1
linux/drivers/net/eexpress.c
Jeff Garzik 28fc1f5a0c [netdrvr] irq handler minor cleanups in several drivers
* use irq_handler_t where appropriate

* no need to use 'irq' function arg, its already stored in a data struct

* rename irq handler 'irq' argument to 'dummy', where the function
  has been analyzed and proven not to use its first argument.

* remove always-false "dev_id == NULL" test from irq handlers

* remove pointless casts from void*

* declance: irq argument is not const

* add KERN_xxx printk prefix

* fix minor whitespace weirdness

Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
2008-01-28 15:03:40 -08:00

1720 lines
45 KiB
C

/* Intel EtherExpress 16 device driver for Linux
*
* Written by John Sullivan, 1995
* based on original code by Donald Becker, with changes by
* Alan Cox and Pauline Middelink.
*
* Support for 8-bit mode by Zoltan Szilagyi <zoltans@cs.arizona.edu>
*
* Many modifications, and currently maintained, by
* Philip Blundell <philb@gnu.org>
* Added the Compaq LTE Alan Cox <alan@redhat.com>
* Added MCA support Adam Fritzler <mid@auk.cx>
*
* Note - this driver is experimental still - it has problems on faster
* machines. Someone needs to sit down and go through it line by line with
* a databook...
*/
/* The EtherExpress 16 is a fairly simple card, based on a shared-memory
* design using the i82586 Ethernet coprocessor. It bears no relationship,
* as far as I know, to the similarly-named "EtherExpress Pro" range.
*
* Historically, Linux support for these cards has been very bad. However,
* things seem to be getting better slowly.
*/
/* If your card is confused about what sort of interface it has (eg it
* persistently reports "10baseT" when none is fitted), running 'SOFTSET /BART'
* or 'SOFTSET /LISA' from DOS seems to help.
*/
/* Here's the scoop on memory mapping.
*
* There are three ways to access EtherExpress card memory: either using the
* shared-memory mapping, or using PIO through the dataport, or using PIO
* through the "shadow memory" ports.
*
* The shadow memory system works by having the card map some of its memory
* as follows:
*
* (the low five bits of the SMPTR are ignored)
*
* base+0x4000..400f memory at SMPTR+0..15
* base+0x8000..800f memory at SMPTR+16..31
* base+0xc000..c007 dubious stuff (memory at SMPTR+16..23 apparently)
* base+0xc008..c00f memory at 0x0008..0x000f
*
* This last set (the one at c008) is particularly handy because the SCB
* lives at 0x0008. So that set of ports gives us easy random access to data
* in the SCB without having to mess around setting up pointers and the like.
* We always use this method to access the SCB (via the scb_xx() functions).
*
* Dataport access works by aiming the appropriate (read or write) pointer
* at the first address you're interested in, and then reading or writing from
* the dataport. The pointers auto-increment after each transfer. We use
* this for data transfer.
*
* We don't use the shared-memory system because it allegedly doesn't work on
* all cards, and because it's a bit more prone to go wrong (it's one more
* thing to configure...).
*/
/* Known bugs:
*
* - The card seems to want to give us two interrupts every time something
* happens, where just one would be better.
*/
/*
*
* Note by Zoltan Szilagyi 10-12-96:
*
* I've succeeded in eliminating the "CU wedged" messages, and hence the
* lockups, which were only occurring with cards running in 8-bit mode ("force
* 8-bit operation" in Intel's SoftSet utility). This version of the driver
* sets the 82586 and the ASIC to 8-bit mode at startup; it also stops the
* CU before submitting a packet for transmission, and then restarts it as soon
* as the process of handing the packet is complete. This is definitely an
* unnecessary slowdown if the card is running in 16-bit mode; therefore one
* should detect 16-bit vs 8-bit mode from the EEPROM settings and act
* accordingly. In 8-bit mode with this bugfix I'm getting about 150 K/s for
* ftp's, which is significantly better than I get in DOS, so the overhead of
* stopping and restarting the CU with each transmit is not prohibitive in
* practice.
*
* Update by David Woodhouse 11/5/99:
*
* I've seen "CU wedged" messages in 16-bit mode, on the Alpha architecture.
* I assume that this is because 16-bit accesses are actually handled as two
* 8-bit accesses.
*/
#ifdef __alpha__
#define LOCKUP16 1
#endif
#ifndef LOCKUP16
#define LOCKUP16 0
#endif
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/string.h>
#include <linux/in.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/slab.h>
#include <linux/mca-legacy.h>
#include <linux/spinlock.h>
#include <linux/bitops.h>
#include <linux/jiffies.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/irq.h>
#ifndef NET_DEBUG
#define NET_DEBUG 4
#endif
#include "eexpress.h"
#define EEXP_IO_EXTENT 16
/*
* Private data declarations
*/
struct net_local
{
unsigned long last_tx; /* jiffies when last transmit started */
unsigned long init_time; /* jiffies when eexp_hw_init586 called */
unsigned short rx_first; /* first rx buf, same as RX_BUF_START */
unsigned short rx_last; /* last rx buf */
unsigned short rx_ptr; /* first rx buf to look at */
unsigned short tx_head; /* next free tx buf */
unsigned short tx_reap; /* first in-use tx buf */
unsigned short tx_tail; /* previous tx buf to tx_head */
unsigned short tx_link; /* last known-executing tx buf */
unsigned short last_tx_restart; /* set to tx_link when we
restart the CU */
unsigned char started;
unsigned short rx_buf_start;
unsigned short rx_buf_end;
unsigned short num_tx_bufs;
unsigned short num_rx_bufs;
unsigned char width; /* 0 for 16bit, 1 for 8bit */
unsigned char was_promisc;
unsigned char old_mc_count;
spinlock_t lock;
};
/* This is the code and data that is downloaded to the EtherExpress card's
* memory at boot time.
