return -EINVAL;
if (vlan) {
adapter->vf_cfg[vf].vf_vlan_tag = vlan;
adapter->vlans_added++;
} else {
adapter->vf_cfg[vf].vf_vlan_tag = 0;
adapter->vlans_added--;
}
status = be_vid_config(adapter, true, vf);
if (status)
dev_info(&adapter->pdev->dev,
"VLAN %d config on VF %d failed\n", vlan, vf);
return status;
}
static int be_set_vf_tx_rate(struct net_device *netdev,
int vf, int rate)
{
struct be_adapter *adapter = netdev_priv(netdev);
int status = 0;
if (!adapter->sriov_enabled)
return -EPERM;
if ((vf >= num_vfs) || (rate < 0))
return -EINVAL;
if (rate > 10000)
rate = 10000;
adapter->vf_cfg[vf].vf_tx_rate = rate;
status = be_cmd_set_qos(adapter, rate / 10, vf);
if (status)
dev_info(&adapter->pdev->dev,
"tx rate %d on VF %d failed\n", rate, vf);
return status;
}
static void be_rx_rate_update(struct be_rx_obj *rxo)
{
struct be_rx_stats *stats = &rxo->stats;
ulong now = jiffies;
/* Wrapped around */
if (time_before(now, stats->rx_jiffies)) {
stats->rx_jiffies = now;
return;
}
/* Update the rate once in two seconds */
if ((now - stats->rx_jiffies) < 2 * HZ)
return;
stats->rx_rate = be_calc_rate(stats->rx_bytes - stats->rx_bytes_prev,
now - stats->rx_jiffies);
stats->rx_jiffies = now;
stats->rx_bytes_prev = stats->rx_bytes;
}
static void be_rx_stats_update(struct be_rx_obj *rxo,
u32 pktsize, u16 numfrags, u8 pkt_type)
{
struct be_rx_stats *stats = &rxo->stats;
stats->rx_compl++;
stats->rx_frags += numfrags;
stats->rx_bytes += pktsize;
stats->rx_pkts++;
if (pkt_type == BE_MULTICAST_PACKET)
stats->rx_mcast_pkts++;
}
static inline bool csum_passed(struct be_eth_rx_compl *rxcp)
{
u8 l4_cksm, ipv6, ipcksm;
l4_cksm = AMAP_GET_BITS(struct amap_eth_rx_compl, l4_cksm, rxcp);
ipcksm = AMAP_GET_BITS(struct amap_eth_rx_compl, ipcksm, rxcp);
ipv6 = AMAP_GET_BITS(struct amap_eth_rx_compl, ip_version, rxcp);
/* Ignore ipcksm for ipv6 pkts */
return l4_cksm && (ipcksm || ipv6);
}
static struct be_rx_page_info *
get_rx_page_info(struct be_adapter *adapter,
struct be_rx_obj *rxo,
u16 frag_idx)
{
struct be_rx_page_info *rx_page_info;
struct be_queue_info *rxq = &rxo->q;
rx_page_info = &rxo->page_info_tbl[frag_idx];
BUG_ON(!rx_page_info->page);
if (rx_page_info->last_page_user) {
pci_unmap_page(adapter->pdev, dma_unmap_addr(rx_page_info, bus),
adapter->big_page_size, PCI_DMA_FROMDEVICE);
rx_page_info->last_page_user = false;
}
atomic_dec(&rxq->used);
return rx_page_info;
}
/* Throwaway the data in the Rx completion */
static void be_rx_compl_discard(struct be_adapter *adapter,
struct be_rx_obj *rxo,
struct be_eth_rx_compl *rxcp)
{
struct be_queue_info *rxq = &rxo->q;
struct be_rx_page_info *page_info;
u16 rxq_idx, i, num_rcvd;
rxq_idx = AMAP_GET_BITS(struct amap_eth_rx_compl, fragndx, rxcp);
num_rcvd = AMAP_GET_BITS(struct amap_eth_rx_compl, numfrags, rxcp);
for (i = 0; i < num_rcvd; i++) {
page_info = get_rx_page_info(adapter, rxo, rxq_idx);
put_page(page_info->page);
memset(page_info, 0, sizeof(*page_info));
index_inc(&rxq_idx, rxq->len);
}
}
/*
* skb_fill_rx_data forms a complete skb for an ether frame
* indicated by rxcp.
*/
static void skb_fill_rx_data(struct be_adapter *adapter, struct be_rx_obj *rxo,
struct sk_buff *skb, struct be_eth_rx_compl *rxcp,
u16 num_rcvd)
{
struct be_queue_info *rxq = &rxo->q;
struct be_rx_page_info *page_info;
u16 rxq_idx, i, j;
u32 pktsize, hdr_len, curr_frag_len, size;
u8 *start;
u8 pkt_type;
rxq_idx = AMAP_GET_BITS(struct amap_eth_rx_compl, fragndx, rxcp);
pktsize = AMAP_GET_BITS(struct amap_eth_rx_compl, pktsize, rxcp);
pkt_type = AMAP_GET_BITS(struct amap_eth_rx_compl, cast_enc, rxcp);
page_info = get_rx_page_info(adapter, rxo, rxq_idx);
start = page_address(page_info->page) + page_info->page_offset;
prefetch(start);
/* Copy data in the first descriptor of this completion */
curr_frag_len = min(pktsize, rx_frag_size);
/* Copy the header portion into skb_data */
hdr_len = min((u32)BE_HDR_LEN, curr_frag_len);
memcpy(skb->data, start, hdr_len);
skb->len = curr_frag_len;
if (curr_frag_len <= BE_HDR_LEN) { /* tiny packet */
/* Complete packet has now been moved to data */
put_page(page_info->page);
skb->data_len = 0;
skb->tail += curr_frag_len;
} else {
skb_shinfo(skb)->nr_frags = 1;
skb_shinfo(skb)->frags[0].page = page_info->page;
skb_shinfo(skb)->frags[0].page_offset =
page_info->page_offset + hdr_len;
skb_shinfo(skb)->frags[0].size = curr_frag_len - hdr_len;
skb->data_len = curr_frag_len - hdr_len;
skb->tail += hdr_len;
}
page_info->page = NULL;
if (pktsize <= rx_frag_size) {
BUG_ON(num_rcvd != 1);
goto done;
}
/* More frags present for this completion */
size = pktsize;
for (i = 1, j = 0; i < num_rcvd; i++) {
size -= curr_frag_len;
index_inc(&rxq_idx, rxq->len);
page_info = get_rx_page_info(adapter, rxo, rxq_idx);
curr_frag_len = min(size, rx_frag_size);
/* Coalesce all frags from the same physical page in one slot */
if (page_info->page_offset == 0) {
/* Fresh page */
j++;
skb_shinfo(skb)->frags[j].page = page_info->page;
skb_shinfo(skb)->frags[j].page_offset =
page_info->page_offset;
skb_shinfo(skb)->frags[j].size = 0;
skb_shinfo(skb)->nr_frags++;
} else {
put_page(page_info->page);
}
skb_shinfo(skb)->frags[j].size += curr_frag_len;
skb->len += curr_frag_len;
skb->data_len += curr_frag_len;
page_info->page = NULL;
}
BUG_ON(j > MAX_SKB_FRAGS);
done:
be_rx_stats_update(rxo, pktsize, num_rcvd, pkt_type);
}
/* Process the RX completion indicated by rxcp when GRO is disabled */
static void be_rx_compl_process(struct be_adapter *adapter,
struct be_rx_obj *rxo,
struct be_eth_rx_compl *rxcp)
{
struct sk_buff *skb;
u32 vlanf, vid;
u16 num_rcvd;
u8 vtm;
num_rcvd = AMAP_GET_BITS(struct amap_eth_rx_compl, numfrags, rxcp);
/* Is it a flush compl that has no data */
if (unlikely(num_rcvd == 0))
return;
skb = netdev_alloc_skb_ip_align(adapter->netdev, BE_HDR_LEN);
if (unlikely(!skb)) {
if (net_ratelimit())
dev_warn(&adapter->pdev->dev, "skb alloc failed\n");
be_rx_compl_discard(adapter, rxo, rxcp);
return;
}
skb_fill_rx_data(adapter, rxo, skb, rxcp, num_rcvd);
if (likely(adapter->rx_csum && csum_passed(rxcp)))
skb->ip_summed = CHECKSUM_UNNECESSARY;
else
skb_checksum_none_assert(skb);
skb->truesize = skb->len + sizeof(struct sk_buff);
skb->protocol = eth_type_trans(skb, adapter->netdev);
vlanf = AMAP_GET_BITS(struct amap_eth_rx_compl, vtp, rxcp);
vtm = AMAP_GET_BITS(struct amap_eth_rx_compl, vtm, rxcp);
/* vlanf could be wrongly set in some cards.
