1
linux/drivers/media/video/cx23885/cx23885-input.c
Mauro Carvalho Chehab e93854da88 V4L/DVB (13634): ir-core: allow passing IR device parameters to ir-core
Adds an structure to ir_input_register to contain IR device characteristics,
like supported protocols and a callback to handle protocol event changes.

Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
2010-02-26 15:10:23 -03:00

425 lines
12 KiB
C

/*
* Driver for the Conexant CX23885/7/8 PCIe bridge
*
* Infrared remote control input device
*
* Most of this file is
*
* Copyright (C) 2009 Andy Walls <awalls@radix.net>
*
* However, the cx23885_input_{init,fini} functions contained herein are
* derived from Linux kernel files linux/media/video/.../...-input.c marked as:
*
* Copyright (C) 2008 <srinivasa.deevi at conexant dot com>
* Copyright (C) 2005 Ludovico Cavedon <cavedon@sssup.it>
* Markus Rechberger <mrechberger@gmail.com>
* Mauro Carvalho Chehab <mchehab@infradead.org>
* Sascha Sommer <saschasommer@freenet.de>
* Copyright (C) 2004, 2005 Chris Pascoe
* Copyright (C) 2003, 2004 Gerd Knorr
* Copyright (C) 2003 Pavel Machek
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*/
#include <linux/input.h>
#include <media/ir-common.h>
#include <media/v4l2-subdev.h>
#include "cx23885.h"
#define RC5_BITS 14
#define RC5_HALF_BITS (2*RC5_BITS)
#define RC5_HALF_BITS_MASK ((1 << RC5_HALF_BITS) - 1)
#define RC5_START_BITS_NORMAL 0x3 /* Command range 0 - 63 */
#define RC5_START_BITS_EXTENDED 0x2 /* Command range 64 - 127 */
#define RC5_EXTENDED_COMMAND_OFFSET 64
static inline unsigned int rc5_command(u32 rc5_baseband)
{
return RC5_INSTR(rc5_baseband) +
((RC5_START(rc5_baseband) == RC5_START_BITS_EXTENDED)
? RC5_EXTENDED_COMMAND_OFFSET : 0);
}
static void cx23885_input_process_raw_rc5(struct cx23885_dev *dev)
{
struct card_ir *ir_input = dev->ir_input;
unsigned int code, command;
u32 rc5;
/* Ignore codes that are too short to be valid RC-5 */
if (ir_input->last_bit < (RC5_HALF_BITS - 1))
return;
/* The library has the manchester coding backwards; XOR to adapt. */
code = (ir_input->code & RC5_HALF_BITS_MASK) ^ RC5_HALF_BITS_MASK;
rc5 = ir_rc5_decode(code);
switch (RC5_START(rc5)) {
case RC5_START_BITS_NORMAL:
break;
case RC5_START_BITS_EXTENDED:
/* Don't allow if the remote only emits standard commands */
if (ir_input->start == RC5_START_BITS_NORMAL)
return;
break;
default:
return;
}
if (ir_input->addr != RC5_ADDR(rc5))
return;
/* Don't generate a keypress for RC-5 auto-repeated keypresses */
command = rc5_command(rc5);
if (RC5_TOGGLE(rc5) != RC5_TOGGLE(ir_input->last_rc5) ||
command != rc5_command(ir_input->last_rc5) ||
/* Catch T == 0, CMD == 0 (e.g. '0') as first keypress after init */
RC5_START(ir_input->last_rc5) == 0) {
/* This keypress is differnet: not an auto repeat */
ir_input_nokey(ir_input->dev, &ir_input->ir);
ir_input_keydown(ir_input->dev, &ir_input->ir, command);
}
ir_input->last_rc5 = rc5;
/* Schedule when we should do the key up event: ir_input_nokey() */
mod_timer(&ir_input->timer_keyup,
jiffies + msecs_to_jiffies(ir_input->rc5_key_timeout));
}
static void cx23885_input_next_pulse_width_rc5(struct cx23885_dev *dev,
u32 ns_pulse)
{
const int rc5_quarterbit_ns = 444444; /* 32 cycles/36 kHz/2 = 444 us */
struct card_ir *ir_input = dev->ir_input;
int i, level, quarterbits, halfbits;
if (!ir_input->active) {
ir_input->active = 1;
/* assume an initial space that we may not detect or measure */
ir_input->code = 0;
ir_input->last_bit = 0;
}
if (ns_pulse == V4L2_SUBDEV_IR_PULSE_RX_SEQ_END) {
ir_input->last_bit++; /* Account for the final space */
ir_input->active = 0;
cx23885_input_process_raw_rc5(dev);
return;
}
level = (ns_pulse & V4L2_SUBDEV_IR_PULSE_LEVEL_MASK) ? 1 : 0;
/* Skip any leading space to sync to the start bit */
if (ir_input->last_bit == 0 && level == 0)
return;
/*
* With valid RC-5 we can get up to two consecutive half-bits in a
* single pulse measurment. Experiments have shown that the duration
* of a half-bit can vary. Make sure we always end up with an even
* number of quarter bits at the same level (mark or space).