*/
static unsigned short start_code[] = {
/* 0x0000 */
0x0001, /* ISCP: busy - cleared after reset */
0x0008,0x0000,0x0000, /* offset,address (lo,hi) of SCB */
0x0000,0x0000, /* SCB: status, commands */
0x0000,0x0000, /* links to first command block,
first receive descriptor */
0x0000,0x0000, /* CRC error, alignment error counts */
0x0000,0x0000, /* out of resources, overrun error counts */
0x0000,0x0000, /* pad */
0x0000,0x0000,
/* 0x20 -- start of 82586 CU program */
#define CONF_LINK 0x20
0x0000,Cmd_Config,
0x0032, /* link to next command */
0x080c, /* 12 bytes follow : fifo threshold=8 */
0x2e40, /* don't rx bad frames
* SRDY/ARDY => ext. sync. : preamble len=8
* take addresses from data buffers
* 6 bytes/address
*/
0x6000, /* default backoff method & priority
* interframe spacing = 0x60 */
0xf200, /* slot time=0x200
* max collision retry = 0xf */
#define CONF_PROMISC 0x2e
0x0000, /* no HDLC : normal CRC : enable broadcast
* disable promiscuous/multicast modes */
0x003c, /* minimum frame length = 60 octets) */
0x0000,Cmd_SetAddr,
0x003e, /* link to next command */
#define CONF_HWADDR 0x38
0x0000,0x0000,0x0000, /* hardware address placed here */
0x0000,Cmd_MCast,
0x0076, /* link to next command */
#define CONF_NR_MULTICAST 0x44
0x0000, /* number of multicast addresses */
#define CONF_MULTICAST 0x46
0x0000, 0x0000, 0x0000, /* some addresses */
0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000,
#define CONF_DIAG_RESULT 0x76
0x0000, Cmd_Diag,
0x007c, /* link to next command */
0x0000,Cmd_TDR|Cmd_INT,
0x0084,
#define CONF_TDR_RESULT 0x82
0x0000,
0x0000,Cmd_END|Cmd_Nop, /* end of configure sequence */
0x0084 /* dummy link */
};
/* maps irq number to EtherExpress magic value */
static char irqrmap[] = { 0,0,1,2,3,4,0,0,0,1,5,6,0,0,0,0 };
#ifdef CONFIG_MCA_LEGACY
/* mapping of the first four bits of the second POS register */
static unsigned short mca_iomap[] = {
0x270, 0x260, 0x250, 0x240, 0x230, 0x220, 0x210, 0x200,
0x370, 0x360, 0x350, 0x340, 0x330, 0x320, 0x310, 0x300
};
/* bits 5-7 of the second POS register */
static char mca_irqmap[] = { 12, 9, 3, 4, 5, 10, 11, 15 };
#endif
/*
* Prototypes for Linux interface
*/
static int eexp_open(struct net_device *dev);
static int eexp_close(struct net_device *dev);
static void eexp_timeout(struct net_device *dev);
static int eexp_xmit(struct sk_buff *buf, struct net_device *dev);
static irqreturn_t eexp_irq(int irq, void *dev_addr);
static void eexp_set_multicast(struct net_device *dev);
/*
* Prototypes for hardware access functions
*/
static void eexp_hw_rx_pio(struct net_device *dev);
static void eexp_hw_tx_pio(struct net_device *dev, unsigned short *buf,
unsigned short len);
static int eexp_hw_probe(struct net_device *dev,unsigned short ioaddr);
static unsigned short eexp_hw_readeeprom(unsigned short ioaddr,
unsigned char location);
static unsigned short eexp_hw_lasttxstat(struct net_device *dev);
static void eexp_hw_txrestart(struct net_device *dev);
static void eexp_hw_txinit (struct net_device *dev);
static void eexp_hw_rxinit (struct net_device *dev);
static void eexp_hw_init586 (struct net_device *dev);
static void eexp_setup_filter (struct net_device *dev);
static char *eexp_ifmap[]={"AUI", "BNC", "RJ45"};
enum eexp_iftype {AUI=0, BNC=1, TPE=2};
#define STARTED_RU 2
#define STARTED_CU 1
/*
* Primitive hardware access functions.
*/
static inline unsigned short scb_status(struct net_device *dev)
{
return inw(dev->base_addr + 0xc008);
}
static inline unsigned short scb_rdcmd(struct net_device *dev)
{
return inw(dev->base_addr + 0xc00a);
}
static inline void scb_command(struct net_device *dev, unsigned short cmd)
{
outw(cmd, dev->base_addr + 0xc00a);
}
static inline void scb_wrcbl(struct net_device *dev, unsigned short val)
{
outw(val, dev->base_addr + 0xc00c);
}
static inline void scb_wrrfa(struct net_device *dev, unsigned short val)
{
outw(val, dev->base_addr + 0xc00e);
}
static inline void set_loopback(struct net_device *dev)
{
outb(inb(dev->base_addr + Config) | 2, dev->base_addr + Config);
}
static inline void clear_loopback(struct net_device *dev)
{
outb(inb(dev->base_addr + Config) & ~2, dev->base_addr + Config);
}
static inline unsigned short int SHADOW(short int addr)
{
addr &= 0x1f;
if (addr > 0xf) addr += 0x3ff0;
return addr + 0x4000;
}
/*
* Linux interface
*/
/*
* checks for presence of EtherExpress card
*/
static int __init do_express_probe(struct net_device *dev)
{
unsigned short *port;
static unsigned short ports[] = { 0x240,0x300,0x310,0x270,0x320,0x340,0 };
unsigned short ioaddr = dev->base_addr;
int dev_irq = dev->irq;
int err;
dev->if_port = 0xff; /* not set */
#ifdef CONFIG_MCA_LEGACY
if (MCA_bus) {
int slot = 0;
/*
* Only find one card at a time. Subsequent calls
* will find others, however, proper multicard MCA
* probing and setup can't be done with the
* old-style Space.c init routines. -- ASF
*/
while (slot != MCA_NOTFOUND) {
int pos0, pos1;
slot = mca_find_unused_adapter(0x628B, slot);
if (slot == MCA_NOTFOUND)
break;
pos0 = mca_read_stored_pos(slot, 2);
pos1 = mca_read_stored_pos(slot, 3);
ioaddr = mca_iomap[pos1&0xf];
dev->irq = mca_irqmap[(pos1>>4)&0x7];
/*
* XXX: Transciever selection is done
* differently on the MCA version.