* ignore if vtm is not set */
if ((adapter->function_mode & 0x400) && !vtm)
vlanf = 0;
if (unlikely(vlanf)) {
if (!adapter->vlan_grp || adapter->vlans_added == 0) {
kfree_skb(skb);
return;
}
vid = AMAP_GET_BITS(struct amap_eth_rx_compl, vlan_tag, rxcp);
vid = swab16(vid);
vlan_hwaccel_receive_skb(skb, adapter->vlan_grp, vid);
} else {
netif_receive_skb(skb);
}
}
/* Process the RX completion indicated by rxcp when GRO is enabled */
static void be_rx_compl_process_gro(struct be_adapter *adapter,
struct be_rx_obj *rxo,
struct be_eth_rx_compl *rxcp)
{
struct be_rx_page_info *page_info;
struct sk_buff *skb = NULL;
struct be_queue_info *rxq = &rxo->q;
struct be_eq_obj *eq_obj = &rxo->rx_eq;
u32 num_rcvd, pkt_size, remaining, vlanf, curr_frag_len;
u16 i, rxq_idx = 0, vid, j;
u8 vtm;
u8 pkt_type;
num_rcvd = AMAP_GET_BITS(struct amap_eth_rx_compl, numfrags, rxcp);
/* Is it a flush compl that has no data */
if (unlikely(num_rcvd == 0))
return;
pkt_size = AMAP_GET_BITS(struct amap_eth_rx_compl, pktsize, rxcp);
vlanf = AMAP_GET_BITS(struct amap_eth_rx_compl, vtp, rxcp);
rxq_idx = AMAP_GET_BITS(struct amap_eth_rx_compl, fragndx, rxcp);
vtm = AMAP_GET_BITS(struct amap_eth_rx_compl, vtm, rxcp);
pkt_type = AMAP_GET_BITS(struct amap_eth_rx_compl, cast_enc, rxcp);
/* vlanf could be wrongly set in some cards.
* ignore if vtm is not set */
if ((adapter->function_mode & 0x400) && !vtm)
vlanf = 0;
skb = napi_get_frags(&eq_obj->napi);
if (!skb) {
be_rx_compl_discard(adapter, rxo, rxcp);
return;
}
remaining = pkt_size;
for (i = 0, j = -1; i < num_rcvd; i++) {
page_info = get_rx_page_info(adapter, rxo, rxq_idx);
curr_frag_len = min(remaining, rx_frag_size);
/* Coalesce all frags from the same physical page in one slot */
if (i == 0 || page_info->page_offset == 0) {
/* First frag or Fresh page */
j++;
skb_shinfo(skb)->frags[j].page = page_info->page;
skb_shinfo(skb)->frags[j].page_offset =
page_info->page_offset;
skb_shinfo(skb)->frags[j].size = 0;
} else {
put_page(page_info->page);
}
skb_shinfo(skb)->frags[j].size += curr_frag_len;
remaining -= curr_frag_len;
index_inc(&rxq_idx, rxq->len);
memset(page_info, 0, sizeof(*page_info));
}
BUG_ON(j > MAX_SKB_FRAGS);
skb_shinfo(skb)->nr_frags = j + 1;
skb->len = pkt_size;
skb->data_len = pkt_size;
skb->truesize += pkt_size;
skb->ip_summed = CHECKSUM_UNNECESSARY;
if (likely(!vlanf)) {
napi_gro_frags(&eq_obj->napi);
} else {
vid = AMAP_GET_BITS(struct amap_eth_rx_compl, vlan_tag, rxcp);
vid = swab16(vid);
if (!adapter->vlan_grp || adapter->vlans_added == 0)
return;
vlan_gro_frags(&eq_obj->napi, adapter->vlan_grp, vid);
}
be_rx_stats_update(rxo, pkt_size, num_rcvd, pkt_type);
}
static struct be_eth_rx_compl *be_rx_compl_get(struct be_rx_obj *rxo)
{
struct be_eth_rx_compl *rxcp = queue_tail_node(&rxo->cq);
if (rxcp->dw[offsetof(struct amap_eth_rx_compl, valid) / 32] == 0)
return NULL;
rmb();
be_dws_le_to_cpu(rxcp, sizeof(*rxcp));
queue_tail_inc(&rxo->cq);
return rxcp;
}
/* To reset the valid bit, we need to reset the whole word as
* when walking the queue the valid entries are little-endian
* and invalid entries are host endian
*/
static inline void be_rx_compl_reset(struct be_eth_rx_compl *rxcp)
{
rxcp->dw[offsetof(struct amap_eth_rx_compl, valid) / 32] = 0;
}
static inline struct page *be_alloc_pages(u32 size)
{
gfp_t alloc_flags = GFP_ATOMIC;
u32 order = get_order(size);
if (order > 0)
alloc_flags |= __GFP_COMP;
return alloc_pages(alloc_flags, order);
}
/*
* Allocate a page, split it to fragments of size rx_frag_size and post as
* receive buffers to BE
*/
static void be_post_rx_frags(struct be_rx_obj *rxo)
{
struct be_adapter *adapter = rxo->adapter;
struct be_rx_page_info *page_info_tbl = rxo->page_info_tbl;
struct be_rx_page_info *page_info = NULL, *prev_page_info = NULL;
struct be_queue_info *rxq = &rxo->q;
struct page *pagep = NULL;
struct be_eth_rx_d *rxd;
u64 page_dmaaddr = 0, frag_dmaaddr;
u32 posted, page_offset = 0;
page_info = &rxo->page_info_tbl[rxq->head];
for (posted = 0; posted < MAX_RX_POST && !page_info->page; posted++) {
if (!pagep) {
pagep = be_alloc_pages(adapter->big_page_size);
if (unlikely(!pagep)) {
rxo->stats.rx_post_fail++;
break;
}
page_dmaaddr = pci_map_page(adapter->pdev, pagep, 0,
adapter->big_page_size,
PCI_DMA_FROMDEVICE);
page_info->page_offset = 0;
} else {
get_page(pagep);
page_info->page_offset = page_offset + rx_frag_size;
}
page_offset = page_info->page_offset;
page_info->page = pagep;
dma_unmap_addr_set(page_info, bus, page_dmaaddr);
frag_dmaaddr = page_dmaaddr + page_info->page_offset;
rxd = queue_head_node(rxq);
rxd->fragpa_lo = cpu_to_le32(frag_dmaaddr & 0xFFFFFFFF);
rxd->fragpa_hi = cpu_to_le32(upper_32_bits(frag_dmaaddr));
/* Any space left in the current big page for another frag? */
if ((page_offset + rx_frag_size + rx_frag_size) >
adapter->big_page_size) {
pagep = NULL;
page_info->last_page_user = true;
}
prev_page_info = page_info;
queue_head_inc(rxq);
page_info = &page_info_tbl[rxq->head];
}
if (pagep)
prev_page_info->last_page_user = true;
if (posted) {
atomic_add(posted, &rxq->used);
be_rxq_notify(adapter, rxq->id, posted);
} else if (atomic_read(&rxq->used) == 0) {
/* Let be_worker replenish when memory is available */
rxo->rx_post_starved = true;
}
}
static struct be_eth_tx_compl *be_tx_compl_get(struct be_queue_info *tx_cq)
{
struct be_eth_tx_compl *txcp = queue_tail_node(tx_cq);
if (txcp->dw[offsetof(struct amap_eth_tx_compl, valid) / 32] == 0)
return NULL;
rmb();
be_dws_le_to_cpu(txcp, sizeof(*txcp));
txcp->dw[offsetof(struct amap_eth_tx_compl, valid) / 32] = 0;
queue_tail_inc(tx_cq);
return txcp;
}
static void be_tx_compl_process(struct be_adapter *adapter, u16 last_index)
{
struct be_queue_info *txq = &adapter->tx_obj.q;
struct be_eth_wrb *wrb;
struct sk_buff **sent_skbs = adapter->tx_obj.sent_skb_list;
struct sk_buff *sent_skb;
u16 cur_index, num_wrbs = 1; /* account for hdr wrb */
bool unmap_skb_hdr = true;
sent_skb = sent_skbs[txq->tail];
BUG_ON(!sent_skb);
sent_skbs[txq->tail] = NULL;
/* skip header wrb */
queue_tail_inc(txq);
do {
cur_index = txq->tail;
wrb = queue_tail_node(txq);
unmap_tx_frag(adapter->pdev, wrb, (unmap_skb_hdr &&
skb_headlen(sent_skb)));
unmap_skb_hdr = false;
num_wrbs++;
queue_tail_inc(txq);
} while (cur_index != last_index);
atomic_sub(num_wrbs, &txq->used);
kfree_skb(sent_skb);
}
static inline struct be_eq_entry *event_get(struct be_eq_obj *eq_obj)
{
struct be_eq_entry *eqe = queue_tail_node(&eq_obj->q);
if (!eqe->evt)
return NULL;
rmb();
eqe->evt = le32_to_cpu(eqe->evt);
queue_tail_inc(&eq_obj->q);
return eqe;
}
static int event_handle(struct be_adapter *adapter,
struct be_eq_obj *eq_obj)
{
struct be_eq_entry *eqe;
u16 num = 0;
while ((eqe = event_get(eq_obj)) != NULL) {
eqe->evt = 0;
num++;
}
/* Deal with any spurious interrupts that come
* without events
*/
be_eq_notify(adapter, eq_obj->q.id, true, true, num);
if (num)
napi_schedule(&eq_obj->napi);
return num;
}
/* Just read and notify events without processing them.