*/
ns_pulse &= V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS;
quarterbits = ns_pulse / rc5_quarterbit_ns;
if (quarterbits & 1)
quarterbits++;
halfbits = quarterbits / 2;
for (i = 0; i < halfbits; i++) {
ir_input->last_bit++;
ir_input->code |= (level << ir_input->last_bit);
if (ir_input->last_bit >= RC5_HALF_BITS-1) {
ir_input->active = 0;
cx23885_input_process_raw_rc5(dev);
/*
* If level is 1, a leading mark is invalid for RC5.
* If level is 0, we scan past extra intial space.
* Either way we don't want to reactivate collecting
* marks or spaces here with any left over half-bits.
*/
break;
}
}
}
static void cx23885_input_process_pulse_widths_rc5(struct cx23885_dev *dev,
bool add_eom)
{
struct card_ir *ir_input = dev->ir_input;
struct ir_input_state *ir_input_state = &ir_input->ir;
u32 ns_pulse[RC5_HALF_BITS+1];
ssize_t num = 0;
int count, i;
do {
v4l2_subdev_call(dev->sd_ir, ir, rx_read, (u8 *) ns_pulse,
sizeof(ns_pulse), &num);
count = num / sizeof(u32);
/* Append an end of Rx seq, if the caller requested */
if (add_eom && count < ARRAY_SIZE(ns_pulse)) {
ns_pulse[count] = V4L2_SUBDEV_IR_PULSE_RX_SEQ_END;
count++;
}
/* Just drain the Rx FIFO, if we're called, but not RC-5 */
if (ir_input_state->ir_type != IR_TYPE_RC5)
continue;
for (i = 0; i < count; i++)
cx23885_input_next_pulse_width_rc5(dev, ns_pulse[i]);
} while (num != 0);
}
void cx23885_input_rx_work_handler(struct cx23885_dev *dev, u32 events)
{
struct v4l2_subdev_ir_parameters params;
int overrun, data_available;
if (dev->sd_ir == NULL || events == 0)
return;
switch (dev->board) {
case CX23885_BOARD_HAUPPAUGE_HVR1850:
case CX23885_BOARD_HAUPPAUGE_HVR1290:
/*
* The only board we handle right now. However other boards
* using the CX2388x integrated IR controller should be similar
*/
break;
default:
return;
}
overrun = events & (V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN |
V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN);
data_available = events & (V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED |
V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ);
if (overrun) {
/* If there was a FIFO overrun, stop the device */
v4l2_subdev_call(dev->sd_ir, ir, rx_g_parameters, &params);
params.enable = false;
/* Mitigate race with cx23885_input_ir_stop() */
params.shutdown = atomic_read(&dev->ir_input_stopping);
v4l2_subdev_call(dev->sd_ir, ir, rx_s_parameters, &params);
}
if (data_available)
cx23885_input_process_pulse_widths_rc5(dev, overrun);
if (overrun) {
/* If there was a FIFO overrun, clear & restart the device */
params.enable = true;
/* Mitigate race with cx23885_input_ir_stop() */
params.shutdown = atomic_read(&dev->ir_input_stopping);
v4l2_subdev_call(dev->sd_ir, ir, rx_s_parameters, &params);
}
}
static void cx23885_input_ir_start(struct cx23885_dev *dev)
{
struct card_ir *ir_input = dev->ir_input;
struct ir_input_state *ir_input_state = &ir_input->ir;
struct v4l2_subdev_ir_parameters params;
if (dev->sd_ir == NULL)
return;
atomic_set(&dev->ir_input_stopping, 0);
/* keyup timer set up, if needed */
switch (dev->board) {
case CX23885_BOARD_HAUPPAUGE_HVR1850:
case CX23885_BOARD_HAUPPAUGE_HVR1290:
setup_timer(&ir_input->timer_keyup,
ir_rc5_timer_keyup, /* Not actually RC-5 specific */
(unsigned long) ir_input);
if (ir_input_state->ir_type == IR_TYPE_RC5) {
/*
* RC-5 repeats a held key every
* 64 bits * (2 * 32/36000) sec/bit = 113.778 ms
*/
ir_input->rc5_key_timeout = 115;
}
break;
}
v4l2_subdev_call(dev->sd_ir, ir, rx_g_parameters, &params);
switch (dev->board) {
case CX23885_BOARD_HAUPPAUGE_HVR1850:
case CX23885_BOARD_HAUPPAUGE_HVR1290:
/*
* The IR controller on this board only returns pulse widths.
* Any other mode setting will fail to set up the device.