* How to get it to select something
* other than external/AUI is currently
* unknown. This code is just for looks. -- ASF
*/
if ((pos0 & 0x7) == 0x1)
dev->if_port = AUI;
else if ((pos0 & 0x7) == 0x5) {
if (pos1 & 0x80)
dev->if_port = BNC;
else
dev->if_port = TPE;
}
mca_set_adapter_name(slot, "Intel EtherExpress 16 MCA");
mca_set_adapter_procfn(slot, NULL, dev);
mca_mark_as_used(slot);
break;
}
}
#endif
if (ioaddr&0xfe00) {
if (!request_region(ioaddr, EEXP_IO_EXTENT, "EtherExpress"))
return -EBUSY;
err = eexp_hw_probe(dev,ioaddr);
release_region(ioaddr, EEXP_IO_EXTENT);
return err;
} else if (ioaddr)
return -ENXIO;
for (port=&ports[0] ; *port ; port++ )
{
unsigned short sum = 0;
int i;
if (!request_region(*port, EEXP_IO_EXTENT, "EtherExpress"))
continue;
for ( i=0 ; i<4 ; i++ )
{
unsigned short t;
t = inb(*port + ID_PORT);
sum |= (t>>4) << ((t & 0x03)<<2);
}
if (sum==0xbaba && !eexp_hw_probe(dev,*port)) {
release_region(*port, EEXP_IO_EXTENT);
return 0;
}
release_region(*port, EEXP_IO_EXTENT);
dev->irq = dev_irq;
}
return -ENODEV;
}
#ifndef MODULE
struct net_device * __init express_probe(int unit)
{
struct net_device *dev = alloc_etherdev(sizeof(struct net_local));
int err;
if (!dev)
return ERR_PTR(-ENOMEM);
sprintf(dev->name, "eth%d", unit);
netdev_boot_setup_check(dev);
err = do_express_probe(dev);
if (!err)
return dev;
free_netdev(dev);
return ERR_PTR(err);
}
#endif
/*
* open and initialize the adapter, ready for use
*/
static int eexp_open(struct net_device *dev)
{
int ret;
unsigned short ioaddr = dev->base_addr;
struct net_local *lp = netdev_priv(dev);
#if NET_DEBUG > 6
printk(KERN_DEBUG "%s: eexp_open()\n", dev->name);
#endif
if (!dev->irq || !irqrmap[dev->irq])
return -ENXIO;
ret = request_irq(dev->irq, &eexp_irq, 0, dev->name, dev);
if (ret)
return ret;
if (!request_region(ioaddr, EEXP_IO_EXTENT, "EtherExpress")) {
printk(KERN_WARNING "EtherExpress io port %x, is busy.\n"
, ioaddr);
goto err_out1;
}
if (!request_region(ioaddr+0x4000, EEXP_IO_EXTENT, "EtherExpress shadow")) {
printk(KERN_WARNING "EtherExpress io port %x, is busy.\n"
, ioaddr+0x4000);
goto err_out2;
}
if (!request_region(ioaddr+0x8000, EEXP_IO_EXTENT, "EtherExpress shadow")) {
printk(KERN_WARNING "EtherExpress io port %x, is busy.\n"
, ioaddr+0x8000);
goto err_out3;
}
if (!request_region(ioaddr+0xc000, EEXP_IO_EXTENT, "EtherExpress shadow")) {
printk(KERN_WARNING "EtherExpress io port %x, is busy.\n"
, ioaddr+0xc000);
goto err_out4;
}
if (lp->width) {
printk("%s: forcing ASIC to 8-bit mode\n", dev->name);
outb(inb(dev->base_addr+Config)&~4, dev->base_addr+Config);
}
eexp_hw_init586(dev);
netif_start_queue(dev);
#if NET_DEBUG > 6
printk(KERN_DEBUG "%s: leaving eexp_open()\n", dev->name);
#endif
return 0;
err_out4:
release_region(ioaddr+0x8000, EEXP_IO_EXTENT);
err_out3:
release_region(ioaddr+0x4000, EEXP_IO_EXTENT);
err_out2:
release_region(ioaddr, EEXP_IO_EXTENT);
err_out1:
free_irq(dev->irq, dev);
return -EBUSY;
}
/*
* close and disable the interface, leaving the 586 in reset.
*/
static int eexp_close(struct net_device *dev)
{
unsigned short ioaddr = dev->base_addr;
struct net_local *lp = netdev_priv(dev);
int irq = dev->irq;
netif_stop_queue(dev);
outb(SIRQ_dis|irqrmap[irq],ioaddr+SET_IRQ);
lp->started = 0;
scb_command(dev, SCB_CUsuspend|SCB_RUsuspend);
outb(0,ioaddr+SIGNAL_CA);
free_irq(irq,dev);
outb(i586_RST,ioaddr+EEPROM_Ctrl);
release_region(ioaddr, EEXP_IO_EXTENT);
release_region(ioaddr+0x4000, 16);
release_region(ioaddr+0x8000, 16);
release_region(ioaddr+0xc000, 16);
return 0;
}
/*
* This gets called when a higher level thinks we are broken. Check that
* nothing has become jammed in the CU.
*/
static void unstick_cu(struct net_device *dev)
{
struct net_local *lp = netdev_priv(dev);
unsigned short ioaddr = dev->base_addr;
if (lp->started)
{
if (time_after(jiffies, dev->trans_start + 50))
{
if (lp->tx_link==lp->last_tx_restart)
{
unsigned short boguscount=200,rsst;
printk(KERN_WARNING "%s: Retransmit timed out, status %04x, resetting...\n",
dev->name, scb_status(dev));
eexp_hw_txinit(dev);
lp->last_tx_restart = 0;
scb_wrcbl(dev, lp->tx_link);
scb_command(dev, SCB_CUstart);
outb(0,ioaddr+SIGNAL_CA);
while (!SCB_complete(rsst=scb_status(dev)))
{
if (!--boguscount)
{
boguscount=200;
printk(KERN_WARNING "%s: Reset timed out status %04x, retrying...\n",
dev->name,rsst);
scb_wrcbl(dev, lp->tx_link);
scb_command(dev, SCB_CUstart);
outb(0,ioaddr+SIGNAL_CA);
}
}
netif_wake_queue(dev);
}
else
{
unsigned short status = scb_status(dev);
if (SCB_CUdead(status))
{
unsigned short txstatus = eexp_hw_lasttxstat(dev);
printk(KERN_WARNING "%s: Transmit timed out, CU not active status %04x %04x, restarting...\n",
dev->name, status, txstatus);
eexp_hw_txrestart(dev);
}
else
{
unsigned short txstatus = eexp_hw_lasttxstat(dev);
if (netif_queue_stopped(dev) && !txstatus)
{
printk(KERN_WARNING "%s: CU wedged, status %04x %04x, resetting...\n",
dev->name,status,txstatus);
eexp_hw_init586(dev);
netif_wake_queue(dev);
}
else
{
printk(KERN_WARNING "%s: transmit timed out\n", dev->name);
}
}
}
}
}
else
{
if (time_after(jiffies, lp->init_time + 10))
{
unsigned short status = scb_status(dev);
printk(KERN_WARNING "%s: i82586 startup timed out, status %04x, resetting...\n",
dev->name, status);
eexp_hw_init586(dev);
netif_wake_queue(dev);
}
}
}
static void eexp_timeout(struct net_device *dev)
{
struct net_local *lp = netdev_priv(dev);
#ifdef CONFIG_SMP
unsigned long flags;
#endif
int status;
disable_irq(dev->irq);
/*
* Best would be to use synchronize_irq(); spin_lock() here
* lets make it work first..
*/
#ifdef CONFIG_SMP
spin_lock_irqsave(&lp->lock, flags);
#endif
status = scb_status(dev);
unstick_cu(dev);
printk(KERN_INFO "%s: transmit timed out, %s?\n", dev->name,
(SCB_complete(status)?"lost interrupt":
"board on fire"));
dev->stats.tx_errors++;
lp->last_tx = jiffies;
if (!SCB_complete(status)) {
scb_command(dev, SCB_CUabort);
outb(0,dev->base_addr+SIGNAL_CA);
}
netif_wake_queue(dev);
#ifdef CONFIG_SMP
spin_unlock_irqrestore(&lp->lock, flags);
#endif
}
/*
* Called to transmit a packet, or to allow us to right ourselves
* if the kernel thinks we've died.
*/
static int eexp_xmit(struct sk_buff *buf, struct net_device *dev)
{
short length = buf->len;
#ifdef CONFIG_SMP
struct net_local *lp = netdev_priv(dev);
unsigned long flags;
#endif
#if NET_DEBUG > 6
printk(KERN_DEBUG "%s: eexp_xmit()\n", dev->name);
#endif
if (buf->len < ETH_ZLEN) {
if (skb_padto(buf, ETH_ZLEN))
return 0;
length = ETH_ZLEN;
}
disable_irq(dev->irq);
/*
* Best would be to use synchronize_irq(); spin_lock() here
* lets make it work first..