* Used at the time of destroying event queues */
static void be_eq_clean(struct be_adapter *adapter,
struct be_eq_obj *eq_obj)
{
struct be_eq_entry *eqe;
u16 num = 0;
while ((eqe = event_get(eq_obj)) != NULL) {
eqe->evt = 0;
num++;
}
if (num)
be_eq_notify(adapter, eq_obj->q.id, false, true, num);
}
static void be_rx_q_clean(struct be_adapter *adapter, struct be_rx_obj *rxo)
{
struct be_rx_page_info *page_info;
struct be_queue_info *rxq = &rxo->q;
struct be_queue_info *rx_cq = &rxo->cq;
struct be_eth_rx_compl *rxcp;
u16 tail;
/* First cleanup pending rx completions */
while ((rxcp = be_rx_compl_get(rxo)) != NULL) {
be_rx_compl_discard(adapter, rxo, rxcp);
be_rx_compl_reset(rxcp);
be_cq_notify(adapter, rx_cq->id, true, 1);
}
/* Then free posted rx buffer that were not used */
tail = (rxq->head + rxq->len - atomic_read(&rxq->used)) % rxq->len;
for (; atomic_read(&rxq->used) > 0; index_inc(&tail, rxq->len)) {
page_info = get_rx_page_info(adapter, rxo, tail);
put_page(page_info->page);
memset(page_info, 0, sizeof(*page_info));
}
BUG_ON(atomic_read(&rxq->used));
}
static void be_tx_compl_clean(struct be_adapter *adapter)
{
struct be_queue_info *tx_cq = &adapter->tx_obj.cq;
struct be_queue_info *txq = &adapter->tx_obj.q;
struct be_eth_tx_compl *txcp;
u16 end_idx, cmpl = 0, timeo = 0;
struct sk_buff **sent_skbs = adapter->tx_obj.sent_skb_list;
struct sk_buff *sent_skb;
bool dummy_wrb;
/* Wait for a max of 200ms for all the tx-completions to arrive. */
do {
while ((txcp = be_tx_compl_get(tx_cq))) {
end_idx = AMAP_GET_BITS(struct amap_eth_tx_compl,
wrb_index, txcp);
be_tx_compl_process(adapter, end_idx);
cmpl++;
}
if (cmpl) {
be_cq_notify(adapter, tx_cq->id, false, cmpl);
cmpl = 0;
}
if (atomic_read(&txq->used) == 0 || ++timeo > 200)
break;
mdelay(1);
} while (true);
if (atomic_read(&txq->used))
dev_err(&adapter->pdev->dev, "%d pending tx-completions\n",
atomic_read(&txq->used));
/* free posted tx for which compls will never arrive */
while (atomic_read(&txq->used)) {
sent_skb = sent_skbs[txq->tail];
end_idx = txq->tail;
index_adv(&end_idx,
wrb_cnt_for_skb(sent_skb, &dummy_wrb) - 1, txq->len);
be_tx_compl_process(adapter, end_idx);
}
}
static void be_mcc_queues_destroy(struct be_adapter *adapter)
{
struct be_queue_info *q;
q = &adapter->mcc_obj.q;
if (q->created)
be_cmd_q_destroy(adapter, q, QTYPE_MCCQ);
be_queue_free(adapter, q);
q = &adapter->mcc_obj.cq;
if (q->created)
be_cmd_q_destroy(adapter, q, QTYPE_CQ);
be_queue_free(adapter, q);
}
/* Must be called only after TX qs are created as MCC shares TX EQ */
static int be_mcc_queues_create(struct be_adapter *adapter)
{
struct be_queue_info *q, *cq;
/* Alloc MCC compl queue */
cq = &adapter->mcc_obj.cq;
if (be_queue_alloc(adapter, cq, MCC_CQ_LEN,
sizeof(struct be_mcc_compl)))
goto err;
/* Ask BE to create MCC compl queue; share TX's eq */
if (be_cmd_cq_create(adapter, cq, &adapter->tx_eq.q, false, true, 0))
goto mcc_cq_free;
/* Alloc MCC queue */
q = &adapter->mcc_obj.q;
if (be_queue_alloc(adapter, q, MCC_Q_LEN, sizeof(struct be_mcc_wrb)))
goto mcc_cq_destroy;
/* Ask BE to create MCC queue */
if (be_cmd_mccq_create(adapter, q, cq))
goto mcc_q_free;
return 0;
mcc_q_free:
be_queue_free(adapter, q);
mcc_cq_destroy:
be_cmd_q_destroy(adapter, cq, QTYPE_CQ);
mcc_cq_free:
be_queue_free(adapter, cq);
err:
return -1;
}
static void be_tx_queues_destroy(struct be_adapter *adapter)
{
struct be_queue_info *q;
q = &adapter->tx_obj.q;
if (q->created)
be_cmd_q_destroy(adapter, q, QTYPE_TXQ);
be_queue_free(adapter, q);
q = &adapter->tx_obj.cq;
if (q->created)
be_cmd_q_destroy(adapter, q, QTYPE_CQ);
be_queue_free(adapter, q);
/* Clear any residual events */
be_eq_clean(adapter, &adapter->tx_eq);
q = &adapter->tx_eq.q;
if (q->created)
be_cmd_q_destroy(adapter, q, QTYPE_EQ);
be_queue_free(adapter, q);
}
static int be_tx_queues_create(struct be_adapter *adapter)
{
struct be_queue_info *eq, *q, *cq;
adapter->tx_eq.max_eqd = 0;
adapter->tx_eq.min_eqd = 0;
adapter->tx_eq.cur_eqd = 96;
adapter->tx_eq.enable_aic = false;
/* Alloc Tx Event queue */
eq = &adapter->tx_eq.q;
if (be_queue_alloc(adapter, eq, EVNT_Q_LEN, sizeof(struct be_eq_entry)))
return -1;
/* Ask BE to create Tx Event queue */
if (be_cmd_eq_create(adapter, eq, adapter->tx_eq.cur_eqd))
goto tx_eq_free;
adapter->base_eq_id = adapter->tx_eq.q.id;
/* Alloc TX eth compl queue */
cq = &adapter->tx_obj.cq;
if (be_queue_alloc(adapter, cq, TX_CQ_LEN,
sizeof(struct be_eth_tx_compl)))
goto tx_eq_destroy;
/* Ask BE to create Tx eth compl queue */
if (be_cmd_cq_create(adapter, cq, eq, false, false, 3))
goto tx_cq_free;
/* Alloc TX eth queue */
q = &adapter->tx_obj.q;
if (be_queue_alloc(adapter, q, TX_Q_LEN, sizeof(struct be_eth_wrb)))
goto tx_cq_destroy;
/* Ask BE to create Tx eth queue */
if (be_cmd_txq_create(adapter, q, cq))
goto tx_q_free;
return 0;
tx_q_free:
be_queue_free(adapter, q);
tx_cq_destroy:
be_cmd_q_destroy(adapter, cq, QTYPE_CQ);
tx_cq_free:
be_queue_free(adapter, cq);
tx_eq_destroy:
be_cmd_q_destroy(adapter, eq, QTYPE_EQ);
tx_eq_free:
be_queue_free(adapter, eq);
return -1;
}
static void be_rx_queues_destroy(struct be_adapter *adapter)
{
struct be_queue_info *q;
struct be_rx_obj *rxo;
int i;
for_all_rx_queues(adapter, rxo, i) {
q = &rxo->q;
if (q->created) {
be_cmd_q_destroy(adapter, q, QTYPE_RXQ);
/* After the rxq is invalidated, wait for a grace time
* of 1ms for all dma to end and the flush compl to
* arrive
*/
mdelay(1);
be_rx_q_clean(adapter, rxo);
}
be_queue_free(adapter, q);
q = &rxo->cq;
if (q->created)
be_cmd_q_destroy(adapter, q, QTYPE_CQ);
be_queue_free(adapter, q);
/* Clear any residual events */
q = &rxo->rx_eq.q;
if (q->created) {
be_eq_clean(adapter, &rxo->rx_eq);
be_cmd_q_destroy(adapter, q, QTYPE_EQ);
}
be_queue_free(adapter, q);
}
}
static int be_rx_queues_create(struct be_adapter *adapter)
{
struct be_queue_info *eq, *q, *cq;
struct be_rx_obj *rxo;
int rc, i;
adapter->big_page_size = (1 << get_order(rx_frag_size)) * PAGE_SIZE;
for_all_rx_queues(adapter, rxo, i) {
rxo->adapter = adapter;
rxo->rx_eq.max_eqd = BE_MAX_EQD;
rxo->rx_eq.enable_aic = true;
/* EQ */
eq = &rxo->rx_eq.q;
rc = be_queue_alloc(adapter, eq, EVNT_Q_LEN,
sizeof(struct be_eq_entry));
if (rc)
goto err;
rc = be_cmd_eq_create(adapter, eq, rxo->rx_eq.cur_eqd);
if (rc)
goto err;
/* CQ */
cq = &rxo->cq;
rc = be_queue_alloc(adapter, cq, RX_CQ_LEN,
sizeof(struct be_eth_rx_compl));
if (rc)
goto err;
rc = be_cmd_cq_create(adapter, cq, eq, false, false, 3);
if (rc)
goto err;
/* Rx Q */
q = &rxo->q;
rc = be_queue_alloc(adapter, q, RX_Q_LEN,
sizeof(struct be_eth_rx_d));
if (rc)
goto err;