*/
params.mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
params.enable = true;
params.interrupt_enable = true;
params.shutdown = false;
/* Setup for baseband compatible with both RC-5 and RC-6A */
params.modulation = false;
/* RC-5: 2,222,222 ns = 1/36 kHz * 32 cycles * 2 marks * 1.25*/
/* RC-6A: 3,333,333 ns = 1/36 kHz * 16 cycles * 6 marks * 1.25*/
params.max_pulse_width = 3333333; /* ns */
/* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */
/* RC-6A: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */
params.noise_filter_min_width = 333333; /* ns */
/*
* This board has inverted receive sense:
* mark is received as low logic level;
* falling edges are detected as rising edges; etc.
*/
params.invert = true;
break;
}
v4l2_subdev_call(dev->sd_ir, ir, rx_s_parameters, &params);
}
static void cx23885_input_ir_stop(struct cx23885_dev *dev)
{
struct card_ir *ir_input = dev->ir_input;
struct v4l2_subdev_ir_parameters params;
if (dev->sd_ir == NULL)
return;
/*
* Stop the sd_ir subdevice from generating notifications and
* scheduling work.
* It is shutdown this way in order to mitigate a race with
* cx23885_input_rx_work_handler() in the overrun case, which could
* re-enable the subdevice.
*/
atomic_set(&dev->ir_input_stopping, 1);
v4l2_subdev_call(dev->sd_ir, ir, rx_g_parameters, &params);
while (params.shutdown == false) {
params.enable = false;
params.interrupt_enable = false;
params.shutdown = true;
v4l2_subdev_call(dev->sd_ir, ir, rx_s_parameters, &params);
v4l2_subdev_call(dev->sd_ir, ir, rx_g_parameters, &params);
}
flush_scheduled_work();
switch (dev->board) {
case CX23885_BOARD_HAUPPAUGE_HVR1850:
case CX23885_BOARD_HAUPPAUGE_HVR1290:
del_timer_sync(&ir_input->timer_keyup);
break;
}
}
int cx23885_input_init(struct cx23885_dev *dev)
{
struct card_ir *ir;
struct input_dev *input_dev;
struct ir_scancode_table *ir_codes = NULL;
int ir_type, ir_addr, ir_start;
int ret;
/*
* If the IR device (hardware registers, chip, GPIO lines, etc.) isn't
* encapsulated in a v4l2_subdev, then I'm not going to deal with it.
*/
if (dev->sd_ir == NULL)
return -ENODEV;
switch (dev->board) {
case CX23885_BOARD_HAUPPAUGE_HVR1850:
case CX23885_BOARD_HAUPPAUGE_HVR1290:
/* Parameters for the grey Hauppauge remote for the HVR-1850 */
ir_codes = &ir_codes_hauppauge_new_table;
ir_type = IR_TYPE_RC5;
ir_addr = 0x1e; /* RC-5 system bits emitted by the remote */
ir_start = RC5_START_BITS_NORMAL; /* A basic RC-5 remote */
break;
}
if (ir_codes == NULL)
return -ENODEV;
ir = kzalloc(sizeof(*ir), GFP_KERNEL);
input_dev = input_allocate_device();
if (!ir || !input_dev) {
ret = -ENOMEM;
goto err_out_free;
}
ir->dev = input_dev;
ir->addr = ir_addr;
ir->start = ir_start;
/* init input device */
snprintf(ir->name, sizeof(ir->name), "cx23885 IR (%s)",
cx23885_boards[dev->board].name);
snprintf(ir->phys, sizeof(ir->phys), "pci-%s/ir0", pci_name(dev->pci));
ret = ir_input_init(input_dev, &ir->ir, ir_type);
if (ret < 0)
goto err_out_free;
input_dev->name = ir->name;
input_dev->phys = ir->phys;
input_dev->id.bustype = BUS_PCI;
input_dev->id.version = 1;
if (dev->pci->subsystem_vendor) {
input_dev->id.vendor = dev->pci->subsystem_vendor;
input_dev->id.product = dev->pci->subsystem_device;
} else {
input_dev->id.vendor = dev->pci->vendor;
input_dev->id.product = dev->pci->device;
}
input_dev->dev.parent = &dev->pci->dev;
dev->ir_input = ir;
cx23885_input_ir_start(dev);
ret = ir_input_register(ir->dev, ir_codes, NULL);
if (ret)
goto err_out_stop;
return 0;
err_out_stop:
cx23885_input_ir_stop(dev);
dev->ir_input = NULL;
err_out_free:
kfree(ir);
return ret;
}
void cx23885_input_fini(struct cx23885_dev *dev)
{
/* Always stop the IR hardware from generating interrupts */
cx23885_input_ir_stop(dev);
if (dev->ir_input == NULL)
return;
ir_input_unregister(dev->ir_input->dev);
kfree(dev->ir_input);
dev->ir_input = NULL;
}