*/
#ifdef CONFIG_SMP
spin_lock_irqsave(&lp->lock, flags);
#endif
{
unsigned short *data = (unsigned short *)buf->data;
dev->stats.tx_bytes += length;
eexp_hw_tx_pio(dev,data,length);
}
dev_kfree_skb(buf);
#ifdef CONFIG_SMP
spin_unlock_irqrestore(&lp->lock, flags);
#endif
enable_irq(dev->irq);
return 0;
}
/*
* Handle an EtherExpress interrupt
* If we've finished initializing, start the RU and CU up.
* If we've already started, reap tx buffers, handle any received packets,
* check to make sure we've not become wedged.
*/
static unsigned short eexp_start_irq(struct net_device *dev,
unsigned short status)
{
unsigned short ack_cmd = SCB_ack(status);
struct net_local *lp = netdev_priv(dev);
unsigned short ioaddr = dev->base_addr;
if ((dev->flags & IFF_UP) && !(lp->started & STARTED_CU)) {
short diag_status, tdr_status;
while (SCB_CUstat(status)==2)
status = scb_status(dev);
#if NET_DEBUG > 4
printk("%s: CU went non-active (status %04x)\n",
dev->name, status);
#endif
outw(CONF_DIAG_RESULT & ~31, ioaddr + SM_PTR);
diag_status = inw(ioaddr + SHADOW(CONF_DIAG_RESULT));
if (diag_status & 1<<11) {
printk(KERN_WARNING "%s: 82586 failed self-test\n",
dev->name);
} else if (!(diag_status & 1<<13)) {
printk(KERN_WARNING "%s: 82586 self-test failed to complete\n", dev->name);
}
outw(CONF_TDR_RESULT & ~31, ioaddr + SM_PTR);
tdr_status = inw(ioaddr + SHADOW(CONF_TDR_RESULT));
if (tdr_status & (TDR_SHORT|TDR_OPEN)) {
printk(KERN_WARNING "%s: TDR reports cable %s at %d tick%s\n", dev->name, (tdr_status & TDR_SHORT)?"short":"broken", tdr_status & TDR_TIME, ((tdr_status & TDR_TIME) != 1) ? "s" : "");
}
else if (tdr_status & TDR_XCVRPROBLEM) {
printk(KERN_WARNING "%s: TDR reports transceiver problem\n", dev->name);
}
else if (tdr_status & TDR_LINKOK) {
#if NET_DEBUG > 4
printk(KERN_DEBUG "%s: TDR reports link OK\n", dev->name);
#endif
} else {
printk("%s: TDR is ga-ga (status %04x)\n", dev->name,
tdr_status);
}
lp->started |= STARTED_CU;
scb_wrcbl(dev, lp->tx_link);
/* if the RU isn't running, start it now */
if (!(lp->started & STARTED_RU)) {
ack_cmd |= SCB_RUstart;
scb_wrrfa(dev, lp->rx_buf_start);
lp->rx_ptr = lp->rx_buf_start;
lp->started |= STARTED_RU;
}
ack_cmd |= SCB_CUstart | 0x2000;
}
if ((dev->flags & IFF_UP) && !(lp->started & STARTED_RU) && SCB_RUstat(status)==4)
lp->started|=STARTED_RU;
return ack_cmd;
}
static void eexp_cmd_clear(struct net_device *dev)
{
unsigned long int oldtime = jiffies;
while (scb_rdcmd(dev) && (time_before(jiffies, oldtime + 10)));
if (scb_rdcmd(dev)) {
printk("%s: command didn't clear\n", dev->name);
}
}
static irqreturn_t eexp_irq(int dummy, void *dev_info)
{
struct net_device *dev = dev_info;
struct net_local *lp;
unsigned short ioaddr,status,ack_cmd;
unsigned short old_read_ptr, old_write_ptr;
lp = netdev_priv(dev);
ioaddr = dev->base_addr;
spin_lock(&lp->lock);
old_read_ptr = inw(ioaddr+READ_PTR);
old_write_ptr = inw(ioaddr+WRITE_PTR);
outb(SIRQ_dis|irqrmap[dev->irq],ioaddr+SET_IRQ);
status = scb_status(dev);
#if NET_DEBUG > 4
printk(KERN_DEBUG "%s: interrupt (status %x)\n", dev->name, status);
#endif
if (lp->started == (STARTED_CU | STARTED_RU)) {
do {
eexp_cmd_clear(dev);
ack_cmd = SCB_ack(status);
scb_command(dev, ack_cmd);
outb(0,ioaddr+SIGNAL_CA);
eexp_cmd_clear(dev);
if (SCB_complete(status)) {
if (!eexp_hw_lasttxstat(dev)) {
printk("%s: tx interrupt but no status\n", dev->name);
}
}
if (SCB_rxdframe(status))
eexp_hw_rx_pio(dev);
status = scb_status(dev);
} while (status & 0xc000);
if (SCB_RUdead(status))
{
printk(KERN_WARNING "%s: RU stopped: status %04x\n",
dev->name,status);
#if 0
printk(KERN_WARNING "%s: cur_rfd=%04x, cur_rbd=%04x\n", dev->name, lp->cur_rfd, lp->cur_rbd);
outw(lp->cur_rfd, ioaddr+READ_PTR);
printk(KERN_WARNING "%s: [%04x]\n", dev->name, inw(ioaddr+DATAPORT));
outw(lp->cur_rfd+6, ioaddr+READ_PTR);
printk(KERN_WARNING "%s: rbd is %04x\n", dev->name, rbd= inw(ioaddr+DATAPORT));
outw(rbd, ioaddr+READ_PTR);
printk(KERN_WARNING "%s: [%04x %04x] ", dev->name, inw(ioaddr+DATAPORT), inw(ioaddr+DATAPORT));
outw(rbd+8, ioaddr+READ_PTR);
printk("[%04x]\n", inw(ioaddr+DATAPORT));
#endif
dev->stats.rx_errors++;
#if 1
eexp_hw_rxinit(dev);
#else
lp->cur_rfd = lp->first_rfd;
#endif
scb_wrrfa(dev, lp->rx_buf_start);
scb_command(dev, SCB_RUstart);
outb(0,ioaddr+SIGNAL_CA);
}
} else {
if (status & 0x8000)
ack_cmd = eexp_start_irq(dev, status);
else
ack_cmd = SCB_ack(status);
scb_command(dev, ack_cmd);
outb(0,ioaddr+SIGNAL_CA);
}
eexp_cmd_clear(dev);
outb(SIRQ_en|irqrmap[dev->irq],ioaddr+SET_IRQ);
#if NET_DEBUG > 6
printk("%s: leaving eexp_irq()\n", dev->name);
#endif
outw(old_read_ptr, ioaddr+READ_PTR);
outw(old_write_ptr, ioaddr+WRITE_PTR);
spin_unlock(&lp->lock);
return IRQ_HANDLED;
}
/*
* Hardware access functions
*/
/*
* Set the cable type to use.
*/
static void eexp_hw_set_interface(struct net_device *dev)
{
unsigned char oldval = inb(dev->base_addr + 0x300e);
oldval &= ~0x82;
switch (dev->if_port) {
case TPE:
oldval |= 0x2;
case BNC:
oldval |= 0x80;
break;
}
outb(oldval, dev->base_addr+0x300e);
mdelay(20);
}
/*
* Check all the receive buffers, and hand any received packets
* to the upper levels. Basic sanity check on each frame
* descriptor, though we don't bother trying to fix broken ones.