rc = be_cmd_rxq_create(adapter, q, cq->id, rx_frag_size,
BE_MAX_JUMBO_FRAME_SIZE, adapter->if_handle,
(i > 0) ? 1 : 0/* rss enable */, &rxo->rss_id);
if (rc)
goto err;
}
if (be_multi_rxq(adapter)) {
u8 rsstable[MAX_RSS_QS];
for_all_rss_queues(adapter, rxo, i)
rsstable[i] = rxo->rss_id;
rc = be_cmd_rss_config(adapter, rsstable,
adapter->num_rx_qs - 1);
if (rc)
goto err;
}
return 0;
err:
be_rx_queues_destroy(adapter);
return -1;
}
/* There are 8 evt ids per func. Retruns the evt id's bit number */
static inline int be_evt_bit_get(struct be_adapter *adapter, u32 eq_id)
{
return eq_id - adapter->base_eq_id;
}
static irqreturn_t be_intx(int irq, void *dev)
{
struct be_adapter *adapter = dev;
struct be_rx_obj *rxo;
int isr, i;
isr = ioread32(adapter->csr + CEV_ISR0_OFFSET +
(adapter->tx_eq.q.id/ 8) * CEV_ISR_SIZE);
if (!isr)
return IRQ_NONE;
if ((1 << be_evt_bit_get(adapter, adapter->tx_eq.q.id) & isr))
event_handle(adapter, &adapter->tx_eq);
for_all_rx_queues(adapter, rxo, i) {
if ((1 << be_evt_bit_get(adapter, rxo->rx_eq.q.id) & isr))
event_handle(adapter, &rxo->rx_eq);
}
return IRQ_HANDLED;
}
static irqreturn_t be_msix_rx(int irq, void *dev)
{
struct be_rx_obj *rxo = dev;
struct be_adapter *adapter = rxo->adapter;
event_handle(adapter, &rxo->rx_eq);
return IRQ_HANDLED;
}
static irqreturn_t be_msix_tx_mcc(int irq, void *dev)
{
struct be_adapter *adapter = dev;
event_handle(adapter, &adapter->tx_eq);
return IRQ_HANDLED;
}
static inline bool do_gro(struct be_adapter *adapter, struct be_rx_obj *rxo,
struct be_eth_rx_compl *rxcp)
{
int err = AMAP_GET_BITS(struct amap_eth_rx_compl, err, rxcp);
int tcp_frame = AMAP_GET_BITS(struct amap_eth_rx_compl, tcpf, rxcp);
if (err)
rxo->stats.rxcp_err++;
return (tcp_frame && !err) ? true : false;
}
static int be_poll_rx(struct napi_struct *napi, int budget)
{
struct be_eq_obj *rx_eq = container_of(napi, struct be_eq_obj, napi);
struct be_rx_obj *rxo = container_of(rx_eq, struct be_rx_obj, rx_eq);
struct be_adapter *adapter = rxo->adapter;
struct be_queue_info *rx_cq = &rxo->cq;
struct be_eth_rx_compl *rxcp;
u32 work_done;
rxo->stats.rx_polls++;
for (work_done = 0; work_done < budget; work_done++) {
rxcp = be_rx_compl_get(rxo);
if (!rxcp)
break;
if (do_gro(adapter, rxo, rxcp))
be_rx_compl_process_gro(adapter, rxo, rxcp);
else
be_rx_compl_process(adapter, rxo, rxcp);
be_rx_compl_reset(rxcp);
}
/* Refill the queue */
if (atomic_read(&rxo->q.used) < RX_FRAGS_REFILL_WM)
be_post_rx_frags(rxo);
/* All consumed */
if (work_done < budget) {
napi_complete(napi);
be_cq_notify(adapter, rx_cq->id, true, work_done);
} else {
/* More to be consumed; continue with interrupts disabled */
be_cq_notify(adapter, rx_cq->id, false, work_done);
}
return work_done;
}
/* As TX and MCC share the same EQ check for both TX and MCC completions.
* For TX/MCC we don't honour budget; consume everything
*/
static int be_poll_tx_mcc(struct napi_struct *napi, int budget)
{
struct be_eq_obj *tx_eq = container_of(napi, struct be_eq_obj, napi);
struct be_adapter *adapter =
container_of(tx_eq, struct be_adapter, tx_eq);
struct be_queue_info *txq = &adapter->tx_obj.q;
struct be_queue_info *tx_cq = &adapter->tx_obj.cq;
struct be_eth_tx_compl *txcp;
int tx_compl = 0, mcc_compl, status = 0;
u16 end_idx;
while ((txcp = be_tx_compl_get(tx_cq))) {
end_idx = AMAP_GET_BITS(struct amap_eth_tx_compl,
wrb_index, txcp);
be_tx_compl_process(adapter, end_idx);
tx_compl++;
}
mcc_compl = be_process_mcc(adapter, &status);
napi_complete(napi);
if (mcc_compl) {
struct be_mcc_obj *mcc_obj = &adapter->mcc_obj;
be_cq_notify(adapter, mcc_obj->cq.id, true, mcc_compl);
}
if (tx_compl) {
be_cq_notify(adapter, adapter->tx_obj.cq.id, true, tx_compl);
/* As Tx wrbs have been freed up, wake up netdev queue if
* it was stopped due to lack of tx wrbs.
*/
if (netif_queue_stopped(adapter->netdev) &&
atomic_read(&txq->used) < txq->len / 2) {
netif_wake_queue(adapter->netdev);
}
tx_stats(adapter)->be_tx_events++;
tx_stats(adapter)->be_tx_compl += tx_compl;
}
return 1;
}
void be_detect_dump_ue(struct be_adapter *adapter)
{
u32 ue_status_lo, ue_status_hi, ue_status_lo_mask, ue_status_hi_mask;
u32 i;
pci_read_config_dword(adapter->pdev,
PCICFG_UE_STATUS_LOW, &ue_status_lo);
pci_read_config_dword(adapter->pdev,
PCICFG_UE_STATUS_HIGH, &ue_status_hi);
pci_read_config_dword(adapter->pdev,
PCICFG_UE_STATUS_LOW_MASK, &ue_status_lo_mask);
pci_read_config_dword(adapter->pdev,
PCICFG_UE_STATUS_HI_MASK, &ue_status_hi_mask);
ue_status_lo = (ue_status_lo & (~ue_status_lo_mask));
ue_status_hi = (ue_status_hi & (~ue_status_hi_mask));
if (ue_status_lo || ue_status_hi) {
adapter->ue_detected = true;
dev_err(&adapter->pdev->dev, "UE Detected!!\n");
}
if (ue_status_lo) {
for (i = 0; ue_status_lo; ue_status_lo >>= 1, i++) {
if (ue_status_lo & 1)
dev_err(&adapter->pdev->dev,
"UE: %s bit set\n", ue_status_low_desc[i]);
}
}
if (ue_status_hi) {
for (i = 0; ue_status_hi; ue_status_hi >>= 1, i++) {
if (ue_status_hi & 1)
dev_err(&adapter->pdev->dev,
"UE: %s bit set\n", ue_status_hi_desc[i]);
}
}
}
static void be_worker(struct work_struct *work)
{
struct be_adapter *adapter =
container_of(work, struct be_adapter, work.work);
struct be_rx_obj *rxo;
int i;
/* when interrupts are not yet enabled, just reap any pending
* mcc completions */
if (!netif_running(adapter->netdev)) {
int mcc_compl, status = 0;
mcc_compl = be_process_mcc(adapter, &status);
if (mcc_compl) {
struct be_mcc_obj *mcc_obj = &adapter->mcc_obj;
be_cq_notify(adapter, mcc_obj->cq.id, false, mcc_compl);
}
goto reschedule;
}
if (!adapter->stats_ioctl_sent)
be_cmd_get_stats(adapter, &adapter->stats_cmd);
be_tx_rate_update(adapter);
for_all_rx_queues(adapter, rxo, i) {
be_rx_rate_update(rxo);
be_rx_eqd_update(adapter, rxo);
if (rxo->rx_post_starved) {
rxo->rx_post_starved = false;
be_post_rx_frags(rxo);
}
}
if (!adapter->ue_detected)
be_detect_dump_ue(adapter);
reschedule:
schedule_delayed_work(&adapter->work, msecs_to_jiffies(1000));
}
static void be_msix_disable(struct be_adapter *adapter)
{
if (adapter->msix_enabled) {
pci_disable_msix(adapter->pdev);
adapter->msix_enabled = false;
}
}
static int be_num_rxqs_get(struct be_adapter *adapter)
{
if (multi_rxq && (adapter->function_caps & BE_FUNCTION_CAPS_RSS) &&
!adapter->sriov_enabled && !(adapter->function_mode & 0x400)) {
return 1 + MAX_RSS_QS; /* one default non-RSS queue */
} else {
dev_warn(&adapter->pdev->dev,
"No support for multiple RX queues\n");
return 1;
}
}
static void be_msix_enable(struct be_adapter *adapter)
{
#define BE_MIN_MSIX_VECTORS (1 + 1) /* Rx + Tx */
int i, status;