*/
static void eexp_hw_rx_pio(struct net_device *dev)
{
struct net_local *lp = netdev_priv(dev);
unsigned short rx_block = lp->rx_ptr;
unsigned short boguscount = lp->num_rx_bufs;
unsigned short ioaddr = dev->base_addr;
unsigned short status;
#if NET_DEBUG > 6
printk(KERN_DEBUG "%s: eexp_hw_rx()\n", dev->name);
#endif
do {
unsigned short rfd_cmd, rx_next, pbuf, pkt_len;
outw(rx_block, ioaddr + READ_PTR);
status = inw(ioaddr + DATAPORT);
if (FD_Done(status))
{
rfd_cmd = inw(ioaddr + DATAPORT);
rx_next = inw(ioaddr + DATAPORT);
pbuf = inw(ioaddr + DATAPORT);
outw(pbuf, ioaddr + READ_PTR);
pkt_len = inw(ioaddr + DATAPORT);
if (rfd_cmd!=0x0000)
{
printk(KERN_WARNING "%s: rfd_cmd not zero:0x%04x\n",
dev->name, rfd_cmd);
continue;
}
else if (pbuf!=rx_block+0x16)
{
printk(KERN_WARNING "%s: rfd and rbd out of sync 0x%04x 0x%04x\n",
dev->name, rx_block+0x16, pbuf);
continue;
}
else if ((pkt_len & 0xc000)!=0xc000)
{
printk(KERN_WARNING "%s: EOF or F not set on received buffer (%04x)\n",
dev->name, pkt_len & 0xc000);
continue;
}
else if (!FD_OK(status))
{
dev->stats.rx_errors++;
if (FD_CRC(status))
dev->stats.rx_crc_errors++;
if (FD_Align(status))
dev->stats.rx_frame_errors++;
if (FD_Resrc(status))
dev->stats.rx_fifo_errors++;
if (FD_DMA(status))
dev->stats.rx_over_errors++;
if (FD_Short(status))
dev->stats.rx_length_errors++;
}
else
{
struct sk_buff *skb;
pkt_len &= 0x3fff;
skb = dev_alloc_skb(pkt_len+16);
if (skb == NULL)
{
printk(KERN_WARNING "%s: Memory squeeze, dropping packet\n",dev->name);
dev->stats.rx_dropped++;
break;
}
skb_reserve(skb, 2);
outw(pbuf+10, ioaddr+READ_PTR);
insw(ioaddr+DATAPORT, skb_put(skb,pkt_len),(pkt_len+1)>>1);
skb->protocol = eth_type_trans(skb,dev);
netif_rx(skb);
dev->last_rx = jiffies;
dev->stats.rx_packets++;
dev->stats.rx_bytes += pkt_len;
}
outw(rx_block, ioaddr+WRITE_PTR);
outw(0, ioaddr+DATAPORT);
outw(0, ioaddr+DATAPORT);
rx_block = rx_next;
}
} while (FD_Done(status) && boguscount--);
lp->rx_ptr = rx_block;
}
/*
* Hand a packet to the card for transmission
* If we get here, we MUST have already checked
* to make sure there is room in the transmit
* buffer region.
*/
static void eexp_hw_tx_pio(struct net_device *dev, unsigned short *buf,
unsigned short len)
{
struct net_local *lp = netdev_priv(dev);
unsigned short ioaddr = dev->base_addr;
if (LOCKUP16 || lp->width) {
/* Stop the CU so that there is no chance that it
jumps off to a bogus address while we are writing the
pointer to the next transmit packet in 8-bit mode --
this eliminates the "CU wedged" errors in 8-bit mode.
(Zoltan Szilagyi 10-12-96) */
scb_command(dev, SCB_CUsuspend);
outw(0xFFFF, ioaddr+SIGNAL_CA);
}
outw(lp->tx_head, ioaddr + WRITE_PTR);
outw(0x0000, ioaddr + DATAPORT);
outw(Cmd_INT|Cmd_Xmit, ioaddr + DATAPORT);
outw(lp->tx_head+0x08, ioaddr + DATAPORT);
outw(lp->tx_head+0x0e, ioaddr + DATAPORT);
outw(0x0000, ioaddr + DATAPORT);
outw(0x0000, ioaddr + DATAPORT);
outw(lp->tx_head+0x08, ioaddr + DATAPORT);
outw(0x8000|len, ioaddr + DATAPORT);
outw(-1, ioaddr + DATAPORT);
outw(lp->tx_head+0x16, ioaddr + DATAPORT);
outw(0, ioaddr + DATAPORT);
outsw(ioaddr + DATAPORT, buf, (len+1)>>1);
outw(lp->tx_tail+0xc, ioaddr + WRITE_PTR);
outw(lp->tx_head, ioaddr + DATAPORT);
dev->trans_start = jiffies;
lp->tx_tail = lp->tx_head;
if (lp->tx_head==TX_BUF_START+((lp->num_tx_bufs-1)*TX_BUF_SIZE))
lp->tx_head = TX_BUF_START;
else
lp->tx_head += TX_BUF_SIZE;
if (lp->tx_head != lp->tx_reap)
netif_wake_queue(dev);
if (LOCKUP16 || lp->width) {
/* Restart the CU so that the packet can actually
be transmitted. (Zoltan Szilagyi 10-12-96) */
scb_command(dev, SCB_CUresume);
outw(0xFFFF, ioaddr+SIGNAL_CA);
}
dev->stats.tx_packets++;
lp->last_tx = jiffies;
}
/*
* Sanity check the suspected EtherExpress card
* Read hardware address, reset card, size memory and initialize buffer
* memory pointers. These are held in dev->priv, in case someone has more
* than one card in a machine.
*/
static int __init eexp_hw_probe(struct net_device *dev, unsigned short ioaddr)
{
unsigned short hw_addr[3];
unsigned char buswidth;
unsigned int memory_size;
int i;
unsigned short xsum = 0;
struct net_local *lp = netdev_priv(dev);
printk("%s: EtherExpress 16 at %#x ",dev->name,ioaddr);
outb(ASIC_RST, ioaddr+EEPROM_Ctrl);
outb(0, ioaddr+EEPROM_Ctrl);
udelay(500);
outb(i586_RST, ioaddr+EEPROM_Ctrl);
hw_addr[0] = eexp_hw_readeeprom(ioaddr,2);
hw_addr[1] = eexp_hw_readeeprom(ioaddr,3);
hw_addr[2] = eexp_hw_readeeprom(ioaddr,4);
/* Standard Address or Compaq LTE Address */
if (!((hw_addr[2]==0x00aa && ((hw_addr[1] & 0xff00)==0x0000)) ||
(hw_addr[2]==0x0080 && ((hw_addr[1] & 0xff00)==0x5F00))))
{
printk(" rejected: invalid address %04x%04x%04x\n",
hw_addr[2],hw_addr[1],hw_addr[0]);
return -ENODEV;
}
/* Calculate the EEPROM checksum. Carry on anyway if it's bad,
* though.
*/
for (i = 0; i < 64; i++)
xsum += eexp_hw_readeeprom(ioaddr, i);
if (xsum != 0xbaba)
printk(" (bad EEPROM xsum 0x%02x)", xsum);
dev->base_addr = ioaddr;
for ( i=0 ; i<6 ; i++ )
dev->dev_addr[i] = ((unsigned char *)hw_addr)[5-i];
{
static char irqmap[]={0, 9, 3, 4, 5, 10, 11, 0};
unsigned short setupval = eexp_hw_readeeprom(ioaddr,0);
/* Use the IRQ from EEPROM if none was given */
if (!dev->irq)
dev->irq = irqmap[setupval>>13];
if (dev->if_port == 0xff) {
dev->if_port = !(setupval & 0x1000) ? AUI :
eexp_hw_readeeprom(ioaddr,5) & 0x1 ? TPE : BNC;
}
buswidth = !((setupval & 0x400) >> 10);
}
memset(lp, 0, sizeof(struct net_local));
spin_lock_init(&lp->lock);
printk("(IRQ %d, %s connector, %d-bit bus", dev->irq,
eexp_ifmap[dev->if_port], buswidth?8:16);
if (!request_region(dev->base_addr + 0x300e, 1, "EtherExpress"))
return -EBUSY;
eexp_hw_set_interface(dev);
release_region(dev->base_addr + 0x300e, 1);
/* Find out how much RAM we have on the card */
outw(0, dev->base_addr + WRITE_PTR);
for (i = 0; i < 32768; i++)
outw(0, dev->base_addr + DATAPORT);
for (memory_size = 0; memory_size < 64; memory_size++)
{
outw(memory_size<<10, dev->base_addr + READ_PTR);
if (inw(dev->base_addr+DATAPORT))
break;
outw(memory_size<<10, dev->base_addr + WRITE_PTR);
outw(memory_size | 0x5000, dev->base_addr+DATAPORT);
outw(memory_size<<10, dev->base_addr + READ_PTR);
if (inw(dev->base_addr+DATAPORT) != (memory_size | 0x5000))
break;
}
/* Sort out the number of buffers. We may have 16, 32, 48 or 64k
* of RAM to play with.
*/
lp->num_tx_bufs = 4;
lp->rx_buf_end = 0x3ff6;
switch (memory_size)
{
case 64:
lp->rx_buf_end += 0x4000;
case 48:
lp->num_tx_bufs += 4;
lp->rx_buf_end += 0x4000;
case 32:
lp->rx_buf_end += 0x4000;
case 16:
printk(", %dk RAM)\n", memory_size);
break;
default:
printk(") bad memory size (%dk).\n", memory_size);
return -ENODEV;
break;
}
lp->rx_buf_start = TX_BUF_START + (lp->num_tx_bufs*TX_BUF_SIZE);
lp->width = buswidth;
dev->open = eexp_open;
dev->stop = eexp_close;
dev->hard_start_xmit = eexp_xmit;
dev->set_multicast_list = &eexp_set_multicast;
dev->tx_timeout = eexp_timeout;
dev->watchdog_timeo = 2*HZ;
return register_netdev(dev);
}
/*
* Read a word from the EtherExpress on-board serial EEPROM.
* The EEPROM contains 64 words of 16 bits.
*/
static unsigned short __init eexp_hw_readeeprom(unsigned short ioaddr,
unsigned char location)
{
unsigned short cmd = 0x180|(location&0x7f);
unsigned short rval = 0,wval = EC_CS|i586_RST;
int i;
outb(EC_CS|i586_RST,ioaddr+EEPROM_Ctrl);
for (i=0x100 ; i ; i>>=1 )
{
if (cmd&i)
wval |= EC_Wr;
else
wval &= ~EC_Wr;
outb(wval,ioaddr+EEPROM_Ctrl);
outb(wval|EC_Clk,ioaddr+EEPROM_Ctrl);
eeprom_delay();
outb(wval,ioaddr+EEPROM_Ctrl);
eeprom_delay();
}
wval &= ~EC_Wr;
outb(wval,ioaddr+EEPROM_Ctrl);
for (i=0x8000 ; i ; i>>=1 )
{
outb(wval|EC_Clk,ioaddr+EEPROM_Ctrl);
eeprom_delay();
if (inb(ioaddr+EEPROM_Ctrl)&EC_Rd)
rval |= i;
outb(wval,ioaddr+EEPROM_Ctrl);
eeprom_delay();
}
wval &= ~EC_CS;
outb(wval|EC_Clk,ioaddr+EEPROM_Ctrl);
eeprom_delay();
outb(wval,ioaddr+EEPROM_Ctrl);
eeprom_delay();
return rval;
}
/*
* Reap tx buffers and return last transmit status.
* if ==0 then either:
* a) we're not transmitting anything, so why are we here?
* b) we've died.
* otherwise, Stat_Busy(return) means we've still got some packets
* to transmit, Stat_Done(return) means our buffers should be empty
* again
*/
static unsigned short eexp_hw_lasttxstat(struct net_device *dev)
{
struct net_local *lp = netdev_priv(dev);
unsigned short tx_block = lp->tx_reap;
unsigned short status;
if (!netif_queue_stopped(dev) && lp->tx_head==lp->tx_reap)
return 0x0000;
do
{
outw(tx_block & ~31, dev->base_addr + SM_PTR);
status = inw(dev->base_addr + SHADOW(tx_block));
if (!Stat_Done(status))
{
lp->tx_link = tx_block;
return status;
}
else
{
lp->last_tx_restart = 0;
dev->stats.collisions += Stat_NoColl(status);
if (!Stat_OK(status))
{
char *whatsup = NULL;
dev->stats.tx_errors++;
if (Stat_Abort(status))
dev->stats.tx_aborted_errors++;
if (Stat_TNoCar(status)) {
whatsup = "aborted, no carrier";
dev->stats.tx_carrier_errors++;
}
if (Stat_TNoCTS(status)) {
whatsup = "aborted, lost CTS";
dev->stats.tx_carrier_errors++;
}
if (Stat_TNoDMA(status)) {
whatsup = "FIFO underran";
dev->stats.tx_fifo_errors++;
}
if (Stat_TXColl(status)) {
whatsup = "aborted, too many collisions";
dev->stats.tx_aborted_errors++;
}
if (whatsup)
printk(KERN_INFO "%s: transmit %s\n",
dev->name, whatsup);
}
else
dev->stats.tx_packets++;
}
if (tx_block == TX_BUF_START+((lp->num_tx_bufs-1)*TX_BUF_SIZE))
lp->tx_reap = tx_block = TX_BUF_START;
else
lp->tx_reap = tx_block += TX_BUF_SIZE;
netif_wake_queue(dev);
}
while (lp->tx_reap != lp->tx_head);
lp->tx_link = lp->tx_tail + 0x08;
return status;
}
/*
* This should never happen. It is called when some higher routine detects
* that the CU has stopped, to try to restart it from the last packet we knew
* we were working on, or the idle loop if we had finished for the time.