adapter->num_rx_qs = be_num_rxqs_get(adapter);
for (i = 0; i < (adapter->num_rx_qs + 1); i++)
adapter->msix_entries[i].entry = i;
status = pci_enable_msix(adapter->pdev, adapter->msix_entries,
adapter->num_rx_qs + 1);
if (status == 0) {
goto done;
} else if (status >= BE_MIN_MSIX_VECTORS) {
if (pci_enable_msix(adapter->pdev, adapter->msix_entries,
status) == 0) {
adapter->num_rx_qs = status - 1;
dev_warn(&adapter->pdev->dev,
"Could alloc only %d MSIx vectors. "
"Using %d RX Qs\n", status, adapter->num_rx_qs);
goto done;
}
}
return;
done:
adapter->msix_enabled = true;
}
static void be_sriov_enable(struct be_adapter *adapter)
{
be_check_sriov_fn_type(adapter);
#ifdef CONFIG_PCI_IOV
if (be_physfn(adapter) && num_vfs) {
int status;
status = pci_enable_sriov(adapter->pdev, num_vfs);
adapter->sriov_enabled = status ? false : true;
}
#endif
}
static void be_sriov_disable(struct be_adapter *adapter)
{
#ifdef CONFIG_PCI_IOV
if (adapter->sriov_enabled) {
pci_disable_sriov(adapter->pdev);
adapter->sriov_enabled = false;
}
#endif
}
static inline int be_msix_vec_get(struct be_adapter *adapter, u32 eq_id)
{
return adapter->msix_entries[
be_evt_bit_get(adapter, eq_id)].vector;
}
static int be_request_irq(struct be_adapter *adapter,
struct be_eq_obj *eq_obj,
void *handler, char *desc, void *context)
{
struct net_device *netdev = adapter->netdev;
int vec;
sprintf(eq_obj->desc, "%s-%s", netdev->name, desc);
vec = be_msix_vec_get(adapter, eq_obj->q.id);
return request_irq(vec, handler, 0, eq_obj->desc, context);
}
static void be_free_irq(struct be_adapter *adapter, struct be_eq_obj *eq_obj,
void *context)
{
int vec = be_msix_vec_get(adapter, eq_obj->q.id);
free_irq(vec, context);
}
static int be_msix_register(struct be_adapter *adapter)
{
struct be_rx_obj *rxo;
int status, i;
char qname[10];
status = be_request_irq(adapter, &adapter->tx_eq, be_msix_tx_mcc, "tx",
adapter);
if (status)
goto err;
for_all_rx_queues(adapter, rxo, i) {
sprintf(qname, "rxq%d", i);
status = be_request_irq(adapter, &rxo->rx_eq, be_msix_rx,
qname, rxo);
if (status)
goto err_msix;
}
return 0;
err_msix:
be_free_irq(adapter, &adapter->tx_eq, adapter);
for (i--, rxo = &adapter->rx_obj[i]; i >= 0; i--, rxo--)
be_free_irq(adapter, &rxo->rx_eq, rxo);
err:
dev_warn(&adapter->pdev->dev,
"MSIX Request IRQ failed - err %d\n", status);
pci_disable_msix(adapter->pdev);
adapter->msix_enabled = false;
return status;
}
static int be_irq_register(struct be_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
int status;
if (adapter->msix_enabled) {
status = be_msix_register(adapter);
if (status == 0)
goto done;
/* INTx is not supported for VF */
if (!be_physfn(adapter))
return status;
}
/* INTx */
netdev->irq = adapter->pdev->irq;
status = request_irq(netdev->irq, be_intx, IRQF_SHARED, netdev->name,
adapter);
if (status) {
dev_err(&adapter->pdev->dev,
"INTx request IRQ failed - err %d\n", status);
return status;
}
done:
adapter->isr_registered = true;
return 0;
}
static void be_irq_unregister(struct be_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct be_rx_obj *rxo;
int i;
if (!adapter->isr_registered)
return;
/* INTx */
if (!adapter->msix_enabled) {
free_irq(netdev->irq, adapter);
goto done;
}
/* MSIx */
be_free_irq(adapter, &adapter->tx_eq, adapter);
for_all_rx_queues(adapter, rxo, i)
be_free_irq(adapter, &rxo->rx_eq, rxo);
done:
adapter->isr_registered = false;
}
static int be_close(struct net_device *netdev)
{
struct be_adapter *adapter = netdev_priv(netdev);
struct be_rx_obj *rxo;
struct be_eq_obj *tx_eq = &adapter->tx_eq;
int vec, i;
be_async_mcc_disable(adapter);
netif_stop_queue(netdev);
netif_carrier_off(netdev);
adapter->link_up = false;
be_intr_set(adapter, false);
if (adapter->msix_enabled) {
vec = be_msix_vec_get(adapter, tx_eq->q.id);
synchronize_irq(vec);
for_all_rx_queues(adapter, rxo, i) {
vec = be_msix_vec_get(adapter, rxo->rx_eq.q.id);
synchronize_irq(vec);
}
} else {
synchronize_irq(netdev->irq);
}
be_irq_unregister(adapter);
for_all_rx_queues(adapter, rxo, i)
napi_disable(&rxo->rx_eq.napi);
napi_disable(&tx_eq->napi);
/* Wait for all pending tx completions to arrive so that
* all tx skbs are freed.
*/
be_tx_compl_clean(adapter);
return 0;
}
static int be_open(struct net_device *netdev)
{
struct be_adapter *adapter = netdev_priv(netdev);
struct be_eq_obj *tx_eq = &adapter->tx_eq;
struct be_rx_obj *rxo;
bool link_up;
int status, i;
u8 mac_speed;
u16 link_speed;
for_all_rx_queues(adapter, rxo, i) {
be_post_rx_frags(rxo);
napi_enable(&rxo->rx_eq.napi);
}
napi_enable(&tx_eq->napi);
be_irq_register(adapter);
be_intr_set(adapter, true);
/* The evt queues are created in unarmed state; arm them */
for_all_rx_queues(adapter, rxo, i) {
be_eq_notify(adapter, rxo->rx_eq.q.id, true, false, 0);
be_cq_notify(adapter, rxo->cq.id, true, 0);
}
be_eq_notify(adapter, tx_eq->q.id, true, false, 0);
/* Now that interrupts are on we can process async mcc */
be_async_mcc_enable(adapter);
status = be_cmd_link_status_query(adapter, &link_up, &mac_speed,
&link_speed);
if (status)
goto err;
be_link_status_update(adapter, link_up);
if (be_physfn(adapter)) {
status = be_vid_config(adapter, false, 0);
if (status)
goto err;
status = be_cmd_set_flow_control(adapter,
adapter->tx_fc, adapter->rx_fc);
if (status)
goto err;
}
return 0;
err:
be_close(adapter->netdev);
return -EIO;
}
static int be_setup_wol(struct be_adapter *adapter, bool enable)
{
struct be_dma_mem cmd;
int status = 0;
u8 mac[ETH_ALEN];
memset(mac, 0, ETH_ALEN);
cmd.size = sizeof(struct be_cmd_req_acpi_wol_magic_config);
cmd.va = pci_alloc_consistent(adapter->pdev, cmd.size, &cmd.dma);
if (cmd.va == NULL)
return -1;
memset(cmd.va, 0, cmd.size);
if (enable) {
status = pci_write_config_dword(adapter->pdev,
PCICFG_PM_CONTROL_OFFSET, PCICFG_PM_CONTROL_MASK);
if (status) {
dev_err(&adapter->pdev->dev,
"Could not enable Wake-on-lan\n");
pci_free_consistent(adapter->pdev, cmd.size, cmd.va,
cmd.dma);
return status;
}
status = be_cmd_enable_magic_wol(adapter,
adapter->netdev->dev_addr, &cmd);
pci_enable_wake(adapter->pdev, PCI_D3hot, 1);
pci_enable_wake(adapter->pdev, PCI_D3cold, 1);
} else {
status = be_cmd_enable_magic_wol(adapter, mac, &cmd);
pci_enable_wake(adapter->pdev, PCI_D3hot, 0);
pci_enable_wake(adapter->pdev, PCI_D3cold, 0);
}
pci_free_consistent(adapter->pdev, cmd.size, cmd.va, cmd.dma);
return status;
}
/*
* Generate a seed MAC address from the PF MAC Address using jhash.
* MAC Address for VFs are assigned incrementally starting from the seed.
* These addresses are programmed in the ASIC by the PF and the VF driver
* queries for the MAC address during its probe.