*/
static void eexp_hw_txrestart(struct net_device *dev)
{
struct net_local *lp = netdev_priv(dev);
unsigned short ioaddr = dev->base_addr;
lp->last_tx_restart = lp->tx_link;
scb_wrcbl(dev, lp->tx_link);
scb_command(dev, SCB_CUstart);
outb(0,ioaddr+SIGNAL_CA);
{
unsigned short boguscount=50,failcount=5;
while (!scb_status(dev))
{
if (!--boguscount)
{
if (--failcount)
{
printk(KERN_WARNING "%s: CU start timed out, status %04x, cmd %04x\n", dev->name, scb_status(dev), scb_rdcmd(dev));
scb_wrcbl(dev, lp->tx_link);
scb_command(dev, SCB_CUstart);
outb(0,ioaddr+SIGNAL_CA);
boguscount = 100;
}
else
{
printk(KERN_WARNING "%s: Failed to restart CU, resetting board...\n",dev->name);
eexp_hw_init586(dev);
netif_wake_queue(dev);
return;
}
}
}
}
}
/*
* Writes down the list of transmit buffers into card memory. Each
* entry consists of an 82586 transmit command, followed by a jump
* pointing to itself. When we want to transmit a packet, we write
* the data into the appropriate transmit buffer and then modify the
* preceding jump to point at the new transmit command. This means that
* the 586 command unit is continuously active.
*/
static void eexp_hw_txinit(struct net_device *dev)
{
struct net_local *lp = netdev_priv(dev);
unsigned short tx_block = TX_BUF_START;
unsigned short curtbuf;
unsigned short ioaddr = dev->base_addr;
for ( curtbuf=0 ; curtbuf<lp->num_tx_bufs ; curtbuf++ )
{
outw(tx_block, ioaddr + WRITE_PTR);
outw(0x0000, ioaddr + DATAPORT);
outw(Cmd_INT|Cmd_Xmit, ioaddr + DATAPORT);
outw(tx_block+0x08, ioaddr + DATAPORT);
outw(tx_block+0x0e, ioaddr + DATAPORT);
outw(0x0000, ioaddr + DATAPORT);
outw(0x0000, ioaddr + DATAPORT);
outw(tx_block+0x08, ioaddr + DATAPORT);
outw(0x8000, ioaddr + DATAPORT);
outw(-1, ioaddr + DATAPORT);
outw(tx_block+0x16, ioaddr + DATAPORT);
outw(0x0000, ioaddr + DATAPORT);
tx_block += TX_BUF_SIZE;
}
lp->tx_head = TX_BUF_START;
lp->tx_reap = TX_BUF_START;
lp->tx_tail = tx_block - TX_BUF_SIZE;
lp->tx_link = lp->tx_tail + 0x08;
lp->rx_buf_start = tx_block;
}
/*
* Write the circular list of receive buffer descriptors to card memory.
* The end of the list isn't marked, which means that the 82586 receive
* unit will loop until buffers become available (this avoids it giving us
* "out of resources" messages).
*/
static void eexp_hw_rxinit(struct net_device *dev)
{
struct net_local *lp = netdev_priv(dev);
unsigned short rx_block = lp->rx_buf_start;
unsigned short ioaddr = dev->base_addr;
lp->num_rx_bufs = 0;
lp->rx_first = lp->rx_ptr = rx_block;
do
{
lp->num_rx_bufs++;
outw(rx_block, ioaddr + WRITE_PTR);
outw(0, ioaddr + DATAPORT); outw(0, ioaddr+DATAPORT);
outw(rx_block + RX_BUF_SIZE, ioaddr+DATAPORT);
outw(0xffff, ioaddr+DATAPORT);
outw(0x0000, ioaddr+DATAPORT);
outw(0xdead, ioaddr+DATAPORT);
outw(0xdead, ioaddr+DATAPORT);
outw(0xdead, ioaddr+DATAPORT);
outw(0xdead, ioaddr+DATAPORT);
outw(0xdead, ioaddr+DATAPORT);
outw(0xdead, ioaddr+DATAPORT);
outw(0x0000, ioaddr+DATAPORT);
outw(rx_block + RX_BUF_SIZE + 0x16, ioaddr+DATAPORT);
outw(rx_block + 0x20, ioaddr+DATAPORT);
outw(0, ioaddr+DATAPORT);
outw(RX_BUF_SIZE-0x20, ioaddr+DATAPORT);
lp->rx_last = rx_block;
rx_block += RX_BUF_SIZE;
} while (rx_block <= lp->rx_buf_end-RX_BUF_SIZE);
/* Make first Rx frame descriptor point to first Rx buffer
descriptor */
outw(lp->rx_first + 6, ioaddr+WRITE_PTR);
outw(lp->rx_first + 0x16, ioaddr+DATAPORT);
/* Close Rx frame descriptor ring */
outw(lp->rx_last + 4, ioaddr+WRITE_PTR);
outw(lp->rx_first, ioaddr+DATAPORT);
/* Close Rx buffer descriptor ring */
outw(lp->rx_last + 0x16 + 2, ioaddr+WRITE_PTR);
outw(lp->rx_first + 0x16, ioaddr+DATAPORT);
}
/*
* Un-reset the 586, and start the configuration sequence. We don't wait for
* this to finish, but allow the interrupt handler to start the CU and RU for
* us. We can't start the receive/transmission system up before we know that
* the hardware is configured correctly.
*/
static void eexp_hw_init586(struct net_device *dev)
{
struct net_local *lp = netdev_priv(dev);
unsigned short ioaddr = dev->base_addr;
int i;
#if NET_DEBUG > 6
printk("%s: eexp_hw_init586()\n", dev->name);
#endif
lp->started = 0;
set_loopback(dev);
outb(SIRQ_dis|irqrmap[dev->irq],ioaddr+SET_IRQ);
/* Download the startup code */
outw(lp->rx_buf_end & ~31, ioaddr + SM_PTR);
outw(lp->width?0x0001:0x0000, ioaddr + 0x8006);
outw(0x0000, ioaddr + 0x8008);
outw(0x0000, ioaddr + 0x800a);
outw(0x0000, ioaddr + 0x800c);
outw(0x0000, ioaddr + 0x800e);
for (i = 0; i < (sizeof(start_code)); i+=32) {
int j;
outw(i, ioaddr + SM_PTR);
for (j = 0; j < 16; j+=2)
outw(start_code[(i+j)/2],
ioaddr+0x4000+j);
for (j = 0; j < 16; j+=2)
outw(start_code[(i+j+16)/2],
ioaddr+0x8000+j);
}
/* Do we want promiscuous mode or multicast? */
outw(CONF_PROMISC & ~31, ioaddr+SM_PTR);
i = inw(ioaddr+SHADOW(CONF_PROMISC));
outw((dev->flags & IFF_PROMISC)?(i|1):(i & ~1),
ioaddr+SHADOW(CONF_PROMISC));
lp->was_promisc = dev->flags & IFF_PROMISC;
#if 0
eexp_setup_filter(dev);
#endif
/* Write our hardware address */
outw(CONF_HWADDR & ~31, ioaddr+SM_PTR);
outw(((unsigned short *)dev->dev_addr)[0], ioaddr+SHADOW(CONF_HWADDR));
outw(((unsigned short *)dev->dev_addr)[1],
ioaddr+SHADOW(CONF_HWADDR+2));
outw(((unsigned short *)dev->dev_addr)[2],
ioaddr+SHADOW(CONF_HWADDR+4));
eexp_hw_txinit(dev);
eexp_hw_rxinit(dev);
outb(0,ioaddr+EEPROM_Ctrl);
mdelay(5);
scb_command(dev, 0xf000);
outb(0,ioaddr+SIGNAL_CA);
outw(0, ioaddr+SM_PTR);
{
unsigned short rboguscount=50,rfailcount=5;
while (inw(ioaddr+0x4000))
{
if (!--rboguscount)
{
printk(KERN_WARNING "%s: i82586 reset timed out, kicking...\n",
dev->name);
scb_command(dev, 0);
outb(0,ioaddr+SIGNAL_CA);
rboguscount = 100;
if (!--rfailcount)
{
printk(KERN_WARNING "%s: i82586 not responding, giving up.\n",
dev->name);
return;
}
}
}
}
scb_wrcbl(dev, CONF_LINK);
scb_command(dev, 0xf000|SCB_CUstart);
outb(0,ioaddr+SIGNAL_CA);
{
unsigned short iboguscount=50,ifailcount=5;
while (!scb_status(dev))
{
if (!--iboguscount)
{
if (--ifailcount)
{
printk(KERN_WARNING "%s: i82586 initialization timed out, status %04x, cmd %04x\n",
dev->name, scb_status(dev), scb_rdcmd(dev));
scb_wrcbl(dev, CONF_LINK);
scb_command(dev, 0xf000|SCB_CUstart);
outb(0,ioaddr+SIGNAL_CA);
iboguscount = 100;
}
else
{
printk(KERN_WARNING "%s: Failed to initialize i82586, giving up.\n",dev->name);
return;
}
}
}
}
clear_loopback(dev);
outb(SIRQ_en|irqrmap[dev->irq],ioaddr+SET_IRQ);
lp->init_time = jiffies;
#if NET_DEBUG > 6
printk("%s: leaving eexp_hw_init586()\n", dev->name);
#endif
return;
}
static void eexp_setup_filter(struct net_device *dev)
{
struct dev_mc_list *dmi = dev->mc_list;
unsigned short ioaddr = dev->base_addr;
int count = dev->mc_count;
int i;
if (count > 8) {
printk(KERN_INFO "%s: too many multicast addresses (%d)\n",
dev->name, count);
count = 8;
}
outw(CONF_NR_MULTICAST & ~31, ioaddr+SM_PTR);
outw(count, ioaddr+SHADOW(CONF_NR_MULTICAST));
for (i = 0; i < count; i++) {
unsigned short *data = (unsigned short *)dmi->dmi_addr;
if (!dmi) {
printk(KERN_INFO "%s: too few multicast addresses\n", dev->name);
break;
}
if (dmi->dmi_addrlen != ETH_ALEN) {
printk(KERN_INFO "%s: invalid multicast address length given.\n", dev->name);
continue;
}
outw((CONF_MULTICAST+(6*i)) & ~31, ioaddr+SM_PTR);
outw(data[0], ioaddr+SHADOW(CONF_MULTICAST+(6*i)));
outw((CONF_MULTICAST+(6*i)+2) & ~31, ioaddr+SM_PTR);
outw(data[1], ioaddr+SHADOW(CONF_MULTICAST+(6*i)+2));
outw((CONF_MULTICAST+(6*i)+4) & ~31, ioaddr+SM_PTR);
outw(data[2], ioaddr+SHADOW(CONF_MULTICAST+(6*i)+4));
}
}
/*
* Set or clear the multicast filter for this adaptor.
*/
static void
eexp_set_multicast(struct net_device *dev)
{
unsigned short ioaddr = dev->base_addr;
struct net_local *lp = netdev_priv(dev);
int kick = 0, i;
if ((dev->flags & IFF_PROMISC) != lp->was_promisc) {
outw(CONF_PROMISC & ~31, ioaddr+SM_PTR);
i = inw(ioaddr+SHADOW(CONF_PROMISC));
outw((dev->flags & IFF_PROMISC)?(i|1):(i & ~1),
ioaddr+SHADOW(CONF_PROMISC));
lp->was_promisc = dev->flags & IFF_PROMISC;
kick = 1;
}
if (!(dev->flags & IFF_PROMISC)) {
eexp_setup_filter(dev);
if (lp->old_mc_count != dev->mc_count) {
kick = 1;
lp->old_mc_count = dev->mc_count;
}
}
if (kick) {
unsigned long oj;
scb_command(dev, SCB_CUsuspend);
outb(0, ioaddr+SIGNAL_CA);
outb(0, ioaddr+SIGNAL_CA);
#if 0
printk("%s: waiting for CU to go suspended\n", dev->name);
#endif
oj = jiffies;
while ((SCB_CUstat(scb_status(dev)) == 2) &&
(time_before(jiffies, oj + 2000)));
if (SCB_CUstat(scb_status(dev)) == 2)
printk("%s: warning, CU didn't stop\n", dev->name);
lp->started &= ~(STARTED_CU);
scb_wrcbl(dev, CONF_LINK);
scb_command(dev, SCB_CUstart);
outb(0, ioaddr+SIGNAL_CA);
}
}
/*
* MODULE stuff
*/
#ifdef MODULE
#define EEXP_MAX_CARDS 4 /* max number of cards to support */
static struct net_device *dev_eexp[EEXP_MAX_CARDS];
static int irq[EEXP_MAX_CARDS];
static int io[EEXP_MAX_CARDS];
module_param_array(io, int, NULL, 0);
module_param_array(irq, int, NULL, 0);
MODULE_PARM_DESC(io, "EtherExpress 16 I/O base address(es)");
MODULE_PARM_DESC(irq, "EtherExpress 16 IRQ number(s)");
MODULE_LICENSE("GPL");
/* Ideally the user would give us io=, irq= for every card. If any parameters
* are specified, we verify and then use them. If no parameters are given, we
* autoprobe for one card only.
*/
int __init init_module(void)
{
struct net_device *dev;
int this_dev, found = 0;
for (this_dev = 0; this_dev < EEXP_MAX_CARDS; this_dev++) {
dev = alloc_etherdev(sizeof(struct net_local));
dev->irq = irq[this_dev];
dev->base_addr = io[this_dev];
if (io[this_dev] == 0) {
if (this_dev)
break;
printk(KERN_NOTICE "eexpress.c: Module autoprobe not recommended, give io=xx.\n");
}
if (do_express_probe(dev) == 0) {
dev_eexp[this_dev] = dev;
found++;
continue;
}
printk(KERN_WARNING "eexpress.c: Failed to register card at 0x%x.\n", io[this_dev]);
free_netdev(dev);
break;
}
if (found)
return 0;
return -ENXIO;
}
void __exit cleanup_module(void)
{
int this_dev;
for (this_dev = 0; this_dev < EEXP_MAX_CARDS; this_dev++) {
struct net_device *dev = dev_eexp[this_dev];
if (dev) {
unregister_netdev(dev);
free_netdev(dev);
}
}
}
#endif
/*
* Local Variables:
* c-file-style: "linux"
* tab-width: 8
* End:
*/