*/
static inline int be_vf_eth_addr_config(struct be_adapter *adapter)
{
u32 vf = 0;
int status = 0;
u8 mac[ETH_ALEN];
be_vf_eth_addr_generate(adapter, mac);
for (vf = 0; vf < num_vfs; vf++) {
status = be_cmd_pmac_add(adapter, mac,
adapter->vf_cfg[vf].vf_if_handle,
&adapter->vf_cfg[vf].vf_pmac_id);
if (status)
dev_err(&adapter->pdev->dev,
"Mac address add failed for VF %d\n", vf);
else
memcpy(adapter->vf_cfg[vf].vf_mac_addr, mac, ETH_ALEN);
mac[5] += 1;
}
return status;
}
static inline void be_vf_eth_addr_rem(struct be_adapter *adapter)
{
u32 vf;
for (vf = 0; vf < num_vfs; vf++) {
if (adapter->vf_cfg[vf].vf_pmac_id != BE_INVALID_PMAC_ID)
be_cmd_pmac_del(adapter,
adapter->vf_cfg[vf].vf_if_handle,
adapter->vf_cfg[vf].vf_pmac_id);
}
}
static int be_setup(struct be_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
u32 cap_flags, en_flags, vf = 0;
int status;
u8 mac[ETH_ALEN];
cap_flags = en_flags = BE_IF_FLAGS_UNTAGGED | BE_IF_FLAGS_BROADCAST;
if (be_physfn(adapter)) {
cap_flags |= BE_IF_FLAGS_MCAST_PROMISCUOUS |
BE_IF_FLAGS_PROMISCUOUS |
BE_IF_FLAGS_PASS_L3L4_ERRORS;
en_flags |= BE_IF_FLAGS_PASS_L3L4_ERRORS;
if (be_multi_rxq(adapter)) {
cap_flags |= BE_IF_FLAGS_RSS;
en_flags |= BE_IF_FLAGS_RSS;
}
}
status = be_cmd_if_create(adapter, cap_flags, en_flags,
netdev->dev_addr, false/* pmac_invalid */,
&adapter->if_handle, &adapter->pmac_id, 0);
if (status != 0)
goto do_none;
if (be_physfn(adapter)) {
while (vf < num_vfs) {
cap_flags = en_flags = BE_IF_FLAGS_UNTAGGED
| BE_IF_FLAGS_BROADCAST;
status = be_cmd_if_create(adapter, cap_flags, en_flags,
mac, true,
&adapter->vf_cfg[vf].vf_if_handle,
NULL, vf+1);
if (status) {
dev_err(&adapter->pdev->dev,
"Interface Create failed for VF %d\n", vf);
goto if_destroy;
}
adapter->vf_cfg[vf].vf_pmac_id = BE_INVALID_PMAC_ID;
vf++;
}
} else if (!be_physfn(adapter)) {
status = be_cmd_mac_addr_query(adapter, mac,
MAC_ADDRESS_TYPE_NETWORK, false, adapter->if_handle);
if (!status) {
memcpy(adapter->netdev->dev_addr, mac, ETH_ALEN);
memcpy(adapter->netdev->perm_addr, mac, ETH_ALEN);
}
}
status = be_tx_queues_create(adapter);
if (status != 0)
goto if_destroy;
status = be_rx_queues_create(adapter);
if (status != 0)
goto tx_qs_destroy;
status = be_mcc_queues_create(adapter);
if (status != 0)
goto rx_qs_destroy;
if (be_physfn(adapter)) {
status = be_vf_eth_addr_config(adapter);
if (status)
goto mcc_q_destroy;
}
adapter->link_speed = -1;
return 0;
mcc_q_destroy:
if (be_physfn(adapter))
be_vf_eth_addr_rem(adapter);
be_mcc_queues_destroy(adapter);
rx_qs_destroy:
be_rx_queues_destroy(adapter);
tx_qs_destroy:
be_tx_queues_destroy(adapter);
if_destroy:
for (vf = 0; vf < num_vfs; vf++)
if (adapter->vf_cfg[vf].vf_if_handle)
be_cmd_if_destroy(adapter,
adapter->vf_cfg[vf].vf_if_handle);
be_cmd_if_destroy(adapter, adapter->if_handle);
do_none:
return status;
}
static int be_clear(struct be_adapter *adapter)
{
if (be_physfn(adapter))
be_vf_eth_addr_rem(adapter);
be_mcc_queues_destroy(adapter);
be_rx_queues_destroy(adapter);
be_tx_queues_destroy(adapter);
be_cmd_if_destroy(adapter, adapter->if_handle);
/* tell fw we're done with firing cmds */
be_cmd_fw_clean(adapter);
return 0;
}
#define FW_FILE_HDR_SIGN "ServerEngines Corp. "
static bool be_flash_redboot(struct be_adapter *adapter,
const u8 *p, u32 img_start, int image_size,
int hdr_size)
{
u32 crc_offset;
u8 flashed_crc[4];
int status;
crc_offset = hdr_size + img_start + image_size - 4;
p += crc_offset;
status = be_cmd_get_flash_crc(adapter, flashed_crc,
(image_size - 4));
if (status) {
dev_err(&adapter->pdev->dev,
"could not get crc from flash, not flashing redboot\n");
return false;
}
/*update redboot only if crc does not match*/
if (!memcmp(flashed_crc, p, 4))
return false;
else
return true;
}
static int be_flash_data(struct be_adapter *adapter,
const struct firmware *fw,
struct be_dma_mem *flash_cmd, int num_of_images)
{
int status = 0, i, filehdr_size = 0;
u32 total_bytes = 0, flash_op;
int num_bytes;
const u8 *p = fw->data;
struct be_cmd_write_flashrom *req = flash_cmd->va;
struct flash_comp *pflashcomp;
int num_comp;
struct flash_comp gen3_flash_types[9] = {
{ FLASH_iSCSI_PRIMARY_IMAGE_START_g3, IMG_TYPE_ISCSI_ACTIVE,
FLASH_IMAGE_MAX_SIZE_g3},
{ FLASH_REDBOOT_START_g3, IMG_TYPE_REDBOOT,
FLASH_REDBOOT_IMAGE_MAX_SIZE_g3},
{ FLASH_iSCSI_BIOS_START_g3, IMG_TYPE_BIOS,
FLASH_BIOS_IMAGE_MAX_SIZE_g3},
{ FLASH_PXE_BIOS_START_g3, IMG_TYPE_PXE_BIOS,
FLASH_BIOS_IMAGE_MAX_SIZE_g3},
{ FLASH_FCoE_BIOS_START_g3, IMG_TYPE_FCOE_BIOS,
FLASH_BIOS_IMAGE_MAX_SIZE_g3},
{ FLASH_iSCSI_BACKUP_IMAGE_START_g3, IMG_TYPE_ISCSI_BACKUP,
FLASH_IMAGE_MAX_SIZE_g3},
{ FLASH_FCoE_PRIMARY_IMAGE_START_g3, IMG_TYPE_FCOE_FW_ACTIVE,
FLASH_IMAGE_MAX_SIZE_g3},
{ FLASH_FCoE_BACKUP_IMAGE_START_g3, IMG_TYPE_FCOE_FW_BACKUP,
FLASH_IMAGE_MAX_SIZE_g3},
{ FLASH_NCSI_START_g3, IMG_TYPE_NCSI_FW,
FLASH_NCSI_IMAGE_MAX_SIZE_g3}
};
struct flash_comp gen2_flash_types[8] = {
{ FLASH_iSCSI_PRIMARY_IMAGE_START_g2, IMG_TYPE_ISCSI_ACTIVE,
FLASH_IMAGE_MAX_SIZE_g2},
{ FLASH_REDBOOT_START_g2, IMG_TYPE_REDBOOT,
FLASH_REDBOOT_IMAGE_MAX_SIZE_g2},
{ FLASH_iSCSI_BIOS_START_g2, IMG_TYPE_BIOS,
FLASH_BIOS_IMAGE_MAX_SIZE_g2},
{ FLASH_PXE_BIOS_START_g2, IMG_TYPE_PXE_BIOS,
FLASH_BIOS_IMAGE_MAX_SIZE_g2},
{ FLASH_FCoE_BIOS_START_g2, IMG_TYPE_FCOE_BIOS,
FLASH_BIOS_IMAGE_MAX_SIZE_g2},
{ FLASH_iSCSI_BACKUP_IMAGE_START_g2, IMG_TYPE_ISCSI_BACKUP,
FLASH_IMAGE_MAX_SIZE_g2},
{ FLASH_FCoE_PRIMARY_IMAGE_START_g2, IMG_TYPE_FCOE_FW_ACTIVE,
FLASH_IMAGE_MAX_SIZE_g2},
{ FLASH_FCoE_BACKUP_IMAGE_START_g2, IMG_TYPE_FCOE_FW_BACKUP,
FLASH_IMAGE_MAX_SIZE_g2}
};
if (adapter->generation == BE_GEN3) {
pflashcomp = gen3_flash_types;
filehdr_size = sizeof(struct flash_file_hdr_g3);
num_comp = 9;
} else {
pflashcomp = gen2_flash_types;
filehdr_size = sizeof(struct flash_file_hdr_g2);
num_comp = 8;
}
for (i = 0; i < num_comp; i++) {
if ((pflashcomp[i].optype == IMG_TYPE_NCSI_FW) &&
memcmp(adapter->fw_ver, "3.102.148.0", 11) < 0)
continue;
if ((pflashcomp[i].optype == IMG_TYPE_REDBOOT) &&
(!be_flash_redboot(adapter, fw->data,
pflashcomp[i].offset, pflashcomp[i].size,
filehdr_size)))
continue;
p = fw->data;
p += filehdr_size + pflashcomp[i].offset
+ (num_of_images * sizeof(struct image_hdr));
if (p + pflashcomp[i].size > fw->data + fw->size)
return -1;
total_bytes = pflashcomp[i].size;
while (total_bytes) {
if (total_bytes > 32*1024)
num_bytes = 32*1024;
else
num_bytes = total_bytes;
total_bytes -= num_bytes;
if (!total_bytes)
flash_op = FLASHROM_OPER_FLASH;
else
flash_op = FLASHROM_OPER_SAVE;
memcpy(req->params.data_buf, p, num_bytes);
p += num_bytes;
status = be_cmd_write_flashrom(adapter, flash_cmd,
pflashcomp[i].optype, flash_op, num_bytes);
if (status) {
dev_err(&adapter->pdev->dev,
"cmd to write to flash rom failed.\n");
return -1;
}
yield();
}
}
return 0;
}
static int get_ufigen_type(struct flash_file_hdr_g2 *fhdr)
{
if (fhdr == NULL)
return 0;
if (fhdr->build[0] == '3')
return BE_GEN3;
else if (fhdr->build[0] == '2')
return BE_GEN2;
else
return 0;
}
int be_load_fw(struct be_adapter *adapter, u8 *func)
{
char fw_file[ETHTOOL_FLASH_MAX_FILENAME];
const struct firmware *fw;
struct flash_file_hdr_g2 *fhdr;
struct flash_file_hdr_g3 *fhdr3;
struct image_hdr *img_hdr_ptr = NULL;
struct be_dma_mem flash_cmd;
int status, i = 0, num_imgs = 0;
const u8 *p;
strcpy(fw_file, func);
status = request_firmware(&fw, fw_file, &adapter->pdev->dev);
if (status)
goto fw_exit;
p = fw->data;
fhdr = (struct flash_file_hdr_g2 *) p;
dev_info(&adapter->pdev->dev, "Flashing firmware file %s\n", fw_file);
flash_cmd.size = sizeof(struct be_cmd_write_flashrom) + 32*1024;
flash_cmd.va = pci_alloc_consistent(adapter->pdev, flash_cmd.size,
&flash_cmd.dma);
if (!flash_cmd.va) {
status = -ENOMEM;
dev_err(&adapter->pdev->dev,
"Memory allocation failure while flashing\n");
goto fw_exit;
}
if ((adapter->generation == BE_GEN3) &&
(get_ufigen_type(fhdr) == BE_GEN3)) {
fhdr3 = (struct flash_file_hdr_g3 *) fw->data;
num_imgs = le32_to_cpu(fhdr3->num_imgs);
for (i = 0; i < num_imgs; i++) {
img_hdr_ptr = (struct image_hdr *) (fw->data +
(sizeof(struct flash_file_hdr_g3) +
i * sizeof(struct image_hdr)));
if (le32_to_cpu(img_hdr_ptr->imageid) == 1)
status = be_flash_data(adapter, fw, &flash_cmd,
num_imgs);
}
} else if ((adapter->generation == BE_GEN2) &&
(get_ufigen_type(fhdr) == BE_GEN2)) {
status = be_flash_data(adapter, fw, &flash_cmd, 0);
} else {
dev_err(&adapter->pdev->dev,
"UFI and Interface are not compatible for flashing\n");
status = -1;
}
pci_free_consistent(adapter->pdev, flash_cmd.size, flash_cmd.va,
flash_cmd.dma);
if (status) {
dev_err(&adapter->pdev->dev, "Firmware load error\n");
goto fw_exit;
}
dev_info(&adapter->pdev->dev, "Firmware flashed successfully\n");
fw_exit:
release_firmware(fw);
return status;
}
static struct net_device_ops be_netdev_ops = {
.ndo_open = be_open,
.ndo_stop = be_close,
.ndo_start_xmit = be_xmit,
.ndo_set_rx_mode = be_set_multicast_list,
.ndo_set_mac_address = be_mac_addr_set,
.ndo_change_mtu = be_change_mtu,
.ndo_validate_addr = eth_validate_addr,
.ndo_vlan_rx_register = be_vlan_register,
.ndo_vlan_rx_add_vid = be_vlan_add_vid,
.ndo_vlan_rx_kill_vid = be_vlan_rem_vid,
.ndo_set_vf_mac = be_set_vf_mac,
.ndo_set_vf_vlan = be_set_vf_vlan,
.ndo_set_vf_tx_rate = be_set_vf_tx_rate,
.ndo_get_vf_config = be_get_vf_config
};
static void be_netdev_init(struct net_device *netdev)
{
struct be_adapter *adapter = netdev_priv(netdev);
struct be_rx_obj *rxo;
int i;
netdev->features |= NETIF_F_SG | NETIF_F_HW_VLAN_RX | NETIF_F_TSO |
NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_FILTER | NETIF_F_HW_CSUM |
NETIF_F_GRO | NETIF_F_TSO6;
netdev->vlan_features |= NETIF_F_SG | NETIF_F_TSO | NETIF_F_HW_CSUM;
netdev->flags |= IFF_MULTICAST;
adapter->rx_csum = true;
/* Default settings for Rx and Tx flow control */
adapter->rx_fc = true;
adapter->tx_fc = true;
netif_set_gso_max_size(netdev, 65535);
BE_SET_NETDEV_OPS(netdev, &be_netdev_ops);
SET_ETHTOOL_OPS(netdev, &be_ethtool_ops);
for_all_rx_queues(adapter, rxo, i)
netif_napi_add(netdev, &rxo->rx_eq.napi, be_poll_rx,
BE_NAPI_WEIGHT);
netif_napi_add(netdev, &adapter->tx_eq.napi, be_poll_tx_mcc,
BE_NAPI_WEIGHT);
netif_stop_queue(netdev);
}
static void be_unmap_pci_bars(struct be_adapter *adapter)
{
if (adapter->csr)
iounmap(adapter->csr);
if (adapter->db)
iounmap(adapter->db);
if (adapter->pcicfg && be_physfn(adapter))
iounmap(adapter->pcicfg);
}
static int be_map_pci_bars(struct be_adapter *adapter)
{
u8 __iomem *addr;
int pcicfg_reg, db_reg;
if (be_physfn(adapter)) {
addr = ioremap_nocache(pci_resource_start(adapter->pdev, 2),
pci_resource_len(adapter->pdev, 2));
if (addr == NULL)
return -ENOMEM;
adapter->csr = addr;
}
if (adapter->generation == BE_GEN2) {
pcicfg_reg = 1;
db_reg = 4;
} else {
pcicfg_reg = 0;
if (be_physfn(adapter))
db_reg = 4;
else
db_reg = 0;
}
addr = ioremap_nocache(pci_resource_start(adapter->pdev, db_reg),
pci_resource_len(adapter->pdev, db_reg));
if (addr == NULL)
goto pci_map_err;
adapter->db = addr;
if (be_physfn(adapter)) {
addr = ioremap_nocache(
pci_resource_start(adapter->pdev, pcicfg_reg),
pci_resource_len(adapter->pdev, pcicfg_reg));
if (addr == NULL)
goto pci_map_err;
adapter->pcicfg = addr;
} else
adapter->pcicfg = adapter->db + SRIOV_VF_PCICFG_OFFSET;
return 0;
pci_map_err:
be_unmap_pci_bars(adapter);
return -ENOMEM;
}
static void be_ctrl_cleanup(struct be_adapter *adapter)
{
struct be_dma_mem *mem = &adapter->mbox_mem_alloced;
be_unmap_pci_bars(adapter);
if (mem->va)
pci_free_consistent(adapter->pdev, mem->size,
mem->va, mem->dma);
mem = &adapter->mc_cmd_mem;
if (mem->va)
pci_free_consistent(adapter->pdev, mem->size,
mem->va, mem->dma);
}
static int be_ctrl_init(struct be_adapter *adapter)
{
struct be_dma_mem *mbox_mem_alloc = &adapter->mbox_mem_alloced;
struct be_dma_mem *mbox_mem_align = &adapter->mbox_mem;
struct be_dma_mem *mc_cmd_mem = &adapter->mc_cmd_mem;
int status;
status = be_map_pci_bars(adapter);
if (status)
goto done;
mbox_mem_alloc->size = sizeof(struct be_mcc_mailbox) + 16;
mbox_mem_alloc->va = pci_alloc_consistent(adapter->pdev,
mbox_mem_alloc->size, &mbox_mem_alloc->dma);
if (!mbox_mem_alloc->va) {
status = -ENOMEM;
goto unmap_pci_bars;
}
mbox_mem_align->size = sizeof(struct be_mcc_mailbox);
mbox_mem_align->va = PTR_ALIGN(mbox_mem_alloc->va, 16);
mbox_mem_align->dma = PTR_ALIGN(mbox_mem_alloc->dma, 16);
memset(mbox_mem_align->va, 0, sizeof(struct be_mcc_mailbox));
mc_cmd_mem->size = sizeof(struct be_cmd_req_mcast_mac_config);
mc_cmd_mem->va = pci_alloc_consistent(adapter->pdev, mc_cmd_mem->size,
&mc_cmd_mem->dma);
if (mc_cmd_mem->va == NULL) {
status = -ENOMEM;
goto free_mbox;
}
memset(mc_cmd_mem->va, 0, mc_cmd_mem->size);
spin_lock_init(&adapter->mbox_lock);
spin_lock_init(&adapter->mcc_lock);
spin_lock_init(&adapter->mcc_cq_lock);
init_completion(&adapter->flash_compl);
pci_save_state(adapter->pdev);
return 0;
free_mbox:
pci_free_consistent(adapter->pdev, mbox_mem_alloc->size,
mbox_mem_alloc->va, mbox_mem_alloc->dma);
unmap_pci_bars:
be_unmap_pci_bars(adapter);
done:
return status;
}
static void be_stats_cleanup(struct be_adapter *adapter)
{
struct be_dma_mem *cmd = &adapter->stats_cmd;
if (cmd->va)
pci_free_consistent(adapter->pdev, cmd->size,
cmd->va, cmd->dma);
}
static int be_stats_init(struct be_adapter *adapter)
{
struct be_dma_mem *cmd = &adapter->stats_cmd;
cmd->size = sizeof(struct be_cmd_req_get_stats);
cmd->va = pci_alloc_consistent(adapter->pdev, cmd->size, &cmd->dma);
if (cmd->va == NULL)
return -1;
memset(cmd->va, 0, cmd->size);
return 0;
}
static void __devexit be_remove(struct pci_dev *pdev)
{
struct be_adapter *adapter = pci_get_drvdata(pdev);
if (!adapter)
return;
cancel_delayed_work_sync(&adapter->work);
unregister_netdev(adapter->netdev);
be_clear(adapter);
be_stats_cleanup(adapter);
be_ctrl_cleanup(adapter);
be_sriov_disable(adapter);
be_msix_disable(adapter);
pci_set_drvdata(pdev, NULL);
pci_release_regions(pdev);
pci_disable_device(pdev);
free_netdev(adapter->netdev);
}
static int be_get_config(struct be_adapter *adapter)
{
int status;
u8 mac[ETH_ALEN];
status = be_cmd_get_fw_ver(adapter, adapter->fw_ver);
if (status)
return status;
status = be_cmd_query_fw_cfg(adapter, &adapter->port_num,
&adapter->function_mode, &adapter->function_caps);
if (status)
return status;
memset(mac, 0, ETH_ALEN);
if (be_physfn(adapter)) {
status = be_cmd_mac_addr_query(adapter, mac,
MAC_ADDRESS_TYPE_NETWORK, true /*permanent */, 0);
if (status)
return status;
if (!is_valid_ether_addr(mac))
return -EADDRNOTAVAIL;
memcpy(adapter->netdev->dev_addr, mac, ETH_ALEN);
memcpy(adapter->netdev->perm_addr, mac, ETH_ALEN);
}
if (adapter->function_mode & 0x400)
adapter->max_vlans = BE_NUM_VLANS_SUPPORTED/4;
else
adapter->max_vlans = BE_NUM_VLANS_SUPPORTED;
return 0;
}
static int __devinit be_probe(struct pci_dev *pdev,
const struct pci_device_id *pdev_id)
{
int status = 0;
struct be_adapter *adapter;
struct net_device *netdev;
status = pci_enable_device(pdev);
if (status)
goto do_none;
status = pci_request_regions(pdev, DRV_NAME);
if (status)
goto disable_dev;
pci_set_master(pdev);
netdev = alloc_etherdev(sizeof(struct be_adapter));
if (netdev == NULL) {
status = -ENOMEM;
goto rel_reg;
}
adapter = netdev_priv(netdev);
switch (pdev->device) {
case BE_DEVICE_ID1:
case OC_DEVICE_ID1:
adapter->generation = BE_GEN2;
break;
case BE_DEVICE_ID2:
case OC_DEVICE_ID2:
adapter->generation = BE_GEN3;
break;
default:
adapter->generation = 0;
}
adapter->pdev = pdev;
pci_set_drvdata(pdev, adapter);
adapter->netdev = netdev;
SET_NETDEV_DEV(netdev, &pdev->dev);
status = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
if (!status) {
netdev->features |= NETIF_F_HIGHDMA;
} else {
status = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if (status) {
dev_err(&pdev->dev, "Could not set PCI DMA Mask\n");
goto free_netdev;
}
}
be_sriov_enable(adapter);
status = be_ctrl_init(adapter);
if (status)
goto free_netdev;
/* sync up with fw's ready state */
if (be_physfn(adapter)) {
status = be_cmd_POST(adapter);
if (status)
goto ctrl_clean;
}
/* tell fw we're ready to fire cmds */
status = be_cmd_fw_init(adapter);
if (status)
goto ctrl_clean;
if (be_physfn(adapter)) {
status = be_cmd_reset_function(adapter);
if (status)
goto ctrl_clean;
}
status = be_stats_init(adapter);
if (status)
goto ctrl_clean;
status = be_get_config(adapter);
if (status)
goto stats_clean;
be_msix_enable(adapter);
INIT_DELAYED_WORK(&adapter->work, be_worker);
status = be_setup(adapter);
if (status)
goto msix_disable;
be_netdev_init(netdev);
status = register_netdev(netdev);
if (status != 0)
goto unsetup;
netif_carrier_off(netdev);
dev_info(&pdev->dev, "%s port %d\n", nic_name(pdev), adapter->port_num);
schedule_delayed_work(&adapter->work, msecs_to_jiffies(100));
return 0;
unsetup:
be_clear(adapter);
msix_disable:
be_msix_disable(adapter);
stats_clean:
be_stats_cleanup(adapter);
ctrl_clean:
be_ctrl_cleanup(adapter);
free_netdev:
be_sriov_disable(adapter);
free_netdev(adapter->netdev);
pci_set_drvdata(pdev, NULL);
rel_reg:
pci_release_regions(pdev);
disable_dev:
pci_disable_device(pdev);
do_none:
dev_err(&pdev->dev, "%s initialization failed\n", nic_name(pdev));
return status;
}
static int be_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct be_adapter *adapter = pci_get_drvdata(pdev);
struct net_device *netdev = adapter->netdev;
if (adapter->wol)
be_setup_wol(adapter, true);
netif_device_detach(netdev);
if (netif_running(netdev)) {
rtnl_lock();
be_close(netdev);
rtnl_unlock();
}
be_cmd_get_flow_control(adapter, &adapter->tx_fc, &adapter->rx_fc);
be_clear(adapter);
pci_save_state(pdev);
pci_disable_device(pdev);
pci_set_power_state(pdev, pci_choose_state(pdev, state));
return 0;
}
static int be_resume(struct pci_dev *pdev)
{
int status = 0;
struct be_adapter *adapter = pci_get_drvdata(pdev);
struct net_device *netdev = adapter->netdev;
netif_device_detach(netdev);
status = pci_enable_device(pdev);
if (status)
return status;
pci_set_power_state(pdev, 0);
pci_restore_state(pdev);
/* tell fw we're ready to fire cmds */
status = be_cmd_fw_init(adapter);
if (status)
return status;
be_setup(adapter);
if (netif_running(netdev)) {
rtnl_lock();
be_open(netdev);
rtnl_unlock();
}
netif_device_attach(netdev);
if (adapter->wol)
be_setup_wol(adapter, false);
return 0;
}
/*
* An FLR will stop BE from DMAing any data.
*/
static void be_shutdown(struct pci_dev *pdev)
{
struct be_adapter *adapter = pci_get_drvdata(pdev);
struct net_device *netdev = adapter->netdev;
netif_device_detach(netdev);
be_cmd_reset_function(adapter);
if (adapter->wol)
be_setup_wol(adapter, true);
pci_disable_device(pdev);
}
static pci_ers_result_t be_eeh_err_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
struct be_adapter *adapter = pci_get_drvdata(pdev);
struct net_device *netdev = adapter->netdev;
dev_err(&adapter->pdev->dev, "EEH error detected\n");
adapter->eeh_err = true;
netif_device_detach(netdev);
if (netif_running(netdev)) {
rtnl_lock();
be_close(netdev);
rtnl_unlock();
}
be_clear(adapter);
if (state == pci_channel_io_perm_failure)
return PCI_ERS_RESULT_DISCONNECT;
pci_disable_device(pdev);
return PCI_ERS_RESULT_NEED_RESET;
}
static pci_ers_result_t be_eeh_reset(struct pci_dev *pdev)
{
struct be_adapter *adapter = pci_get_drvdata(pdev);
int status;
dev_info(&adapter->pdev->dev, "EEH reset\n");
adapter->eeh_err = false;
status = pci_enable_device(pdev);
if (status)
return PCI_ERS_RESULT_DISCONNECT;
pci_set_master(pdev);
pci_set_power_state(pdev, 0);
pci_restore_state(pdev);
/* Check if card is ok and fw is ready */
status = be_cmd_POST(adapter);
if (status)
return PCI_ERS_RESULT_DISCONNECT;
return PCI_ERS_RESULT_RECOVERED;
}
static void be_eeh_resume(struct pci_dev *pdev)
{
int status = 0;
struct be_adapter *adapter = pci_get_drvdata(pdev);
struct net_device *netdev = adapter->netdev;
dev_info(&adapter->pdev->dev, "EEH resume\n");
pci_save_state(pdev);
/* tell fw we're ready to fire cmds */
status = be_cmd_fw_init(adapter);
if (status)
goto err;
status = be_setup(adapter);
if (status)
goto err;
if (netif_running(netdev)) {
status = be_open(netdev);
if (status)
goto err;
}
netif_device_attach(netdev);
return;
err:
dev_err(&adapter->pdev->dev, "EEH resume failed\n");
}
static struct pci_error_handlers be_eeh_handlers = {
.error_detected = be_eeh_err_detected,
.slot_reset = be_eeh_reset,
.resume = be_eeh_resume,
};
static struct pci_driver be_driver = {
.name = DRV_NAME,
.id_table = be_dev_ids,
.probe = be_probe,
.remove = be_remove,
.suspend = be_suspend,
.resume = be_resume,
.shutdown = be_shutdown,
.err_handler = &be_eeh_handlers
};
static int __init be_init_module(void)
{
if (rx_frag_size != 8192 && rx_frag_size != 4096 &&
rx_frag_size != 2048) {
printk(KERN_WARNING DRV_NAME
" : Module param rx_frag_size must be 2048/4096/8192."
" Using 2048\n");
rx_frag_size = 2048;
}
if (num_vfs > 32) {
printk(KERN_WARNING DRV_NAME
" : Module param num_vfs must not be greater than 32."
"Using 32\n");
num_vfs = 32;
}
return pci_register_driver(&be_driver);
}
module_init(be_init_module);
static void __exit be_exit_module(void)
{
pci_unregister_driver(&be_driver);
}
module_exit(be_exit_module);